General Description

The MIC6270 is a precision voltage comparator with an offset voltage specification of 5mV maximum.

The MIC6270 is designed to operate from a single 2V to 36V power supply. Operation from split power supplies is also possible. Its low supply current drain is independent of the magnitude of the supply voltage.

This comparator also features an input common-mode voltage range that includes ground. Inputs are protected against reverse polarity (input voltage less than V–) and ESD.

The MIC6270 has an open-collector output that directly interfaces with TTL, CMOS, and other types of logic. Several MIC6270 outputs can be connected together for wired-OR logic. The output also features an internal pull-up current source that can be used instead of an external load in some applications.

Data sheets and support documentation can be found on Micrel’s web site at www.micrel.com.

Features

- 2V to 36V supply
- 300µA supply current independent of supply
- 25nA input bias current
- ±5nA input offset current
- ±3mV input offset voltage
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- 250mV at 4mA output saturation voltage
- Output compatible with TTL, DTL, ECL, MOS, and CMOS logic

Applications

- Limit comparators
- A/D converters
- Pulse, square wave, time delay generators
- Wide range VCO
- MOS clock timers
- Multi-vibrators and high-voltage digital logic gates

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Temperature Range</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC6270BM5</td>
<td>–40° to +85°C</td>
<td>5-Pin SOT-23</td>
</tr>
<tr>
<td>MIC6270YM5</td>
<td></td>
<td>5-Pin SOT-23</td>
</tr>
</tbody>
</table>

Pin Configuration

```
IN+  V–  OUT
1   2   4
3   5
```

Part Identification:

```
IN+  V–  OUT
1   2   4
3   5
```

Functional Configuration

```
IN+  V–  OUT
1   2   4
3   5
```

Pin Description

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OUT</td>
<td>Comparator Output</td>
</tr>
<tr>
<td>2</td>
<td>V–</td>
<td>Negative Supply: Negative supply for split supply application or ground for single supply application.</td>
</tr>
<tr>
<td>3</td>
<td>IN+</td>
<td>Non-inverting Input</td>
</tr>
<tr>
<td>4</td>
<td>IN–</td>
<td>Inverting Input</td>
</tr>
<tr>
<td>5</td>
<td>V+</td>
<td>Positive Supply</td>
</tr>
</tbody>
</table>

IttyBitty is a registered trademark of Micrel, Inc.
Absolute Maximum Ratings

Supply Voltage (V_V+ – V_V–) 36V or ±18V
Differential Input Voltage (V_{IN+} – V_{IN–}) ±36V
Input Voltage .. –0.3V to +36V
Input Current (V_IN <–0.3V) 50mA
Output Short-Circuit to GND, Note 1 \(\infty\)
Storage Temperature (T_s) –65°C to +150°C
Lead Temperature (soldering, 10sec.) 260°C

Operating Ratings\(^{(2)}\)

Supply Voltage .. 2V to +36V
Ambient Temperature (T_A) –40°C to +85°C
Thermal Resistance
SOT-23-5 (\(\theta_{JA}\)) 220°C/W
(mounted to printed circuit board)

Electrical Characteristics

V+ = 5V; T_A = 25°C, bold values indicate –40°C< T_A <+85°C, T_A = T_J, unless noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_OS</td>
<td>Input Offset Voltage</td>
<td>Note 2</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>mV</td>
</tr>
<tr>
<td>I_B</td>
<td>Input Bias Current</td>
<td>I_{IN+} or I_{IN–}, with output in linear range, V_{CM} = 0V, Note 3</td>
<td>25</td>
<td>250</td>
<td>400</td>
<td>nA</td>
</tr>
<tr>
<td>I_OS</td>
<td>Input Offset Current</td>
<td>I_{IN+} – I_{IN–}, VCM = 0V</td>
<td>5</td>
<td>50</td>
<td>150</td>
<td>nA</td>
</tr>
<tr>
<td>V_{CM}</td>
<td>Input Voltage Range</td>
<td>V+ = 30V, Note 4</td>
<td>0</td>
<td>V+ – 1.5</td>
<td>V+ – 2</td>
<td>V</td>
</tr>
<tr>
<td>I_S</td>
<td>Supply Current</td>
<td>R_L = (\infty), R_L = (\infty), V+ = 36V</td>
<td>0.3</td>
<td>0.9</td>
<td>1.2</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Voltage Gain</td>
<td>R_L \geq 15k\Omega, V+ = 15V</td>
<td>50</td>
<td>200</td>
<td></td>
<td>V/mV</td>
</tr>
<tr>
<td></td>
<td>Large Signal Response Time</td>
<td>V_{IN} = TTL logic swing, V_{REF} = 1.4V</td>
<td>300</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Response Time</td>
<td>V_{RL} = 5V, R_L = 5.1k\Omega, Note 5</td>
<td>0.6</td>
<td></td>
<td></td>
<td>(\mu)s</td>
</tr>
<tr>
<td></td>
<td>Output Sink Current</td>
<td>V_{IN–} = 1V, V_{IN+} = 0, V_O \leq 1.5V</td>
<td>10</td>
<td>20</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Output Pull-Up Current</td>
<td>15</td>
<td>50</td>
<td></td>
<td>(\mu)A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saturation Voltage</td>
<td>V_{IN+} = 1V, V_{IN–} = 0, I_{SINK} \leq 4mA</td>
<td>250</td>
<td>400</td>
<td>700</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>Differential Input Voltage</td>
<td>V_{IN+}, V_{IN–} \geq 0V (or V–, if used), Note 6</td>
<td>36</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

General Note: Devices are ESD protected; however, handling precautions are recommended.

1. A short circuit from OUT to V+ can cause excessive heating and damage the device. The maximum short circuit output current (OUT to V–) is approximately 20mA, independent of V_V–.
2. Measured at the output switch point where V_{OUT} = 1.4Vdc with R_S = 0\(\Omega\), V+ = 5Vdc to 30Vdc, and over the full input common-mode range (0Vdc to V+ – 1.5Vdc).
3. The direction of input current is out of the device due to its PNP input.
4. The input common-mode voltage, V_{IN}, or V_{IN–} must not go below –0.3V. The upper end of the common-mode voltage range is V+ – 1.5V at 25°C, but either or both inputs can go to +36Vdc without damage, independent of V_{IN}.
5. The response time measured using a 100mV input step with 5mV overdrive. With greater overdrive, 300ns can be obtained. See “Typical Characteristics.”
6. Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be below –0.3Vdc (or 0.3Vdc below V_V–).
Typical Characteristics

Supply Current vs. Supply Voltage

Input Current vs. Supply Voltage

Output Saturation Voltage

Output Response Time vs. Overdrive (Test Circuit)

Output Response Time vs. Overdrive

Output Response Time vs. Overdrive
Package Information

NOTE:
1. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASH & BURR.
2. PACKAGE OUTLINE INCLUSIVE OF SOILER PLATING.
4. FOOT LENGTH MEASUREMENT BASED ON GAUGE PLANE METHOD.
5. DIE FACES UP FOR MOLD, AND FACES DOWN FOR TRIM/FORM.
6. ALL DIMENSIONS ARE IN MILLIMETERS.