Features

• Gain Bandwidth Product: 300 kHz (typ.)
• Supply Current: I_Q = 20 µA (typ.)
• Supply Voltage: 1.8V to 5.5V
• Rail-to-Rail Input/Output
• Extended Temperature Range: -40°C to +125°C
• Available in 5-Pin SC-70 and SOT-23 packages

Applications

• Automotive
• Portable Equipment
• Transimpedance amplifiers
• Analog Filters
• Notebooks and PDAs
• Battery-Powered Systems

Available Tools

• SPICE Macro Models (at www.microchip.com)
• FilterLab® Software (at www.microchip.com)

Typical Application

![Summing Amplifier Circuit](image)

Description

The Microchip Technology Inc. MCP6231/2/4 operational amplifiers (op amps) provide wide bandwidth for the quiescent current. The MCP6231/2/4 family has a 300 kHz Gain Bandwidth Product (GBWP) and 65° (typ.) phase margin. This family operates from a single supply voltage as low as 1.8V, while drawing 20 µA (typ.) quiescent current. In addition, the MCP6231/2/4 family supports rail-to-rail input and output swing, with a common mode input voltage range of VDD + 300 mV to VSS – 300 mV. These op amps are designed in one of Microchip’s advanced CMOS processes.

Package Types
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD} - V_{SS})</td>
<td>-7.0</td>
<td></td>
<td>7.0</td>
<td>V</td>
</tr>
<tr>
<td>All Inputs and Outputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{SS} - 0.3) to (V_{DD} + 0.3)</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Difference Input Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(</td>
<td>V_{DD} - V_{SS}</td>
<td>)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Short Circuit Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current at Input Pins</td>
<td>±2 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current at Output and Supply Pins</td>
<td>±30 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C</td>
<td></td>
<td>+150°C</td>
<td>°C</td>
</tr>
<tr>
<td>Junction Temperature ((T_J))</td>
<td>+150°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD Protection On All Pins (HBM; MM)</td>
<td>≥ 4 kV</td>
<td></td>
<td>300 V</td>
<td>V</td>
</tr>
</tbody>
</table>

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>(V_{OS})</td>
<td>-5.0</td>
<td></td>
<td></td>
<td>mV</td>
<td>(V_{CM} = V_{SS})</td>
</tr>
<tr>
<td>Extended Temperature</td>
<td>(V_{OS})</td>
<td>-7.0</td>
<td></td>
<td></td>
<td>mV</td>
<td>(T_A = -40°C) to +125°C, (V_{CM} = V_{SS}) (Note)</td>
</tr>
<tr>
<td>Input Offset Drift with Temperature</td>
<td>(\Delta V_{OS}/\Delta T_A)</td>
<td></td>
<td>±3.0</td>
<td></td>
<td>µV/°C</td>
<td>(T_A = -40°C) to +125°C, (V_{CM} = V_{SS})</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>PSRR</td>
<td></td>
<td>83</td>
<td></td>
<td>dB</td>
<td>(V_{CM} = V_{SS})</td>
</tr>
<tr>
<td>Input Bias Current and Impedance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Bias Current:</td>
<td>(I_B)</td>
<td></td>
<td>±1.0</td>
<td></td>
<td>pA</td>
<td></td>
</tr>
<tr>
<td>At Temperature</td>
<td>(I_B)</td>
<td></td>
<td>20</td>
<td></td>
<td>pA</td>
<td>(T_A = +85°C)</td>
</tr>
<tr>
<td>At Temperature</td>
<td>(I_B)</td>
<td></td>
<td>1100</td>
<td></td>
<td>pA</td>
<td>(T_A = +125°C)</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>(I_{OS})</td>
<td></td>
<td>±1.0</td>
<td></td>
<td>pA</td>
<td></td>
</tr>
<tr>
<td>Common Mode Input Impedance</td>
<td>(Z_{CM})</td>
<td></td>
<td>(10^{13}</td>
<td>\Omega</td>
<td></td>
<td>pF)</td>
</tr>
<tr>
<td>Differential Input Impedance</td>
<td>(Z_{DIFF})</td>
<td></td>
<td>(10^{13}</td>
<td>\Omega</td>
<td></td>
<td>pF)</td>
</tr>
<tr>
<td>Common Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Mode Input Range</td>
<td>(V_{CMR})</td>
<td>(V_{SS} - 0.3)</td>
<td></td>
<td>(V_{DD} + 0.3)</td>
<td>V</td>
<td>(V_{CM} = -0.3V) to 5.3V, (V_{DD} = 5V)</td>
</tr>
<tr>
<td>Common Mode Rejection Ratio</td>
<td>CMRR</td>
<td>61</td>
<td>75</td>
<td></td>
<td>dB</td>
<td>(V_{OUT} = 0.3V) to (V_{DD} - 0.3V), (V_{CM} = V_{SS})</td>
</tr>
<tr>
<td>Open-Loop Gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Open-Loop Gain (large signal)</td>
<td>(A_{OL})</td>
<td>90</td>
<td>110</td>
<td></td>
<td>dB</td>
<td>(V_{OUT} = 0.3V) to (V_{DD} - 0.3V), (V_{CM} = V_{SS})</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Output Voltage Swing</td>
<td>(V_{OL, V_{OH}})</td>
<td>(V_{SS} + 35)</td>
<td></td>
<td>(V_{DD} - 35)</td>
<td>mV</td>
<td>(R_L = 10 k\Omega, 0.5V) Output Overdrive</td>
</tr>
<tr>
<td>Output Short-Circuit Current</td>
<td>(I_{SC})</td>
<td></td>
<td>±6</td>
<td></td>
<td>mA</td>
<td>(V_{DD} = 1.8V)</td>
</tr>
<tr>
<td></td>
<td>(I_{SC})</td>
<td></td>
<td>±23</td>
<td></td>
<td>mA</td>
<td>(V_{DD} = 5.5V)</td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>(V_{DD})</td>
<td>1.8</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Quiescent Current per Amplifier</td>
<td>(I_Q)</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>µA</td>
<td>(I_Q = 0, V_{CM} = V_{DD} - 0.5V)</td>
</tr>
</tbody>
</table>

