MPLAB® X: The new Integrated Development Environment from Microchip... Now in Beta!

MPLAB® X IDE is a software program that runs on a PC (Windows®, Mac OS®, Linux®) to develop applications for Microchip microcontrollers and digital signal controllers. It is called an Integrated Development Environment, or IDE, because it provides a single integrated “environment” to develop code for embedded microcontrollers.

MPLAB X IDE brings many changes to the PIC® microcontroller development tool chain. Unlike previous versions of MPLAB which were developed completely in-house, MPLAB X is based on the open source NetBeans IDE from Oracle. Taking this path has allowed us to add many frequently requested features very quickly and easily while enabling a much more extensible architecture to bring users even more new features in the future. It also provides many new features that will be especially beneficial to users of our 16-bit and 32-bit families.

Where can I find more information?
The MPLAB X Reference Center provides answers to the most commonly asked questions from our veteran users to get up to speed with the new IDE as quickly as possible. Over time, we will add more content directed at novice users to give them a jump start into developing applications with the PIC microcontroller family.

In the Reference Center you will find information on:

- Installation and Configuration
- Building, Debugging and Running Applications
- Creating and Working With Projects
- Programming Devices
- Working with Version Control Systems
- Toolbar Quick References
- Working with Issue Trackers
- Debug and Programming Tools
- Working With The Editor
- Frequently Asked Questions
- Navigating Through Projects
- General Troubleshooting Techniques

To learn more about the MPLAB X IDE, beta, tools and references available to you, visit: http://www.microchip.com/mplabx
Does your photoelectric smoke detector need to operate off of 3V?

IC Features Horn Driver and Boost Regulator; Reduces Cost and Component Count; Simplifies Design

Microchip has announced the RE46C190 3V photo smoke-detector IC with horn driver and boost regulator. The world’s first smoke-detector IC to offer low-voltage operation with programmable calibration and operating modes, the RE46C190 IC enables the desired operating modes to be selected and calibrated during manufacturing. This simplifies smoke-detector design and manufacturing, and reduces component count and cost. Additionally, the IC’s low operating current of 8 microamperes typical enables up to 10 years of operation from a single lithium battery. Two alkaline batteries may also be used to power the RE46C190.

Programmable calibration and selection of smoke-detector operating modes provides designers with an easy way to control smoke-detector operation, and enables a single IC to be used to design smoke detectors for different markets and regulatory requirements. This feature also reduces the number of external components required, as electronic programmability allows the integration of several formerly external components into the IC, which in turn reduces costs associated with manufacturing and inventory.

Microchip already offers a broad line of PIC® microcontrollers, horn drivers, smoke-detector ICs, and signal-chain and power-management devices that enable numerous smoke-detector applications, from simple residential detectors to programmable commercial systems. The addition of a low-voltage smoke-detector IC with programmable calibration and operating modes demonstrates Microchip’s steadfast commitment to developing innovative products for the smoke-detector market.

The RE46C190 smoke-detector IC is available in a 16-pin SOIC 150 mil. package in 10,000-unit quantities.

Features:
- Two AA battery Operation
- Low Quiescent Current Consumption
- Internal IRED Driver with Programmable IRED Current
- Programmable Photo Amplifier
- Programmable Smoke Sensitivity Levels
- 9 Minute Timer for Reduced Sensitivity Operation
- Chamber Test with Programmable Sensitivity Level
- Internal Low Battery Test with Programmable Threshold
- Interconnect up to 40 Detectors
- Local Alarm Memory
- Temporal or Continuous Horn Pattern
- All internal Oscillator

To learn more about Microchip’s latest Smoke Detector IC visit: http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en552256
8-Bit MCUs: Sophisticated Solutions for Simple Applications

White Paper Introduction

The 8-bit Microcontroller (MCU) has been around for close to 40 years. In this age of rapidly advancing technology, when electronic devices seem to become obsolete not long after they get to market, that boggles the mind. To what can we attribute such longevity? There are a variety of answers.

For starters, today's 8-bit MCUs are not the same as the ones that first appeared in the early 1970s. They are smaller, faster, cheaper, require less power, are easier to program, and offer more features and peripherals. In the early days of 8-bit MCUs, 500,000 instructions per second was considered state-of-the-art. Of course, back then, typical clock rates were in the 1-2 MHz range; today's 8-bit units offer a wider range of performance options up to 64 MHz with 16 million instructions per second.

