DESCRIPTION

The SY55857L is a fully differential, high-speed dual translator optimized to accept any logic standard from single-ended TTL/CMOS to differential LVDS, HSTL, or CML and translate it to LVPECL. Translation is guaranteed for speeds up to 2.5Gbps (2.5GHz toggle frequency). The SY55857L does not internally terminate its inputs, as different interfacing standards have different termination requirements.

All support documentation can be found on Micrel's web site at www.micrel.com.

FEATURES

- Input accepts virtually all logic standards:
 - Single-ended: SSTL, TTL, CMOS
 - Differential: LVDS, HSTL, CML
- Guaranteed AC parameters over temperature:
 - $f_{\text{MAX}} > 2.5\text{Gbps}$ (2.5GHz toggle)
 - $t_r, t_f < 200\text{ps}$
 - Within-device skew $< 50\text{ps}$
 - Propagation delay $< 400\text{ps}$
- Low power: 46mW/channel (typ)
- 3.0V to 3.6V power supply
- 100K LVPECL outputs
- Flow-through pinout and fully differential design
- Two channels in a 10-pin (3mm $\times 3\text{mm}$) MSOP package

APPLICATIONS

- High-speed logic
- Data communications systems
- Wireless communications systems
- Telecom systems

FUNCTIONAL BLOCK DIAGRAM

The SY55857L is a fully differential, high-speed dual translator optimized to accept any logic standard from single-ended TTL/CMOS to differential LVDS, HSTL, or CML and translate it to LVPECL. Translation is guaranteed for speeds up to 2.5Gbps (2.5GHz toggle frequency). The SY55857L does not internally terminate its inputs, as different interfacing standards have different termination requirements.

All support documentation can be found on Micrel's web site at www.micrel.com.
PIN DESCRIPTIONS

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0, /D0</td>
<td>1, 2</td>
<td>Channel 0 Differential Inputs (clock or data). See Figure 2 for input structure. See “Input Interface” section for typical interface recommendations.</td>
</tr>
<tr>
<td>D1, /D1</td>
<td>3, 4</td>
<td>Channel 1 Differential Inputs (clock or data). See Figure 2 for input structure. See “Input Interface” section for typical interface recommendations.</td>
</tr>
<tr>
<td>Q0, /Q0</td>
<td>9, 8</td>
<td>Channel 0 Differential 100k-compatible LVPECL Outputs. Terminate to (V_{CC} - 2V). See “LVPECL Output Termination” section. Outputs are low impedance, emitter-followers. For AC-coupled applications, a pull-down resistor is required on Q and /Q to ensure a DC current path to GND.</td>
</tr>
<tr>
<td>Q1, /Q1</td>
<td>7, 6</td>
<td>Channel 1 Differential 100k-compatible LVPECL Outputs. Terminate to (V_{CC} - 2V). See “LVPECL Output Termination” section. Outputs are low impedance, emitter-followers. For AC-coupled applications, a pull-down resistor is required on Q and /Q to ensure a DC current path to GND.</td>
</tr>
<tr>
<td>GND</td>
<td>5</td>
<td>Device Ground. Typically connected to Logic ground.</td>
</tr>
<tr>
<td>(V_{CC})</td>
<td>10</td>
<td>Supply Voltage. Typically connect to +3.3V ±10% supply. Bypass with 0.01(\mu F)</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

- Power Supply Voltage (V_{CC}): $-0.5V$ to $+6.0V$
- Input Voltage (V_{IN}): $-0.5V$ to $V_{CC} +0.5V$
- Output Current (I_{OUT}): Continuous $50mA$, Surge $100mA$
- Lead Temperature (soldering, 20 sec.): $+260°C$
- Storage Temperature Range (T_S): $-65°C$ to $+150°C$

Operating Ratings

- Power Supply Voltage (V_{CC}): $+3.0V$ to $+3.6V$
- Ambient Temperature Range (T_A): $-40°C$ to $+85°C$
- Package Thermal Resistance (θ_{JA}): Still-Air $113°C/W$, 500lpfm $96°C/W$