Note: The SC-70 package is only tested at +25°C.
AC ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, $T_A = +25^\circ\text{C}$, $V_{DD} = +1.8$ to 5.5V, $V_{SS} = \text{GND}$, $V_{CM} = V_{DD}/2$, $V_{OUT} = V_{DD}/2$, $R_L = 100\ \Omega$ to $V_{DD}/2$ and $C_L = 60\ \text{pF}$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Bandwidth Product</td>
<td>GBWP</td>
<td></td>
<td>300</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Phase Margin</td>
<td>PM</td>
<td></td>
<td>65</td>
<td></td>
<td>°</td>
<td>$G = +1$</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>SR</td>
<td></td>
<td>0.15</td>
<td></td>
<td>V/µs</td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Noise Voltage</td>
<td>E_{ni}</td>
<td></td>
<td>6.0</td>
<td></td>
<td>µV_{P-P}</td>
<td>$f = 0.1$ Hz to 10 Hz</td>
</tr>
<tr>
<td>Input Noise Voltage Density</td>
<td>e_{ni}</td>
<td></td>
<td>52</td>
<td></td>
<td>nV/√Hz</td>
<td>$f = 1$ kHz</td>
</tr>
<tr>
<td>Input Noise Current Density</td>
<td>i_{ni}</td>
<td></td>
<td>0.6</td>
<td></td>
<td>fA/√Hz</td>
<td>$f = 1$ kHz</td>
</tr>
</tbody>
</table>

TEMPERATURE CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, $V_{DD} = +1.8\text{V}$ to $+5.5\text{V}$ and $V_{SS} = \text{GND}$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td></td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td></td>
<td>+125</td>
<td>°C</td>
<td>Note</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_A</td>
<td>-65</td>
<td></td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Thermal Package Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 5L-SC70</td>
<td>θ_{JA}</td>
<td></td>
<td>331</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 5L-SOT-23</td>
<td>θ_{JA}</td>
<td></td>
<td>256</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-MSOP</td>
<td>θ_{JA}</td>
<td></td>
<td>206</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-PDIP</td>
<td>θ_{JA}</td>
<td></td>
<td>85</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-SOIC</td>
<td>θ_{JA}</td>
<td></td>
<td>163</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 14L-PDIP</td>
<td>θ_{JA}</td>
<td></td>
<td>70</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 14L-SOIC</td>
<td>θ_{JA}</td>
<td></td>
<td>120</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 14L-TSSOP</td>
<td>θ_{JA}</td>
<td></td>
<td>100</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>

Note: The internal Junction Temperature (T_{j}) must not exceed the Absolute Maximum specification of $+150^\circ\text{C}$.
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^\circ$C, $V_{DD} = +1.8$V to +5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $R_L = 100$ kΩ to $V_{DD}/2$ and $C_L = 60$ pF.