8-bit MCUs are optimized for low power and simple code. They will always be the easiest and most cost-effective solution for basic embedded control. The low-cost tools and fast time to market for developing with 8-bit MCUs make them an ideal choice when engineers need to quickly solve problems. The cost optimized 8-bit MCUs have smaller code, lower power and offer more robustness to environmental noise.

The amount of integrated memory, too, has increased dramatically over the years. Microchip’s 8-bit portfolio now ranges from 384 bytes of program memory for extremely low cost, simple applications to 128 KB Flash and up to 4 KB RAM for more sophisticated drivers, stacks and libraries. So, even with a low-cost 8-bit MCU, there is plenty of bandwidth to implement an internet radio or a wireless energy monitor device.

Features And Peripherals

The fact of the matter is, today’s 8-bit MCUs pack a lot of features into a small, cost-effective package. Take Microchip’s PIC10F2XX family, for example, which comes in small 6-pin, 2x3 DFN, or SOT-23 packages. Despite being the smallest microcontrollers in the world, these MCUs are helpful for adding smarts to discrete or analog centric legacy designs where previously no electronics were needed.

Microchip’s PIC® MCUs integrate a broad array of peripherals, which greatly increases the number of potential applications in which they can be used. Most embedded applications require some level of connectivity with other ICs or the outside world. Microchip offers 8-bit MCUs with standard integrated communications peripherals such as SPI, USART (RS-232/RS-485), I²C™, CAN and LIN.

In addition, many PIC MCUs also integrate USB for data logging, remote field upgrades, RS-232 replacement and diagnostic equipment. Microchip’s USB MCUs include full-speed USB 2.0 operation up to 12 Mbits/sec across 14-to 80-pins and from 8 to 128 KB Flash, from the PIC18F14K50 family to the PIC18F87J50 family. All of the USB MCUs are supported by Microchip’s free USB drivers and stack, or you can use the pre-programmed USB to UART bridge, MCP2200, to add USB connection to any PIC MCU.

Many applications are also adding Ethernet connectivity to take advantage of the internet for remote monitoring or control of embedded applications. Designers can choose between Microchip’s standalone Ethernet controllers (ENC28J60 or ENC624J600) with on-board MAC and PHY, or their single-chip PIC18F97J60 solution that integrates the 10-BASE-T Ethernet MAC and PHY into the PIC MCU in a single package. Whether you choose the integrated solution or pair the Ethernet controller with a separate PIC MCU, it is easy to add Ethernet connectivity to your 8-bit design using Microchip’s free TCP-IP stack and low-cost tools. Read more...

Click below to view the full white paper
Low Power Case Studies Demonstrate the Value of nanoWatt XLP Technology for Battery Powered Applications

As the drive to develop lower power, longer battery life and higher efficiency into embedded applications continues, Microchip offers a PIC® microcontroller (MCU) family that helps you to deliver the next generation of portable/energy-efficient applications. These MCUs have the lowest sleep currents in the industry and give you the flexibility to meet your design goals. Microchip calls this low power MCU technology “nanoWatt XLP (eXtreme Low-Power) Technology.”

To demonstrate the value of this exciting line of eXtreme Low-Power MCUs, Microchip has created three Low Power Case Studies to showcase the breakthrough claims in energy efficiency and flexibility that differentiate PIC MCUs with XLP Technology from the competition.

Low Power Case Study #1:
Actual Algorithm Execution
This case study measures the actual time to execute a common algorithm in order to compare the true energy consumed by a PIC24 MCU with nanoWatt XLP Technology with a MSP430 MCU from TI. To summarize, the PIC24 MCU with XLP executed faster, slept longer and provided 2X the battery life with lower average current compared to the MSP430.

Click here to read this case study

Low Power Case Study #2:
Longer Battery Life
In this case study, Microchip’s PIC24 MCU with nanoWatt XLP Technology demonstrates a 10% to 30% longer battery life compared to TI’s MSP430 MCU in a portable measurement system example with low duty cycle (99.9% of time spent in deep sleep mode).

Click here to read this case study

Low Power Case Study #3:
Thermostat Case Study
The final case study illustrates the flexibility of the PIC® MCU platform for a complete line of energy-efficient thermostats ranging from a low-cost/entry model with segmented display to a fully-featured model with graphical display and touch sensing technology.

