N-Channel Enhancement-Mode Vertical DMOS FET

Features
- Free from Secondary Breakdown
- Low Power Drive Requirement
- Ease of Paralleling
- Low C_{ISS} and Fast Switching Speeds
- Excellent Thermal Stability
- Integral Source-Drain Diode
- High Input Impedance and High Gain

Applications
- Logic-Level Interfaces (Ideal for TTL and CMOS)
- Solid-State Relays
- Battery-Operated Systems
- Photovoltaic Drives
- Analog Switches
- General Purpose Line Drivers
- Telecommunication Switches

General Description
The TN2130 low-threshold, Enhancement-mode (normally-off) transistor uses a vertical DMOS structure and a well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally induced secondary breakdown.

Microchip’s vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Package Type

See Table 3-1 for pin information.
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†
Drain-to-Source Voltage .. \(BV_{DSS} \)
Drain-to-Gate Voltage ... \(BV_{DGS} \)
Gate-to-Source Voltage ... ±20V
Operating Ambient Temperature, \(T_A \) ... –55°C to +150°C
Storage Temperature, \(T_S \) ... –55°C to +150°C

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only, and functional operation of the device at those or any other conditions above those
indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for
extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS – COMMERCIAL

Electrical Specifications: \(T_A = T_J = 25^\circ C \) unless otherwise specified. All DC parameters are 100% tested at 25°C
unless otherwise stated. (Pulse test: 300 \(\mu \)s pulse, 2% duty cycle)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-to-Source Breakdown Voltage</td>
<td>(BV_{DSS})</td>
<td>300</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>(V_{GS} = 0V, I_D = 1) mA</td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>(V_{GS(th)})</td>
<td>0.8</td>
<td>2.4</td>
<td>—</td>
<td>V</td>
<td>(V_{GS} = V_{DS}, I_D = 1) mA</td>
</tr>
<tr>
<td>Change in (V_{GS(th)}) with Temperature</td>
<td>(\Delta V_{GS(th)})</td>
<td>—</td>
<td>—</td>
<td>–5.5</td>
<td>mV/°C</td>
<td>(V_{GS} = V_{DS}, I_D = 1) mA (Note 1)</td>
</tr>
<tr>
<td>Gate Body Leakage Current</td>
<td>(I_{GSS})</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>nA</td>
<td>(V_{GS} = \pm 20V, V_{DS} = 0V</td>
</tr>
<tr>
<td>Zero-Gate Voltage Drain Current</td>
<td>(I_{DSS})</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>μA</td>
<td>(V_{GS} = 0V, V_{DS} = \text{Maximum rating}</td>
</tr>
<tr>
<td>On-State Drain Current</td>
<td>(I_{D(ON)})</td>
<td>250</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>(V_{GS} = 10V, V_{DS} = 25V</td>
</tr>
<tr>
<td>Static Drain-to-Source On-State Resistance</td>
<td>(R_{DS(ON)})</td>
<td>—</td>
<td>25</td>
<td>—</td>
<td>Ω</td>
<td>(V_{GS} = 4.5V, I_D = 120) mA</td>
</tr>
<tr>
<td>Change in (R_{DS(ON)}) with Temperature</td>
<td>(\Delta R_{DS(ON)})</td>
<td>—</td>
<td>1.1</td>
<td>—</td>
<td>%/°C</td>
<td>(V_{GS} = 4.5V, I_D = 120) mA (Note 1)</td>
</tr>
</tbody>
</table>

Note 1: Specification is obtained by characterization and is not 100% tested.