FIGURE 2-1: Input Offset Voltage.

FIGURE 2-2: PSRR, CMRR vs. Frequency.

FIGURE 2-3: Input Bias Current at +85°C.

FIGURE 2-4: CMRR, PSRR vs. Ambient Temperature.

FIGURE 2-5: Open-Loop Gain, Phase vs. Frequency.

FIGURE 2-6: Input Bias Current at +125°C.
Note: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = +1.8V$ to $+5.5V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} = V_{DD}/2$, $R_L = 100 \, k\Omega$ to $V_{DD}/2$ and $C_L = 60 \, pF$.

FIGURE 2-7: Input Noise Voltage Density vs. Frequency.

FIGURE 2-8: Input Offset Voltage vs. Common Mode Input Voltage at $V_{DD} = 1.8V$.

FIGURE 2-9: Input Offset Voltage vs. Common Mode Input Voltage at $V_{DD} = 5.5V$.

FIGURE 2-10: Input Offset Voltage Drift.

FIGURE 2-11: Input Offset Voltage vs. Output Voltage.

FIGURE 2-12: Output Short-Circuit Current vs. Ambient Temperature.
Note: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = +1.8V$ to $+5.5V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $R_L = 100 \, k\Omega$ to $V_{DD}/2$ and $C_L = 60 \, pF$.

FIGURE 2-13: Slew Rate vs. Ambient Temperature.

FIGURE 2-14: Output Voltage Headroom vs. Output Current Magnitude.

FIGURE 2-15: Maximum Output Voltage Swing vs. Frequency.

FIGURE 2-16: Small-Signal, Non-Inverting Pulse Response.

FIGURE 2-17: Large-Signal, Non-Inverting Pulse Response.

FIGURE 2-18: Quiescent Current vs. Power Supply Voltage.
3.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in Table 3-1 (single op amps) and Table 3-2 (dual and quad op amps).

TABLE 3-1: PIN FUNCTION TABLE FOR SINGLE OP AMPS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOUT</td>
<td>Analog Output</td>
</tr>
<tr>
<td>VIN~</td>
<td>Inverting Input</td>
</tr>
<tr>
<td>VIN+</td>
<td>Non-inverting Input</td>
</tr>
<tr>
<td>VDD</td>
<td>Positive Power Supply</td>
</tr>
<tr>
<td>VSS</td>
<td>Negative Power Supply</td>
</tr>
<tr>
<td>NC</td>
<td>No Internal Connection</td>
</tr>
</tbody>
</table>

3.1 Analog Outputs

The output pins are low-impedance voltage sources.

3.2 Analog Inputs

The non-inverting and inverting inputs are high-impedance CMOS inputs with low bias currents.

TABLE 3-2: PIN FUNCTION TABLE FOR DUAL AND QUAD OP AMPS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOUTA</td>
<td>Analog Output (op amp A)</td>
</tr>
<tr>
<td>VIN~A</td>
<td>Inverting Input (op amp A)</td>
</tr>
<tr>
<td>VIN+A</td>
<td>Non-inverting Input (op amp A)</td>
</tr>
<tr>
<td>VDD</td>
<td>Positive Power Supply</td>
</tr>
<tr>
<td>VIN~B</td>
<td>Inverting Input (op amp B)</td>
</tr>
<tr>
<td>VIN+B</td>
<td>Non-inverting Input (op amp B)</td>
</tr>
<tr>
<td>VOUTB</td>
<td>Analog Output (op amp B)</td>
</tr>
<tr>
<td>VOUTC</td>
<td>Analog Output (op amp C)</td>
</tr>
<tr>
<td>VIN~C</td>
<td>Inverting Input (op amp C)</td>
</tr>
<tr>
<td>VIN+C</td>
<td>Non-inverting Input (op amp C)</td>
</tr>
<tr>
<td>VSS</td>
<td>Negative Power Supply</td>
</tr>
<tr>
<td>VIN~D</td>
<td>Inverting Input (op amp D)</td>
</tr>
<tr>
<td>VIN+D</td>
<td>Non-inverting Input (op amp D)</td>
</tr>
<tr>
<td>VOUTD</td>
<td>Analog Output (op amp D)</td>
</tr>
</tbody>
</table>