Click here to read this case study

To learn more about nanoWatt XLP technology, please visit:
Built-in Compiler Functions Speed Code Execution

Make full use of the PIC24 or dsPIC® DSC’s processing capabilities with the built-in compiler functions.

Standard C provides a great way to write code for PIC24 MCUs and dsPIC controllers, but sometimes programs written entirely in C just don’t have the performance an application demands. Before turning to assembly, take a look at the built-in functions of the MPLAB C compiler. Written in assembly and designed to take full advantage of the PIC24 and dsPIC DSC’s advanced hardware, the built-in functions can easily be called anywhere in a C program without the limitations or complexity of inline assembly. Furthermore, because they are directly converted into assembly code by the compiler, no function calls or library routines are called, further speeding the functions execution. The built-in functions span a wide variety of operations, including many extremely useful general purpose and mathematical operations.

For example, coding a multiply and accumulate function in C might take several lines of code, not invoke the dedicated MAC hardware found on dsPIC devices, and require a function context switch. Using the built-in function __builtin_mac takes one line of code, automatically takes advantage of the dsPIC hardware, and the compiler directly inserts the optimized assembly code where the built-in function is called. With just one function, the C code is simplified and the resulting program runs much faster!

The next time PIC24 MCUs or dsPIC DSCs just do not seem to have enough processing power, take a moment to retrofit the project with the built-in functions and see what happens! For new projects, build them with the built-in functions at the beginning to take full advantage of Microchip’s advanced compiler functions and PIC hardware features.

For a complete listing of the built-in functions of the MPLAB C compiler see Appendix B of the MPLAB C Compiler User’s Guide.

<table>
<thead>
<tr>
<th>Name</th>
<th>Functions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fractional Division</td>
<td>__builtin_divf</td>
<td>Returns the integer value of the quotient num/den.</td>
</tr>
<tr>
<td>Euclidian Distance</td>
<td>__builtin_ed</td>
<td>Calculates the Euclidian distance and returns the value in an accumulator.</td>
</tr>
<tr>
<td></td>
<td>__builtin_edac</td>
<td></td>
</tr>
<tr>
<td>Accumulator Functions</td>
<td>__builtin_lac</td>
<td>Functions for working with the accumulator, including loading, storing, multiply and accumulate, and shifting.</td>
</tr>
<tr>
<td></td>
<td>__builtin_mac</td>
<td></td>
</tr>
<tr>
<td></td>
<td>__builtin_sac</td>
<td></td>
</tr>
<tr>
<td></td>
<td>__builtin_sacr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>__builtin_sftac</td>
<td></td>
</tr>
<tr>
<td>Multiply Functions</td>
<td>__builtin_mulss</td>
<td>Functions for multiplying all signed or unsigned variants of two numbers.</td>
</tr>
<tr>
<td></td>
<td>__builtin_mulsu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>__builtin_mulus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>__builtin_muluu</td>
<td></td>
</tr>
<tr>
<td>Flash Programming</td>
<td>__builtin_tblrdh</td>
<td>Functions for writing and reading the flash memory, these functions take care of all the setup needed to read/write the flash.</td>
</tr>
<tr>
<td>Functions</td>
<td>__builtin_tblrdl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>__builtin_tblwth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>__builtin_tblwtt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>__builtin_write_NVM</td>
<td></td>
</tr>
</tbody>
</table>

For a complete listing of the built-in functions of the MPLAB C compiler see Appendix B of the MPLAB C Compiler User’s Guide:
How to Avoid MOSFET Driver Overstress

MOSFET drivers are used in many applications to drive the high input capacitance of a power MOSFET device. MOSFET drivers are very reliable when used within their operating specifications. Care must be taken, to control supply line transients and power dissipation, and prevent latch-up.

