Summary

Microchip's new megaAVR MCUs extend the capability of real-time control systems by combining intelligent hardware peripherals with the low-power performance of the AVR® core. The ATmega4809, 4808, 3209 and 3208 offer a high-speed Analog-to-Digital Converter (ADC) and easy-to-configure Core Independent Peripherals (CIPs) for deterministic response in systems where analog data acquisition and processing is mission critical. These features make the new megaAVR series of MCUs an ideal companion in complex microprocessor-based systems, or an excellent standalone processor in command-and-control system designs.

The new megaAVR MCUs utilize the same robust architecture as the latest tinyAVR® 0- and 1-series devices, while offering increased memory and I/O options. With up to 48 KB of Flash memory in 28-, 32- and 48-pin packages, these devices suit a wide variety of application needs.

Engineered for Real-time Control

Modern control applications utilize MCUs to increase their performance, while making them more efficient and reliable. The new megaAVR devices take the concept further with a peripheral set designed to decrease system response time and increase reliability, while at the same time reducing overall code footprint, validation time and system development cost.

High Speed ADC – True 10-bit resolution and conversion speeds of 150,000 samples per second ensure accurate and timely analog signal acquisition. Triggering and notifications can be transmitted to other peripherals without CPU intervention, enabling real-time response to system events.

Peripheral Event System – A hardware-based connectivity matrix allows the peripherals on the new megaAVR MCU series to communicate with one another without involving the core CPU. This functionality can be used to save energy, increase determinism in control loops, or both. More importantly, the event system is easily configured with our free software tools, helping decrease system validation time.

Configurable Custom Logic (CCL) – the CCL is a highly configurable on-chip module that can be used for a variety of system tasks, ranging from simple digital signal inversion to complex event sequencing.

Key Features

- 8-bit AVR CPU core with hardware multiplier
- Internal 20 MHz oscillator
- Up to 48 KB of Flash memory
- Up to 16-channel, high-speed 10-bit ADC
- Analog comparator with scalable reference input
- Configurable, internally generated reference voltage
- Automated memory scan with cyclic redundancy check
- 16-bit real-time clock
- UART/SPI/dual-mode I²C communications
- Configurable custom logic peripheral
- 6-channel peripheral event system
- Up to 41 I/O
- 1.8V–5.5V operating voltage range
- −40° to +125°C operating temperature range
Get Started Now
Getting started with AVR microcontrollers has never been easier! All AVR MCU families are fully supported by our comprehensive development ecosystem, which includes Atmel Studio—our free Integrated Development Environment (IDE) with built-in GCC compiler, and our powerful Atmel START configuration tool.

Atmel START
Significantly reduce your development time with Atmel START—our intuitive, web-based graphical configuration tool for embedded projects. While you navigate through the easy-to-use interface, Atmel START generates factory-validated C-code to help you get your design started correctly. Get started today at www.start.atmel.com

ATmega4809-XPRO Evaluation Kit
The ATmega4809-XPRO Evaluation kit is the ideal platform for rapid prototyping with our new ATmega-AVR MCUs. The USB-powered kit features an on-board programmer/debugger that seamlessly integrates with Atmel Studio, along with touch buttons, LEDs and extension headers for quick setup. The board also has a mikroBUS™-compatible socket, allowing you to easily add sensors, actuators, or communications interfaces from MikroElektronika’s extensive library of click boards™.

New megaAVR MCUs

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Program Flash (KB)</th>
<th>EEPROM (B)</th>
<th>Data SRAM (KB)</th>
<th>I/O Pins</th>
<th>10-bit ADC (ch)</th>
<th>5-bit DAC</th>
<th>Comp</th>
<th>8-bit/16-bit Timers</th>
<th>Window Watchdog Timer</th>
<th>Int RCO</th>
<th>CCL</th>
<th>Temp Sensor and Low Power</th>
<th>USART/I2C/SPI</th>
<th>Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATMEGA4809</td>
<td>48</td>
<td>256</td>
<td>6</td>
<td>41</td>
<td>16</td>
<td>–</td>
<td>1</td>
<td>–/6</td>
<td></td>
<td>32 KHz–20 MHz</td>
<td>1</td>
<td>Y</td>
<td></td>
<td>4/1/1 UQFN, TQFP</td>
</tr>
<tr>
<td>ATMEGA4808</td>
<td>48</td>
<td>256</td>
<td>6</td>
<td>27</td>
<td>12</td>
<td>–</td>
<td>1</td>
<td>–/5</td>
<td></td>
<td>32 KHz–20 MHz</td>
<td>1</td>
<td>Y</td>
<td></td>
<td>3/1/1 VQFN, TQFP</td>
</tr>
<tr>
<td>ATMEGA4808</td>
<td>48</td>
<td>256</td>
<td>6</td>
<td>23</td>
<td>8</td>
<td>–</td>
<td>1</td>
<td>–/5</td>
<td></td>
<td>32 KHz–20 MHz</td>
<td>1</td>
<td>Y</td>
<td></td>
<td>3/1/1 SSOP</td>
</tr>
<tr>
<td>ATMEGA3209</td>
<td>32</td>
<td>256</td>
<td>4</td>
<td>41</td>
<td>16</td>
<td>–</td>
<td>1</td>
<td>–/6</td>
<td></td>
<td>32 KHz–20 MHz</td>
<td>1</td>
<td>Y</td>
<td></td>
<td>4/1/1 UQFN, TQFP</td>
</tr>
<tr>
<td>ATMEGA3208</td>
<td>32</td>
<td>256</td>
<td>4</td>
<td>27</td>
<td>12</td>
<td>–</td>
<td>1</td>
<td>–/5</td>
<td></td>
<td>32 KHz–20 MHz</td>
<td>1</td>
<td>Y</td>
<td></td>
<td>3/1/1 VQFN, TQFP</td>
</tr>
<tr>
<td>ATMEGA3208</td>
<td>32</td>
<td>256</td>
<td>4</td>
<td>23</td>
<td>8</td>
<td>–</td>
<td>1</td>
<td>–/5</td>
<td></td>
<td>32 KHz–20 MHz</td>
<td>1</td>
<td>Y</td>
<td></td>
<td>3/1/1 SSOP</td>
</tr>
</tbody>
</table>