3.3 Power Supply (VSS and VDD)

The positive power supply (VDD) is 1.8V to 5.5V higher than the negative power supply (VSS). For normal operation, the other pins are between VSS and VDD. Typically, these parts are used in a single (positive) supply configuration. In this case, VSS is connected to ground and VDD is connected to the supply. VDD will need a local bypass capacitor (typically 0.01 μF to 0.1 μF) within 2 mm of the VDD pin. These parts can share a bulk capacitor (typically 1 μF to 100 μF) with other nearby analog parts; it needs to be within 100 mm of the VDD pin.
4.0 APPLICATION INFORMATION

The MCP6231/2/4 family of op amps is manufactured using Microchip’s state-of-the-art CMOS process and is specifically designed for low-cost, low-power and general-purpose applications. The low supply voltage, low quiescent current and wide bandwidth makes the MCP6231/2/4 ideal for battery-powered applications.

4.1 Rail-to-Rail Inputs

The MCP6231/2/4 op amps are designed to prevent phase reversal when the input pins exceed the supply voltages. Figure 4-1 shows the input voltage exceeding the supply voltage without any phase reversal.

![FIGURE 4-1: The MCP6231/2/4 Show No Phase Reversal.](image)

The input stage of the MCP6231/2/4 op amps use two differential input stages in parallel. One operates at low common mode input voltage (V_CM) and the other at high V_CM. With this topology, the device operates with V_CM up to 300 mV above V_DD and 300 mV below V_SS. The input offset voltage is measured at V_CM = V_SS – 300 mV and V_DD + 300 mV to ensure proper operation.

Input voltages that exceed the input voltage range (V_SS – 0.3V to V_DD + 0.3V at 25°C) can cause excessive current to flow into or out of the input pins. Current beyond ±2 mA can cause reliability problems. Applications that exceed this rating must be externally limited with a resistor, as shown in Figure 4-2.

![FIGURE 4-2: Input Current-Limiting Resistor (R_IN).](image)

4.2 Rail-to-Rail Output

The output voltage range of the MCP6231/2/4 op amps is V_DD – 35 mV (max.) and V_SS + 35 mV (min.) when R_L = 10 kΩ is connected to V_DD/2 and V_DD = 5.5V. Refer to Figure 2-14 for more information.

4.3 Capacitive Loads

Driving large capacitive loads can cause stability problems for voltage feedback op amps. As the load capacitance increases, the feedback loop’s phase margin decreases and the closed-loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in the step response. A unity-gain buffer (G = +1) is the most sensitive to capacitive loads, but all gains show the same general behavior.

When driving large capacitive loads with these op amps (e.g., > 60 pF when G = +1), a small series resistor at the output (R_ISO in Figure 4-3) improves the feedback loop’s phase margin (stability) by making the output load resistive at higher frequencies. The bandwidth will be generally lower than the bandwidth with no capacitive load.

![FIGURE 4-3: Output resistor, R_ISO stabilizes large capacitive loads.](image)

Figure 4-4 gives recommended R_ISO values for different capacitive loads and gains. The x-axis is the normalized load capacitance (C_L/G_N), where G_N is the circuit’s noise gain. For non-inverting gains, G_N and the signal gain are equal. For inverting gains, G_N is 1 + |Signal Gain| (e.g., −1 V/V gives G_N = +2 V/V).
After selecting R_{ISO} for your circuit, double-check the resulting frequency response peaking and step response overshoot. Evaluation on the bench and simulations with the MCP6231/2/4 SPICE macro model are very helpful. Modify R_{ISO}'s value until the response is reasonable.

4.4 Supply Bypass

With this op amp, the power supply pin (V_{DD} for single-supply) should have a local bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm for good high-frequency performance. It can use a bulk capacitor (i.e., 1 µF or larger) within 100 mm to provide large, slow currents. This bulk capacitor can be shared with other nearby analog parts.