Avoiding Supply Line Transients

During switching transitions, parasitic inductances can create transients on the supply line, and those can create electrical overstress. Proper bypass capacitor selection and PCB layout must be performed to protect the driver from voltage transients during switching transitions. Proper PCB layout is necessary to minimize parasitic inductance in the supply path, and the ground path. Microchip provides MOSFET driver models for the following devices:

- TC1410
- TC1411
- TC1412
- TC4404/05
- TC4420/29
- TC4421/22
- TC4423/24/25
- TC4423A/24A/25A
- TC4426/27/28
- TC4426A/27A/28A
- TC4431/32
- TC4451/52
- TC4467/68/69

Simulating Supply Line Transients

The Mindi™ Circuit Designer and Simulator can be used to simulate supply line transients. The following simulation includes the parasitic inductances that are associated with package inductance, bypass capacitor parasitic series inductance, and printed wiring board inductance. The PCB Trace Inductance diagram in Figure 1 shows the TC4423A device (3A peak output current) in a circuit with following items:

- L4 – parasitic inductance in series with ground pin
- L5 – parasitic inductance in series with VDD pin
- L1, L2 – parasitic inductance in series with the bypass capacitor
- Capacitor C2 (1 nF) is used to represent the MOSFET
- L3 – the inductance from the TC4423A device to the power source

Before simulation can begin, a symbol for the MOSFET driver must be created, and a MOSFET driver model netlist must be assigned to that symbol. Pressing the F11 key in Mindi opens a window where the model netlist can be copied, and the symbol can be assigned to that model netlist. For example, assume that the following characteristics are applied to the items in the simulated circuit in Figure 1:

- L4 and L5 – SOIC package leads PCB trace = 10 nH
- L1 and L2 – series inductance of a 0805 ceramic capacitor PCB trace = 10 nH
- L3 – PCB trace inductance from the VDD pin to the power source that feeds the MOSFET driver

Note that the parasitic series resistance and input/output PCB inductance have been omitted from this simulation, but they are available for inclusion. The results of the simulation illustrate the voltage overshoot effect caused by the parasitic inductances. The supply line and VOUT will overshoot. The overshoot is a result of parasitic inductance. Care must be taken so that the overshoot does not exceed the maximum operating voltage.

To minimize parasitic inductance in the supply path and ground path, a proper bypass capacitor must be selected and an associated PCB layout must be completed to reduce voltage transients during switching transitions.

![Figure 1: Schematic – Parasitic Inductances.](http://www.microchip.com)
Whether you're looking to monitor, measure, control, display, convert or use energy more efficiently, Microchip has the latest technologies and products to help you design products for the emerging Smart Energy market.

Microchip's Worldwide Embedded Designers Forum (EDF) is a one-day seminar designed to give you the tools and knowledge needed to take your design to the next level and help you stay ahead in today's competitive environment.

Six of nine focused modules featuring the latest technologies in low power, human interface and connectivity will be presented in each seminar. Learn how to apply these technologies into Smart Energy through discussions and demonstrations led by Microchip's expert staff. Modules are packed with practical information and advice on how to achieve the lowest power consumption, add a more stylish user interface, run more complex software, add USB connectivity and save money on development and system BOM cost.

The EDF’s in North America ran in October 2010 and a Virtual Conference was held live on November 2nd. The material is available on demand at www.microchip.com/VirtualEDF. The Virtual EDF features all nine modules (and more!). For additional details, please see the sidebar.

MODULES
- Adding USB to your Embedded Designs
- Connectivity Solutions for Embedded Designs
- Touch Screen Sensing and Graphical Displays
- Touch Sensing Solutions for Keys and Sliders
- Smart Energy Monitoring
- Smart Power Conversion
- Designing for Optimum Energy Usage
- Signal Conditioning for Embedded Applications
- Exploring MPLAB® Development Tools

DATES & LOCATIONS
For a complete list of worldwide locations, visit: www.microchip.com/EDF

Space is still available in Europe and Asia, visit www.microchip.com/EDF for a complete list of locations and dates

North America
- Now available on demand

Europe
- Now to March 2011

Asia
- Now to March 2011
Interact with Microchip at “MCHP Tube”

Microchip’s Academic Program team has launched a YouTube-based show called “MCHP Tube.” – an online video newscast for all things Microchip with a focus on Academia. Here you’ll find the latest information on new products, technologies and software/hardware development tools from both Microchip and Third-party sources.

This monthly show targets academics worldwide and is divided into four sections:

- **Headliners** – we will discuss new academic-friendly development resources brought to you by Microchip and our authorized Design Partners.
- **University Student Project** – students can submit a video featuring a student project based on Microchip products.
- **Ask Microchip** – viewers can ask a question and a qualified Microchip support person will answer it.
- **Where in the World is Marc McComb?** – Marc is Microchip’s Academic Sales Engineer and in each edition will talk about new products and tools that are a good fit for academics.

