General Description

The SY54016AR is a fully-differential, low-voltage 1.2V/1.8V CML Line Driver/Receiver. The SY54016AR can process clock signals as fast as 3.2GHz or data patterns up to 3.2Gbps.

The differential input includes Micrel’s unique, 3-pin input termination architecture that interfaces to LVPECL, LVDS or CML differential signals, as small as 100mV (200mVpp) without any level-shifting or termination resistor networks in the signal path. For AC-coupled input interface applications, an internal voltage reference is provided to bias the \(V_T \) pin. The outputs are CML, with extremely fast rise/fall times guaranteed to be less than 95ps.

The SY54016AR operates from a 2.5V ±5% core supply and a 1.8V or 1.2V ±5% output supply and is guaranteed over the full industrial temperature range (−40°C to +85°C). The SY54016AR is part of Micrel’s high-speed, Precision Edge® product line.

Datasheets and support documentation can be found on Micrel’s web site at: www.micrel.com.

Functional Block Diagram

Features

• 1.2V/1.8V CML Differential Line Driver/Receiver
• Guaranteed AC performance over temperature and voltage:
 – DC-to- > 3.2Gbps throughput
 – <280ps propagation delay (IN-to-Q)
 – <95ps rise/fall times
• Ultra-low jitter design
 – <1ps RMS random jitter
• High-speed CML outputs
• 2.5V ±5% , 1.8/1.2V ±5% power supply operation
• Industrial temperature range: −40°C to +85°C
• Available in 8-pin (2mm x 2mm) MLF® package

Applications

• Data Distribution: OC-48, OC-48+FEC
• SONET clock and data distribution
• Fibre Channel clock and data distribution
• Gigabit Ethernet clock and data distribution

Markets

• Storage
• ATE
• Test and measurement
• Enterprise networking equipment
• High-end servers
• Metro area network equipment
Ordering Information\(^{(1)}\)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package Type</th>
<th>Operating Range</th>
<th>Package Marking</th>
<th>Lead Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>SY54016ARMGTR(^{(2)})</td>
<td>MLF-8</td>
<td>Industrial</td>
<td>16A with Pb-Free bar-line indicator</td>
<td>NiPdAu Pb-Free</td>
</tr>
</tbody>
</table>

Notes:
1. Contact factory for die availability. Dice are guaranteed at \(T_a = 25^\circ C\), DC Electricals only.
2. Tape and Reel.

Pin Configuration

8-Pin MLF\(^{®}\) (MLF-16)

Pin Description

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3</td>
<td>IN, /IN</td>
<td>Differential Input: This input pair is the differential signal input to the device. Input accepts differential signals as small as 100mV (200mVpp). Each input pin internally terminates with 50(\Omega) to the VT pin.</td>
</tr>
<tr>
<td>1</td>
<td>VT</td>
<td>Input Termination Center-Tap: Each side of the differential input pair terminates to VT pin. This pin provides a center-tap to a termination network for maximum interface flexibility. An internal high impedance resistor divider biases VT to allow input AC-coupling. For AC-coupling, bypass VT with a 0.1(\mu)F low ESR capacitor to VCC. See “Interface Applications” subsection and Figure 2a.</td>
</tr>
<tr>
<td>8</td>
<td>VCC</td>
<td>Positive Power Supply: Bypass with 0.1uF/0.01uF low ESR capacitors as close to the VCC pin as possible. Supplies input and core circuitry.</td>
</tr>
<tr>
<td>5</td>
<td>VCCO</td>
<td>Output Supply: Bypass with 0.1uF/0.01uF low ESR capacitors as close to the VCCO pin as possible. Supplies the output buffer.</td>
</tr>
<tr>
<td>4</td>
<td>GND, Exposed pad</td>
<td>Ground: Exposed pad must be connected to a ground plane that is the same potential as the ground pin.</td>
</tr>
<tr>
<td>7,6</td>
<td>Q, /Q</td>
<td>CML Differential Output Pair: Differential buffered copy of the input signal. The output swing is typically 390mV. See “Interface Applications” subsection for termination information.</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings\(^{(1)}\)