4.5 Unused Op Amps

An unused op amp in a quad package (MCP6234) should be configured as shown in Figure 4-5. Both circuits prevent the output from toggling and causing crosstalk. Circuit A can use any reference voltage between the supplies, provides a buffered DC voltage and minimizes the supply current draw of the unused op amp. Circuit B minimizes the number of components, but may draw a little more supply current for the unused op amp.

4.6 PCB Surface Leakage

In applications where low input bias current is critical, Printed Circuit Board (PCB) surface leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity conditions, a typical resistance between nearby traces is $10^{12} \, \Omega$. A 5V difference would cause 5 pA of current to flow, which is greater than the MCP6231/2/4 family's bias current at 25°C (1 pA, typ.).

The easiest way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 4-6.
4.7 Application Circuits

4.7.1 MATCHING THE IMPEDANCE AT THE INPUTS

To minimize the effect of input bias current in an amplifier circuit (this is important for very high source-impedance applications, such as pH meters and transimpedance amplifiers), the impedances at the inverting and non-inverting inputs need to be matched. This is done by choosing the circuit resistor values so that the total resistance at each input is the same. Figure 4-7 shows a summing amplifier circuit.

To match the inputs, set all voltage sources to ground and calculate the total resistance at the input nodes. In this summing amplifier circuit, the resistance at the inverting input is calculated by setting V_{IN1}, V_{IN2} and V_{OUT} to ground. In this case, R_{G1}, R_{G2} and R_F are in parallel. The total resistance at the inverting input is:

$$ R_{IN^-} = \frac{1}{\left(\frac{1}{R_{G1}} + \frac{1}{R_{G2}} + \frac{1}{R_F}\right)} $$

Where:

$ R_{IN^-} = \text{total resistance at the inverting input} $

At the non-inverting input, V_{DD} is the only voltage source. When V_{DD} is set to ground, both R_X and R_Y are in parallel. The total resistance at the non-inverting input is:

$$ R_{VIN^+} = \frac{1}{\left(\frac{1}{R_X} + \frac{1}{R_Y}\right)} + R_Z $$

Where:

$ R_{VIN^+} = \text{total resistance at the inverting input} $

To minimize output offset voltage and increase circuit accuracy, the resistor values need to meet the conditions:

$$ R_{VIN^+} = R_{IN^-} $$

4.7.2 COMPENSATING FOR THE PARASITIC CAPACITANCE

In analog circuit design, the PCB parasitic capacitance can compromise the circuit behavior; Figure 4-8 shows a typical scenario. If the input of an amplifier sees parasitic capacitance of several picofarad (C_{PARA}, which includes the common mode capacitance of 6 pF, typ.), and large R_F and R_G, the frequency response of the circuit will include a zero. This parasitic zero introduces gain-peaking and can cause circuit instability.

One solution is to use smaller resistor values to push the zero to a higher frequency. Another solution is to compensate by introducing a pole at the point at which the zero occurs. This can be done by adding C_F in parallel with the feedback resistor (R_F). C_F needs to be selected so that the ratio $C_{PARA}:C_F$ is equal to the ratio of $R_F:R_G$.

FIGURE 4-7: Summing Amplifier Circuit.

FIGURE 4-8: Effect of Parasitic Capacitance at the Input.
5.0 DESIGN TOOLS

Microchip provides the basic design tools needed for the MCP6231/2/4 family of op amps.

5.1 SPICE Macro Model

The latest SPICE macro model for the MCP6231/2/4 op amps is available on our web site at www.microchip.com. This model is intended to be an initial design tool that works well in the op amp’s linear region of operation at room temperature. See the macro model file for information on its capabilities.

Bench testing is a very important part of any design and cannot be replaced with simulations. Also, simulation results using this macro model need to be validated by comparing them to the data sheet specifications and characteristic curves.

5.2 FilterLab® Software

Microchip’s FilterLab software is an innovative tool that simplifies analog active-filter (using op amps) design. Available at no cost from our web site at www.microchip.com, the FilterLab design tool provides full schematic diagrams of the filter circuit with component values. It also outputs the filter circuit in SPICE format, which can be used with the macro model to simulate actual filter performance.
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

5-Lead SC-70 (MCP6231U Only)

Example:

5-Lead SOT-23

Example:

Device	Code
MCP6231 | BJNN
MCP6231R | BKNN
MCP6231U | BLNN

Note: Applies to 5-Lead SOT-23.