To submit a video on a student project or ask a question for the “Ask Microchip” section, email us at mchptube@microchip.com.

You can also visit www.microchip.com/mchptube for more information on the show.

MCHP Tube provides the opportunity for Students, Teachers and Professors to interact with Microchip directly!!

Click on the image above to view the fourth episode of MCHP Tube. To view Microchip’s YouTube channel, click [HERE](http://www.microchip.com/mchptube).
Join Jefferay Lawton, Product Marketing Engineer as he presents “Signal Chain Conditioning with Op Amps and ADCs”
Solar power chargers are convenient, in that they provide a completely wireless power system. Unfortunately, the stacked efficiency of the various switching converters typically results in a loss of 20 to 30 percent. Learn how converter topology efficiency can be increased, while decreasing both cost and board space. The secret is a unified system that handles maximum power conversion for the solar cells, battery charging and load regulation. This presentation will discuss the topology in depth, including tradeoffs and the role of load regulation.
Register online at: http://www.ecnmag.com/tags/Sections/Webcasts/

Join Microchip at Macworld 2011 in the Mobile Apps Showcase – booth #818. Microchip will have experts onsite demonstrating its Development Kits for iPod® and iPhone® Accessories. We are pleased to offer you a FREE expo hall pass that will admit you to the premier showcase of Apple-related products and technologies - or you can attend the conference at a savings of 15%. Macworld 2011 is a four day event that offers access to hundreds of Apple related products and services. You will discover cool software, hardware and accessories to use with your favorite Apple devices. You will also find expert advice, demonstrations and instruction by the very people that develop these products. Macworld conference programs feature industry leading minds, presenting cutting edge product training on the topics you most want to learn.
Register for your FREE expo pass: http://rcsreg.com/macworld/BBE47156

Join Microchip at the EE Times Integrating Touch Interfaces virtual conference, the leading resource for engineers to learn about the latest hardware and software solutions, design techniques and algorithms that industry leaders are using in successful designs. In this virtual setting, you can hear expert keynotes and participate in panel sessions and interactive chat to learn the latest about evaluating and choosing between several sensor technologies, touch surface materials, front and back-end analog and digital controllers, as well as device drivers, middleware and application-level touch routines.
Register online at: http://www.eetimes.com/touch/

Join Patrick Heath, Strategic Marketing Manager, as he discusses “Techniques for Improved Stepper Motor Control”
Typical stepper motor control uses an open-loop, voltage-control method, where the faster the voltage ramps in the motor phase, the quicker the step is taken. While this method works well, it is not optimized for energy efficiency nor speed. Using a low-cost, motor-control digital signal controller with comparators, a closed-loop, current-control mode of operation can be implemented. This control method provides a significant step speed increase of up to 25 times faster, At the same time, by controlling the currents, stepper-motor energy consumption is optimized. Another significant advantage of this control technique is a marked reduction in the motor noise level.
Register online at: http://www.e-driveonline.com

Join Microchip Technology at the Embedded World Exhibition & Conference, the world’s biggest exhibition of its kind and the meeting-place of the international embedded community. Embedded technologies are in action everywhere - whether in the car, data and telecommunication systems, industrial and consumer electronics, military systems or aerospace. Last year 730 exhibitors showed the 18,350 visitors a full range of products for embedded technologies in 2010: hardware, software, tools, services and lots more. Drop by booth 9/9 451 to view Microchip’s latest innovations including the newest PIC32.
Register online at: http://www.embedded-world.de/en/
Microchip’s Digital Power Seminars: 2nd Edition

Learn about the latest in digital power conversion from Microchip with the next generation of reference designs.

The Second Edition of Microchip’s Digital Power Seminar explores the benefits digital control can bring to several advanced topologies and applications.