Supply Voltage (V\(_{CC}\)) –0.5V to +3.0V
Supply Voltage (V\(_{CCO}\)) –0.5V to +2.7V
V\(_{CC} - V_{CCO}\) ..<1.8V
V\(_{CCO} - V_{CC}\) ..<0.5V
Input Voltage (V\(_{IN}\)) –0.5V to V\(_{CC}\)
CML Output Voltage (V\(_{OUT}\)) 0.6V to V\(_{CCO}+0.5V\)
Current (V\(_T\))
Source or sink current on VT pin±100mA
Input Current
Source or sink current on (IN, /IN)±50mA
Maximum operating Junction Temperature 125°C
Lead Temperature (soldering, 20sec.) 260°C
Storage Temperature (T\(_S\))–65°C to +150°C

Operating Ratings\(^{(2)}\)

Supply Voltage (V\(_{CC}\)) 2.375V to 2.625V
(V\(_{CCO}\)) 1.14V to 1.9V
Ambient Temperature (T\(_A\)) –40°C to +85°C
Package Thermal Resistance\(^{(3)}\)
MLF\(^\text{®}\)
Still-air (\(\theta_{JA}\)) 93 °C/W
Junction-to-board (\(\psi_{JB}\)) 56 °C/W

DC Electrical Characteristics\(^{(4)}\)

\(T_A = –40°C\) to +85°C, unless otherwise stated.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(_{CC})</td>
<td>Power Supply Voltage Range</td>
<td>V(_{CC})</td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{CCO})</td>
<td>1.14</td>
<td>1.2</td>
<td>1.26</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V(_{CCO})</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>V</td>
</tr>
<tr>
<td>I(_{CC})</td>
<td>Power Supply Current</td>
<td>Max. V(_{CC})</td>
<td>16</td>
<td>16</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I(_{CCO})</td>
<td>Power Supply Current</td>
<td>No Load. Max. V(_{CCO})</td>
<td>16</td>
<td>21</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>R(_{IN})</td>
<td>Input Resistance (IN-to-V(_T), /IN-to-V(_T))</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>R(_{DIFF,IN})</td>
<td>Differential Input Resistance (IN-to-/IN)</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>V(_{IH})</td>
<td>Input HIGH Voltage (IN, /IN)</td>
<td>IN, /IN</td>
<td>1.2</td>
<td>V(_{CC})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V({IL}) with V({IH}) = 1.2V</td>
<td>0.2</td>
<td>V(_{IH}-0.1)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V(_{IH})</td>
<td>Input HIGH Voltage (IN, /IN)</td>
<td>IN, /IN</td>
<td>1.14</td>
<td>V(_{CC})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V({IL}) with V({IH}) = 1.14V, (1.2V-5%)</td>
<td>0.66</td>
<td>V(_{IH}-0.1)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V(_{IN})</td>
<td>Input Voltage Swing (IN, /IN)</td>
<td>see Figure 3a</td>
<td>0.1</td>
<td>1.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V(_{DIFF,IN})</td>
<td>Differential Input Voltage Swing ([IN - /IN])</td>
<td>see Figure 3b</td>
<td>0.2</td>
<td>2.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V(_T,IN)</td>
<td>Voltage from Input to V(_T)</td>
<td></td>
<td>1.28</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device’s most negative potential on the PCB. \(\psi_{JB}\) and \(\theta_{JA}\) values are determined for a 4-layer board in still-air number, unless otherwise stated.
4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
CML Outputs DC Electrical Characteristics

\(V_{CCO} = 1.14\text{V to 1.26V} \) \(R_L = 50\Omega \) to \(V_{CCO} \),

\(V_{CCO} = 1.7\text{V to 1.9V} \), \(R_L = 50\Omega \) to \(V_{CCO} \) or 100\(\Omega \) across the outputs,