8-Lead MSOP

Example:

8-Lead PDIP (300 mil)

Example:

8-Lead SOIC (150 mil)

Example:

Legend:

XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
\(^3\) Pb-free JEDEC designator for Matte Tin (Sn)
\(*\) This package is Pb-free. The Pb-free JEDEC designator \(^3\) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
Package Marking Information (Continued)

14-Lead PDIP (300 mil) (MCP6234)

Example:

14-Lead SOIC (150 mil) (MCP6234)

Example:

14-Lead TSSOP (MCP6234)

Example:
MCP6231/2/4

5-Lead Small Outline Transistor Package (SC-70)

![Package Diagram](image)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
<th>MILLIMETERS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>5</td>
</tr>
<tr>
<td>Pitch</td>
<td>P</td>
<td>0.026 (BSC)</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>0.031</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>0.031</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>0.000</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>0.071</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>0.045</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>0.071</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>0.004</td>
</tr>
<tr>
<td>Top of Molded Pin to Lead Shoulder</td>
<td>Q1</td>
<td>0.004</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>0.004</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B</td>
<td>0.006</td>
</tr>
</tbody>
</table>

*Controlling Parameter
Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.

JEITA (EIAJ) Standard: SC-70
Drawing No. C04-061
5-Lead Plastic Small Outline Transistor (OT) (SOT23)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>5</td>
</tr>
<tr>
<td>Pitch</td>
<td>p</td>
<td>.038</td>
</tr>
<tr>
<td>Outside lead pitch (basic)</td>
<td>p1</td>
<td>.075</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.035</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.035</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>.000</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>.102</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.059</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.110</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>.014</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
<td>0</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.004</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B</td>
<td>.014</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>0</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>0</td>
</tr>
</tbody>
</table>

*Controlling Parameter

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.

EIAJ Equivalent: SC-74A
Drawing No. C04-091
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
<th>MILLIMETERS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins n</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Pitch P</td>
<td>.026 BSC</td>
<td>0.65 BSC</td>
</tr>
<tr>
<td>Overall Height A</td>
<td>-</td>
<td>.043</td>
</tr>
<tr>
<td>Molded Package Thickness A2</td>
<td>.030</td>
<td>.033</td>
</tr>
<tr>
<td>Standoff A1</td>
<td>.000</td>
<td>-</td>
</tr>
<tr>
<td>Overall Width E</td>
<td>.193 TYP.</td>
<td>4.90 BSC</td>
</tr>
<tr>
<td>Molded Package Width E1</td>
<td>.118 BSC</td>
<td>3.00 BSC</td>
</tr>
<tr>
<td>Overall Length D</td>
<td>.118 BSC</td>
<td>3.00 BSC</td>
</tr>
<tr>
<td>Foot Length L</td>
<td>.016</td>
<td>.024</td>
</tr>
<tr>
<td>Footprint (Reference)</td>
<td>F</td>
<td>.037 REF</td>
</tr>
<tr>
<td>Foot Angle φ</td>
<td>0°</td>
<td>-</td>
</tr>
<tr>
<td>Lead Thickness c</td>
<td>.003</td>
<td>.006</td>
</tr>
<tr>
<td>Lead Width B</td>
<td>.009</td>
<td>.012</td>
</tr>
<tr>
<td>Mold Draft Angle Top α</td>
<td>5°</td>
<td>-</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom β</td>
<td>5°</td>
<td>-</td>
</tr>
</tbody>
</table>

*Multiplying Parameter

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-187
Drawing No. C04-111
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>Pitch</td>
<td>p</td>
<td>.100</td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A</td>
<td>.140</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.115</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1</td>
<td>.015</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E</td>
<td>.300</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.240</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.360</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
<td>.125</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.008</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>B1</td>
<td>.045</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>B</td>
<td>.014</td>
</tr>
<tr>
<td>Overall Row Spacing</td>
<td>eB</td>
<td>.310</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>5</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>5</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

Notes:
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.
- JEDEC Equivalent: MS-001
- Drawing No. C04-018
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)