Designed for those new to digital power and those already familiar with the subject, the seminar covers a wide range of topics using Microchip’s new reference designs. Traditional power conversion uses fixed function analog ICs to regulate power conversion. Using a Microchip dsPIC® DSC the power stage can be controlled digitally through software, enabling a fully programmable and flexible solution. This is becoming increasingly important as the market is looking for more efficient power supplies that pack more features into a single design. The seminar reviews the basics of digital power and then explores how digital power brings more capabilities to lots of applications. Using Microchip’s new reference designs, the seminar takes an in depth look at how digital control can be used in modern power conversion applications and covers the following topics in detail:

1. DC/DC Power Conversion Using a Quarter Brick Sized Phase Shifted Full Bridge.
2. Resonant Power Conversion Using a DC/DC LLC Topology
3. Solar Micro Inverter Using a Grid Tied Inverter System
4. LED Lighting Using a Buck or Boost Topology
5. HID Lighting Using Digital Control

Space is limited, register today!

Lunch is provided.

Every registrant in attendance will be eligible to win a digital power start kit bundle, which includes:

- 16-bit 28-pin Starter Board
- PICkit™ 3 Programmer/Debugger
- Buck/Boost PICtail™ Plus Daughter Board

Dallas, TX January 27, 2011
San Jose, CA February 8, 2011
Orange County, CA February 9, 2011
Vancouver, BC February 15, 2011
Huntsville, AL February 16, 2011
Chicago, IL February 17, 2011
Boston, MA February 22, 2011
Toronto February 24, 2011

Register online, today at: http://www.microchip.com/dps
Online Microchip Training Initiatives

For any training program to be effective it needs to provide the right information at the right time in the right place to the right people. The more these conditions aren’t met, the less effective the training becomes. To help our customers get the most from the technical training we offer, Microchip is rolling out two new training initiatives to supplement the courses given in our network of Regional Training Centers (RTC) and by third party trainers. While classroom based training is a great opportunity to interact with a knowledgeable instructor, its effectiveness can be hampered by the need to travel to the classroom. If the knowledge you need is not available in a convenient location when you want it, the costs and time associated with travel may make attendance impractical. To help overcome this obstacle, Microchip is now offering several RTC courses via the internet using Microsoft Live Meeting. These are the same instructor led classes optimized for online delivery. You don’t need to wait for a particular class to come to your town or travel to attend: take the class when you need it from the convenience of your office or home.

To see the schedule of live online classes, visit: www.microchip.com/rtc and select “Find classes > Search” in the “By Location” section of the search page.

Select the “Show Live Online Classes Only” radio button and click Search. After registering for a class, your access code and instructions will be sent in the confirmation email.

Microchip is currently in the process of creating self-paced instructional modules that can be taken “on demand” at your convenience. If all you really need is some specific information or instruction on how to perform a simple task; like how the UART operates or how to set a break point in MPLAB® IDE, we urge you to try these modules. The first of these will appear near the end of the year and will be focused on our new development platform MPLAB X.

These new programs continue Microchip’s objective of giving our customers the freedom to innovate.

Training Opportunities From Microchip and Avnet Memec

Want to learn from an expert?

These classes include hands on motor control development work, so you can learn the theory and then put it into practice. Additional classes are available that cover the device programming and peripheral usage, C language and control techniques that are not specific to motor control.

<table>
<thead>
<tr>
<th>Class</th>
<th>Hours</th>
<th>Hands On</th>
<th>Abstract</th>
<th>City/Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCT 0101: Overview of Intelligent Motor Control</td>
<td>4</td>
<td>No</td>
<td>This class reviews common motor types, control algorithms and motor interface design. It serves as a broad introduction to Microchip’s motor control portfolio.</td>
<td>San Jose: Feb. 9 Chicago: Feb. 9 Minneapolis: Mar. 23</td>
</tr>
<tr>
<td>MCT 3101: BLDC Control Techniques</td>
<td>7</td>
<td>Yes</td>
<td>This class presents an in-depth analysis of Microchip’s BLDC motor control algorithms. The class also provides an overview of the dsPIC® DSC’s motor control peripherals. Attendees will use the DMCI to modify algorithms and control the motor. Sensors, sensorless and field oriented control are all covered.</td>
<td>San Jose: Feb. 10 Chicago: Feb. 10 Minneapolis: Mar. 24</td>
</tr>
</tbody>
</table>
What's New in Microchip Literature?