DC ELECTRICAL CHARACTERISTICS

$T_A = -40°C$ to $+85°C$; unless noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Power Supply Voltage</td>
<td></td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>I_{CC}</td>
<td>Power Supply Current</td>
<td>Inputs/outputs open</td>
<td>28</td>
<td>45</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

INPUT ELECTRICAL CHARACTERISTICS

$V_{CC} = +3.0V$ to $+3.6V$; $GND = 0V$; $T_A = -40°C$ to $+85°C$; unless noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ID}</td>
<td>Input Voltage Swing</td>
<td>See Figure 1a; $V_{IN} < 2.4V$. $V_{IN} < V_{CC} +0.3V$</td>
<td>100</td>
<td></td>
<td>200</td>
<td>mV</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>Input HIGH Voltage</td>
<td></td>
<td></td>
<td></td>
<td>$V_{CC} +0.3$</td>
<td>V</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input LOW Voltage</td>
<td></td>
<td>-0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

LEVECL OUTPUT CHARACTERISTICS

$V_{CC} = +3.0V$ to $+3.6V$; $GND = 0V$; $T_A = -40°C$ to $+85°C$; $R_L = 50Ω$ to $V_{CC} -2V$, unless otherwise stated.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OL}</td>
<td>Output LOW Voltage</td>
<td>$Q, /Q$</td>
<td>$V_{CC} -1.945$</td>
<td>$V_{CC} -1.820$</td>
<td>$V_{CC} -1.695$</td>
<td>V</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output HIGH Voltage</td>
<td>$Q, /Q$</td>
<td>$V_{CC} -1.145$</td>
<td>$V_{CC} -1.020$</td>
<td>$V_{CC} -0.895$</td>
<td>V</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Output Voltage Swing</td>
<td>$Q, /Q$</td>
<td>550</td>
<td>800</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V_{DIFF_OUT}</td>
<td>Differential Output Voltage Swing</td>
<td>$Q, /Q$</td>
<td>1100</td>
<td>1600</td>
<td></td>
<td>mV$_{pp}$</td>
</tr>
</tbody>
</table>

Notes:

1. Permanent device damage may occur if the ratings in “Absolute Maximum Ratings” section are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.

3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device’s most negative potential (GND) on the PCB. ψ_{JB} uses 4-layer θ_{JA} in still air unless otherwise stated.

4. The specifications shown are valid after thermal equilibrium has been established.

5. 100K circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
AC ELECTRICAL CHARACTERISTICS

$V_{CC} = 3.3V \pm 10\%; T_{A} = -40°C \text{ to } +85°C; R_{L} = 50\Omega \text{ to } V_{CC} - 2V$, unless otherwise stated.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{MAX}</td>
<td>Maximum Operating Frequency</td>
<td>$V_{IN} < 2.4V$ NRZ Data</td>
<td>2.5</td>
<td></td>
<td></td>
<td>Gbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} < 2.4V$ Clock</td>
<td>2.5</td>
<td></td>
<td></td>
<td>GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} < V_{CC} + 0.3V$ NRZ Data</td>
<td>1.25</td>
<td></td>
<td></td>
<td>Gbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} < V_{CC} + 0.3V$ Clock</td>
<td>1.25</td>
<td></td>
<td></td>
<td>GHz</td>
</tr>
<tr>
<td>t_{PD}</td>
<td>Propagation Delay D-to-Q</td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>t_{SKEW}</td>
<td>Within-Device-Skew (Differential)</td>
<td>Note 7</td>
<td>50</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td>Part-to-Part Skew (Differential)</td>
<td>Note 8</td>
<td>200</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>t_{JITTER}</td>
<td>Random Jitter (RJ)</td>
<td>Note 9</td>
<td>1</td>
<td></td>
<td></td>
<td>psRMS</td>
</tr>
<tr>
<td></td>
<td>Deterministic Jitter (DJ)</td>
<td>Note 10</td>
<td>10</td>
<td></td>
<td></td>
<td>pspp</td>
</tr>
<tr>
<td></td>
<td>Total Jitter (TJ)</td>
<td>Note 11</td>
<td>10</td>
<td></td>
<td></td>
<td>pspp</td>
</tr>
<tr>
<td>t_{R}, t_{F}</td>
<td>Output Rise/Fall Time 20% to 80%</td>
<td>At full output swing</td>
<td>200</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
</tbody>
</table>