\(V_{CC} = 2.375\text{V to 2.625V} \). \(T_A = -40^\circ \text{C} \) to +85\(^\circ \text{C}\), unless otherwise stated.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OH})</td>
<td>Output HIGH Voltage</td>
<td>(R_L = 50\Omega) to (V_{CCO})</td>
<td>(V_{CCO} - 0.020)</td>
<td>(V_{CCO} - 0.010)</td>
<td>(V_{CCO})</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OUT})</td>
<td>Output Voltage Swing</td>
<td>See Figure 3a</td>
<td>300</td>
<td>390</td>
<td>475</td>
<td>mV</td>
</tr>
<tr>
<td>(V_{DIFF,OUT})</td>
<td>Differential Output Voltage Swing</td>
<td>See Figure 3b</td>
<td>600</td>
<td>780</td>
<td>950</td>
<td>mV</td>
</tr>
<tr>
<td>(R_{OUT})</td>
<td>Output Source Impedance</td>
<td></td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>(\Omega)</td>
</tr>
</tbody>
</table>

Note:
5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

AC Electrical Characteristics

\(V_{CCO} = 1.14\text{V to 1.26V} \) \(R_L = 50\Omega \) to \(V_{CCO} \),

\(V_{CCO} = 1.7\text{V to 1.9V} \), \(R_L = 50\Omega \) to \(V_{CCO} \) or 100\(\Omega \) across the outputs,

\(V_{CC} = 2.375\text{V to 2.625V} \). \(T_A = -40^\circ \text{C} \) to +85\(^\circ \text{C}\), unless otherwise stated.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{MAX})</td>
<td>Maximum Frequency</td>
<td>NRZ Data (V_{OUT} > 200\text{mV}) (\text{Clock})</td>
<td>3.2</td>
<td>3.2</td>
<td></td>
<td>Gbps</td>
</tr>
<tr>
<td>(t_{PD})</td>
<td>Propagation Delay</td>
<td>IN-to-Q (\text{Figure 1a})</td>
<td>130</td>
<td>190</td>
<td>280</td>
<td>ps</td>
</tr>
<tr>
<td>(t_{Skew})</td>
<td>Part-to-Part Skew</td>
<td>Note 6</td>
<td></td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>(t_{Jitter})</td>
<td>Random Jitter</td>
<td></td>
<td></td>
<td>75</td>
<td></td>
<td>psRMS</td>
</tr>
<tr>
<td>(t_{R ; F})</td>
<td>Output Rise/Fall Times (20% to 80%)</td>
<td>At full output swing.</td>
<td>30</td>
<td>60</td>
<td>95</td>
<td>ps</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>Differential I/O</td>
<td>47</td>
<td>53</td>
<td></td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

Note:
6. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and no skew at the edges at the respective inputs.
Interface Applications
For Input Interface Applications see Figures 4a-f and for CML Output Termination see Figures 5a-d.

CML Output Termination with VCCO 1.2V
For VCCO of 1.2V, Figure 5a, terminate the output with 50Ω-to-1.2V, DC-coupled, not 100Ω differentially across the outputs.
If AC-coupling is used, Figure 5d, terminate into 50Ω-to-1.2V before the coupling capacitor and then connect to a high value resistor to a reference voltage.
Do not AC-couple with internally terminated receiver.
For example, 50Ω ANY-IN input. AC-coupling will offset the output voltage by 200mV and this offset voltage will be too low for proper driver operation.

Input AC Coupling
The SY54016AR input can accept AC coupling from any driver. Bypass VT with a 0.1µF low ESR capacitor to VCC as shown in Figures 4c and 4d. VT has an internal high impedance resistor divider as shown in Figure 2a, to provide a bias voltage for AC-coupling.

CML Output Termination with VCCO 1.8V
For VCCO of 1.8V, Figure 5a and Figure b, terminate with either 50Ω-to-1.8V or 100Ω differentially across the outputs. AC- or DC-coupling is fine.