<table>
<thead>
<tr>
<th>Doc. Type</th>
<th>Doc. Title</th>
<th>DS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Note</td>
<td>AN1071, IrDA® Standard Stack for Microchip 16-/32-bit Microcontroller</td>
<td>01071B</td>
</tr>
<tr>
<td></td>
<td>AN1363, MRF24WB0M Indoor and Outdoor Antenna Range Testing</td>
<td>01363A</td>
</tr>
<tr>
<td>Data Sheet</td>
<td>MCP1415/16, 2-Wire High Accuracy Temperature Sensor</td>
<td>22092D</td>
</tr>
<tr>
<td></td>
<td>110 uA, High Precision Op Amps</td>
<td>22142B</td>
</tr>
<tr>
<td></td>
<td>30 uA, High Precision Op Amps</td>
<td>22182B</td>
</tr>
<tr>
<td></td>
<td>60 uA, High Precision Op Amps</td>
<td>22189B</td>
</tr>
<tr>
<td></td>
<td>3.0 uA Comparator with Integrated Reference Voltage</td>
<td>22269A</td>
</tr>
<tr>
<td></td>
<td>CMOS Low Voltage Photoelectric Smoke Detector ASIC with Interconnect and Timer Mode</td>
<td>22271A</td>
</tr>
<tr>
<td></td>
<td>PIC18F/LF2X/4XX Data Sheet</td>
<td>41412D</td>
</tr>
<tr>
<td></td>
<td>PIC16F/LF1824/28 Data Sheet</td>
<td>41419B</td>
</tr>
<tr>
<td></td>
<td>PIC16F/LF1516/1517/1518/1519 Data Sheet</td>
<td>41452A</td>
</tr>
<tr>
<td></td>
<td>dsPIC30F4011/4012 Data Sheet</td>
<td>70135G</td>
</tr>
<tr>
<td>User's Guide</td>
<td>Debugger Design Advisory</td>
<td>51764C</td>
</tr>
<tr>
<td>Programming</td>
<td>MRF89XAMX4A PICtail/PICtail Plus Daughter Board Information Sheet</td>
<td>51942A</td>
</tr>
<tr>
<td>Specification</td>
<td>PIC32MX795F512L 100-pin to 100-pin TQFP CAN-USB Plug-In Module (PIM) Information Sheet</td>
<td>51949A</td>
</tr>
<tr>
<td></td>
<td>Starter Kit I/O Expansion Board Information Sheet</td>
<td>51950A</td>
</tr>
</tbody>
</table>

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32® logo, rPIC and Uni/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HITECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, I CSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PicKit, PicTail, REAL ICE, rLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
What’s New @ microchip DIRECT

Are you having problems getting inventory?

Buy Direct From Microchip Technology using microchipDIRECT

Microchip offers the most comprehensive on-line resource for pricing, ordering, inventory and support directly from Microchip Technology. microchipDIRECT offers...

- The largest inventory of Microchip products
- Secure ordering using SSL (Secure Socket Layer)
- Competitive pricing on all Microchip and third party products
- Apply for a Microchip business account and credit line
- High volume price quotes
- Assign PO and internal part numbers to your orders
- Schedule and change order delivery dates up to 12 months out
- Change/add multiple ship to locations to your account
- Check order history and delivery status on-line and much more...

www.microchipDIRECT.com

Would you also like secure programming directly from Microchip?

microchipDIRECT allows you, regardless of order size, to have your application code programmed into a PIC® microcontroller prior to delivery.

- Receive low-cost and secure microcontroller programming directly from the Microchip factory with ink dotting, labeling and tape and reel options
- Seamlessly integrated into your microchipDIRECT account
- Code verification service prior to production
- Cost-effective
- No unit minimum order requirements
- Quick-turn fulfillment (programmed orders typically ship within 48 hours)

www.microchipDIRECT.com/programming

microchipDIRECT Now Makes It Easier To Find third Party and Academic-Friendly Development Tools!

Two new categories have been added to www.microchipDIRECT.com making it easier to find third party development tools that compliment Microchip’s solutions and low-cost, academic-friendly tools for educators and students.

How to access the new categories:

Select the products pull-down menu:

1. Select the products pull-down menu:
 - 3rd Party Tools
 - Select 3rd Party Tools from the Development Tools Menu:
 - Academic Tools
 - Select Academic Tools from the Development Tools Menu:

www.microchip.com Microcontrollers • Digital Signal Controllers • Analog • Memory • Wireless