Notes:
6. Clock frequency is defined as the maximum toggle frequency, and guaranteed for functionality only. Measured with a 750mV signal, 50% duty cycle and V_{OUT} swing \geq 400mV. High-frequency AC-parameters are guaranteed by design and characterization.
7. Within-device skew is measured between two different outputs under identical transitions.
8. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs.
9. Random jitter is measured with a K28.7 comma detect character pattern, measured at 2.5Gbps.
10. Deterministic jitter is measured at 2.5Gbps with both K28.5 and $2^{23} - 1$ PRBS pattern.
11. Total jitter definition: with an ideal differential clock input of frequency $\leq f_{MAX}$, no more than one output edge in 10^{12} output edges will deviate by more than the specified peak-to-peak jitter value.

SINGLE-ENDED AND DIFFERENTIAL SWINGS

Figure 1a. Single-Ended Voltage Swing

Figure 1b. Differential Voltage Swing
FUNCTIONAL DESCRIPTION

Establishing Static Logic Inputs
Do not leave unused inputs floating. Tie either the true or complement inputs to ground, but not both. A logic zero is achieved by connecting the complement input to ground with the true input floating. For a TTL input, tie a 2.5kΩ resistor between the complement input and ground. See “Input Interface” section.

Input Levels
LVDS, CML and HSTL differential signals may be connected directly to the D inputs. Depending on the actual worst case voltage seen, performance of SY55857L varies as per the following table:

<table>
<thead>
<tr>
<th>Input Voltage Range</th>
<th>Minimum Voltage Swing</th>
<th>Maximum Translation Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 2.4V</td>
<td>100mV</td>
<td>2.5Gbps</td>
</tr>
<tr>
<td>0 to VCC +0.3</td>
<td>200mV</td>
<td>1.25Gbps</td>
</tr>
</tbody>
</table>

Table 1. Input Voltage Swings

For LVDS applications, only point-to-point interfaces are supported. Due to the current required by the input structure shown in Figure 2, multipoint and multi-point architectures are not supported.

Figure 2. Simplified Input Structure
INPUT INTERFACE

Figure 3. 3.3V “TTL”

Figure 4. CML-DC Coupled

Figure 5. 2.5V “TTL”

Figure 6. PECL-DC Coupled

Figure 7. HSTL

Figure 8. CML-AC Coupled

Figure 9. CML-AC Coupled

Figure 10. LVDS

Figure 11. SSTL_2

Figure 12. SSTL_3
LVPECL OUTPUT TERMINATION

LVPECL output have very low output impedance (open emitter), and small signal swing which results in low EMI. LVPECL is ideal for driving 50Ω and 100Ω-controlled impedance transmission lines. There are several techniques in terminating the LVPECL output, as shown in Figures 13 through 15.

Figure 13. Parallel Termination-Thevenin Equivalent

Notes:
1. For +2.5V systems: R1 = 250Ω, R2 = 62.5Ω.
2. For +3.3V systems: R1 = 130Ω, R2 = 82Ω.

Figure 14. Three-Resistor “Y-Termination”

Notes:
1. Power saving alternative to Thevenin termination.
2. Place termination resistors as close to destination inputs as possible.
3. Rb resistor sets the DC bias voltage, equal to VT.
4. C1 is an optional bypass capacitor intended to compensate for any tᵢ/tᵣ mismatches.

Figure 15. Terminating Unused I/O

Notes:
1. Unused output (/Q) must be terminated to balance the output.
2. For +2.5V systems: R1 = 250Ω, R2 = 62.5Ω, R3 = 1.25kΩ, R4 = 1.2kΩ.
 For +3.3V systems: R1 = 130Ω, R2 = 82Ω, R3 = 1kΩ, R4 = 1.6kΩ.
3. Unused output pairs (Q and /Q) may be left floating.
10-PIN MSOP (K10-1)

NOTES:
1. DIMENSIONS ARE IN MM (INCHES).
2. CONTROLLING DIMENSION MM.
3. DIMENSION DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS. EITHER OF WHICH SHALL NOT EXCEED 0.05 (0.002) PER SIDE.

Rev. 00

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.