Timing Diagrams

![Timing Diagrams](image_url)
Figure 1a. Propagation Delay
Typical Characteristics

$V_{CC} = 2.5\,V$, $V_{CCO} = 1.2\,V$, $GND = 0\,V$, $R_L = 50\,\Omega$ to 1.2V, $V_{IN} = 100\,mV$, $T_A = 25^\circ C$, unless otherwise stated.
Functional Characteristics

$V_{CC} = 2.5\text{V}$, $GND = 0\text{V}$, $V_{IN} = 400\text{mV}$, $R_L = 50\Omega$ to V_{CCO}, Data Pattern: $2^{23}-1$, $T_A = 25^\circ\text{C}$, unless otherwise stated.

Output Eyes with $V_{CCO} = 1.2\text{V}$

- **1.25Gbps Data**
 - Output Swing (100mV/div.)
 - Time (200ps/div.)
 - $V_{CCO} = 1.2\text{V}$

- **2.5Gbps Data**
 - Output Swing (100mV/div.)
 - Time (100ps/div.)
 - $V_{CCO} = 1.2\text{V}$

- **3.2Gbps Data**
 - Output Swing (100mV/div.)
 - Time (80ps/div.)
 - $V_{CCO} = 1.2\text{V}$

Output Eyes with $V_{CCO} = 1.8\text{V}$

- **1.25Gbps Data**
 - Output Swing (100mV/div.)
 - Time (200ps/div.)
 - $V_{CCO} = 1.8\text{V}$

- **2.5Gbps Data**
 - Output Swing (100mV/div.)
 - Time (100ps/div.)
 - $V_{CCO} = 1.8\text{V}$

- **3.2Gbps Data**
 - Output Swing (100mV/div.)
 - Time (80ps/div.)
 - $V_{CCO} = 1.8\text{V}$
Functional Characteristics

$V_{CC} = 2.5\text{V}, \ GND = 0\text{V}, \ V_{IN} = 400\text{mV}, \ R_L = 50\Omega \text{ to } V_{CCO}, \ T_A = 25^\circ\text{C}$, unless otherwise stated.

500MHz Output Clock

Output Swing (100mV/div.)

$V_{CCO} = 1.2\text{V}$

TIME (300ps/div.)

1GHz Output Clock

Output Swing (100mV/div.)

$V_{CCO} = 1.2\text{V}$

TIME (150ps/div.)

2GHz Output Clock

Output Swing (100mV/div.)

$V_{CCO} = 1.2\text{V}$

TIME (75ps/div.)

3.2GHz Output Clock

Output Swing (100mV/div.)

$V_{CCO} = 1.2\text{V}$

TIME (50ps/div.)
Input and Output Stage

Figure 2a. Simplified Differential Input Buffer

Figure 2b. Simplified CML Output Buffer

Single-Ended and Differential Swings

Figure 3a. Single-Ended Swing

Figure 3b. Differential Swing
Input Interface Applications

Figure 4a. CML Interface (DC-Coupled, 1.8V, 2.5V)

Figure 4b. CML Interface (DC-Coupled, 1.2V)

Figure 4c. CML Interface (AC-Coupled)

Figure 4d. LVPECL Interface (AC-Coupled)

Figure 4e. LVPECL Interface (DC-Coupled)

Figure 4f. LVDS Interface
CML Output Termination

Figure 5a. 1.2V or 1.8V CML DC-Coupled Termination

Figure 5b. 1.8V DC-Coupled Termination

Figure 5c. CML AC-Coupled Termination (VCCO 1.8V Only)

Figure 5d. CML AC-Coupled Termination (VCCO 1.2V Only)

Related Product and Support Documents

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Function</th>
<th>Datasheet Link</th>
</tr>
</thead>
</table>
Package Information

8-Pin MLF® (2mm x 2mm) (MLF-8)

© 2008 Micrel, Incorporated.