<table>
<thead>
<tr>
<th>Dimension Limits</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins n</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Pitch P</td>
<td>.050</td>
<td>1.27</td>
</tr>
<tr>
<td>Overall Height A</td>
<td>.053</td>
<td>.061</td>
</tr>
<tr>
<td>Molded Package Thickness A2</td>
<td>.052</td>
<td>.056</td>
</tr>
<tr>
<td>Standoff A1</td>
<td>.004</td>
<td>.010</td>
</tr>
<tr>
<td>Overall Width E</td>
<td>.228</td>
<td>.237</td>
</tr>
<tr>
<td>Molded Package Width E1</td>
<td>.146</td>
<td>.154</td>
</tr>
<tr>
<td>Overall Length D</td>
<td>.189</td>
<td>.193</td>
</tr>
<tr>
<td>Chamfer Distance h</td>
<td>.010</td>
<td>.015</td>
</tr>
<tr>
<td>Foot Length L</td>
<td>.019</td>
<td>.025</td>
</tr>
<tr>
<td>Foot Angle φ</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Lead Thickness c</td>
<td>.008</td>
<td>.009</td>
</tr>
<tr>
<td>Lead Width B</td>
<td>.013</td>
<td>.017</td>
</tr>
<tr>
<td>Mold Draft Angle Top α</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom β</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.
JEDEC Equivalent: MS-012
Drawing No. C04-057

© 2005 Microchip Technology Inc.
MCP6231/2/4

14-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

![Diagram of MCP6231/2/4](image)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>14</td>
</tr>
<tr>
<td>Pitch</td>
<td>P</td>
<td>.100</td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A</td>
<td>.140</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.115</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1</td>
<td>.015</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E</td>
<td>.300</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.240</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.740</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
<td>.125</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.008</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>B1</td>
<td>.045</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>B</td>
<td>.014</td>
</tr>
<tr>
<td>Overall Row Spacing</td>
<td>eB</td>
<td>.310</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>5</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>5</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

Notes:
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.
- JEDEC Equivalent: MS-001
- Drawing No. C04-005
14-Lead Plastic Small Outline (SL) – Narrow, 150 mil (SOIC)

Units

<table>
<thead>
<tr>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Height</td>
<td>.053</td>
<td>.061</td>
<td>.069</td>
<td>1.35</td>
<td>1.55</td>
<td>1.75</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>.052</td>
<td>.056</td>
<td>.061</td>
<td>1.32</td>
<td>1.42</td>
<td>1.55</td>
</tr>
<tr>
<td>Standoff §</td>
<td>.004</td>
<td>.007</td>
<td>.010</td>
<td>0.10</td>
<td>0.18</td>
<td>0.25</td>
</tr>
<tr>
<td>Overall Width</td>
<td>.228</td>
<td>.236</td>
<td>.244</td>
<td>5.79</td>
<td>5.99</td>
<td>6.20</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>.150</td>
<td>.154</td>
<td>.157</td>
<td>3.81</td>
<td>3.90</td>
<td>3.99</td>
</tr>
<tr>
<td>Overall Length</td>
<td>.337</td>
<td>.342</td>
<td>.347</td>
<td>8.56</td>
<td>8.69</td>
<td>8.81</td>
</tr>
<tr>
<td>Chamfer Distance</td>
<td>.010</td>
<td>.015</td>
<td>.020</td>
<td>0.25</td>
<td>0.36</td>
<td>0.51</td>
</tr>
<tr>
<td>Foot Length</td>
<td>.016</td>
<td>.033</td>
<td>.050</td>
<td>0.41</td>
<td>0.84</td>
<td>1.27</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>.008</td>
<td>.009</td>
<td>.010</td>
<td>0.20</td>
<td>0.23</td>
<td>0.25</td>
</tr>
<tr>
<td>Lead Width</td>
<td>.014</td>
<td>.017</td>
<td>.020</td>
<td>0.36</td>
<td>0.42</td>
<td>0.51</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Controlling Parameter
§ Significant Characteristic

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.
JEDEC Equivalent: MS-012
Drawing No. C04-065
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)

Notes:
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005” (0.127mm) per side.
- JEDEC Equivalent: MO-153
- Drawing No. C04-087

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
<th>MILLIMETERS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>.14</td>
</tr>
<tr>
<td>Pitch</td>
<td>P</td>
<td>.026</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.043</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.033</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
<td>.002</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>.246</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.169</td>
</tr>
<tr>
<td>Molded Package Length</td>
<td>D</td>
<td>.193</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>.020</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
<td>0</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.004</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B1</td>
<td>.007</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>0</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>0</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

© 2005 Microchip Technology Inc.
APPENDIX A: REVISION HISTORY

Revision C (March 2005)
The following is the list of modifications:
1. Added the MCP6234 quad op amp.
2. Corrected plots in Section 2.0 “Typical Performance Curves”.
3. Added Section 3.0 “Pin Descriptions”.
4. Added new SC-70 package markings. Added PDIP-14, SOIC-14, and TSSOP-14 packages and corrected package marking information (Section 6.0 “Packaging Information”).
5. Added Appendix A: “Revision History”.

Revision B (August 2004)

Revision A (March 2004)
• Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>Tape and Reel</th>
<th>Temperature Range</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td></td>
<td>and/or Alternate Pinout</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **MCP6231**: Single Op Amp (MSOP, PDIP, SOIC)
- **MCP6231T**: Single Op Amp (Tape and Reel) (MSOP, SOIC, SOT-23)
- **MCP6231RT**: Single Op Amp (Tape and Reel) (SOT-23)
- **MCP6231UT**: Single Op Amp (Tape and Reel) (SC-70, SOT-23)
- **MCP6232**: Dual Op Amp
- **MCP6232T**: Dual Op Amp (Tape and Reel) (MSOP, SOIC)
- **MCP6234**: Quad Op Amp
- **MCP6234T**: Quad Op Amp (Tape and Reel) (TSSOP, SOIC)

Examples:

<table>
<thead>
<tr>
<th></th>
<th>Device</th>
<th>Package</th>
<th>Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) MCP6231-E/SN</td>
<td>Extended Temp., 8LD SOIC package.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) MCP6231-E/MS</td>
<td>Extended Temp., 8LD MSOP package.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) MCP6231-E/P</td>
<td>Extended Temp., 8LD PDIP package.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) MCP6231RT-E/OT</td>
<td>Tape and Reel, Extended Temp., 5LD SOT-23 package</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) MCP6231UT-E/OT</td>
<td>Tape and Reel, Extended Temp., 5LD SOT-23 package</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f) MCP6231UT-E/LT</td>
<td>Tape and Reel, Extended Temp., 5LD SC-70 package</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Device</th>
<th>Package</th>
<th>Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) MCP6232-E/SN</td>
<td>Extended Temp., 8LD SOIC package.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) MCP6232-E/MS</td>
<td>Extended Temp., 8LD MSOP package.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) MCP6232-E/P</td>
<td>Extended Temp., 8LD PDIP package.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) MCP6232T-E/SN</td>
<td>Tape and Reel, Extended Temp., 8LD SOIC package.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) MCP6234-E/P</td>
<td>Extended Temp., 14LD PDIP package.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) MCP6234-E/SL</td>
<td>Extended Temp., 14LD PDIP package.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) MCP6234-E/ST</td>
<td>Extended Temp., 14LD TSSOP package.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) MCP6234T-E/SL</td>
<td>Tape and Reel, Extended Temp., 14LD SOIC package.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) MCP6234T-E/ST</td>
<td>Tape and Reel, Extended Temp., 14LD TSSOP package.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temperature Range:
- **E** = -40°C to +125°C

Package:
- **LT** = Plastic Package (SC-70), 5-lead (MCP6231U only)
- **MS** = Plastic Micro Small Outline (MSOP), 8-lead
- **P** = Plastic DIP (300 mil Body), 8-lead, 14-lead
- **OT** = Plastic Small Outline Transistor (SOT-23), 5-lead (MCP6231, MCP6231R, MCP6231U)
- **SN** = Plastic SOIC (150 mil Body), 8-lead
- **SL** = Plastic SOIC (150 mil Body), 14-lead
- **ST** = Plastic TSSOP (4.4 mil Body), 14-lead
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.

- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

- Microchip is willing to work with the customer who is concerned about the integrity of their code.

- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rFTIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK, MPSMART, PICkit, PICDEM, PICDEM.net, PICLAB, Pictail, PowerCal, PowerInfo, PowerMate, PowerTool, rFLAB, rfticDEM, SQQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2005, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company’s quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.