DC ELECTRICAL CHARACTERISTICS – AUTOMOTIVE

Electrical Specifications: \(T_A = T_J = (–55^\circ C, 25^\circ C, \) and \(150^\circ C) \) unless otherwise specified. All DC parameters are 100% tested at all three temperatures unless otherwise stated. (Pulse test: 300 \(\mu \)s pulse, 2% duty cycle.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-to-Source Breakdown Voltage</td>
<td>(BV_{DSS})</td>
<td>300</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>(V_{GS} = 0V, I_D = 1) mA</td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>(V_{GS(th)})</td>
<td>0.8</td>
<td>2.4</td>
<td>—</td>
<td>V</td>
<td>(V_{GS} = V_{DS}, I_D = 1) mA</td>
</tr>
<tr>
<td>Change in (V_{GS(th)}) with Temperature</td>
<td>(\Delta V_{GS(th)})</td>
<td>—</td>
<td>—</td>
<td>–3.6</td>
<td>mV/°C</td>
<td>(V_{GS} = V_{DS}, I_D = 1) mA, (T_A = 150^\circ C) (Note 1)</td>
</tr>
<tr>
<td>Gate Body Leakage Current</td>
<td>(I_{GSS})</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>nA</td>
<td>(V_{GS} = \pm 20V, V_{DS} = 0V</td>
</tr>
<tr>
<td>Static Drain-to-Source On-State Resistance</td>
<td>(R_{DS(ON)})</td>
<td>—</td>
<td>25</td>
<td>—</td>
<td>Ω</td>
<td>(V_{GS} = 4.5V, I_D = 120) mA</td>
</tr>
</tbody>
</table>

Note 1: Specification is obtained by characterization and is not 100% tested.
DC ELECTRICAL CHARACTERISTICS – AUTOMOTIVE (CONTINUED)

Electrical Specifications: $T_A = T_J = (-55^\circ C, 25^\circ C, \text{and} 150^\circ C)$ unless otherwise specified. All DC parameters are 100% tested at all three temperatures unless otherwise stated. (Pulse test: 300 μs pulse, 2% duty cycle.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero-Gate Voltage Drain Current</td>
<td>I_{DSS}</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>μA</td>
<td>$V_{GS} = 0V, V_{DS} = \text{Maximum rating}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>μA</td>
<td>$V_{GS} = 0V, V_{DS} = \text{Maximum rating, } T_A = 150^\circ C$</td>
</tr>
<tr>
<td>On-State Drain Current</td>
<td>$I_{D(ON)}$</td>
<td>250</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>$V_{GS} = 10V, V_{DS} = 25V$</td>
</tr>
<tr>
<td>Static Drain-to-Source On-State Resistance</td>
<td>$R_{DS(ON)}$</td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>Ω</td>
<td>$V_{GS} = 4.5V, I_D = 120 \text{ mA}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>66</td>
<td>Ω</td>
<td>$V_{GS} = 4.5V, I_D = 120 \text{ mA, } T_A = 150^\circ C$</td>
</tr>
<tr>
<td>Change in $R_{DS(ON)}$ with Temperature</td>
<td>$\Delta R_{DS(ON)}$</td>
<td>—</td>
<td>1.1</td>
<td>—</td>
<td>%/$^\circ C$</td>
<td>$V_{GS} = 4.5V, I_D = 120 \text{ mA}$ (Note 1)</td>
</tr>
</tbody>
</table>

Note 1: Specification is obtained by characterization and is not 100% tested.

AC ELECTRICAL CHARACTERISTICS – COMMERCIAL

Electrical Specifications: $T_A = T_J = 25^\circ C$ unless otherwise specified. Specification is obtained by characterization and is not 100% tested.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Transconductance</td>
<td>G_{FS}</td>
<td>—</td>
<td>250</td>
<td>—</td>
<td>mmho</td>
<td>$V_{DS} = 25V, I_D = 100 \text{ mA}$</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>C_{ISS}</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>pF</td>
<td>$V_{GS} = 0V, V_{DS} = 25V, f = 1 \text{ MHz}$</td>
</tr>
<tr>
<td>Common Source Output Capacitance</td>
<td>C_{OSS}</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>pF</td>
<td>$V_{GS} = 0V, V_{DS} = 25V, f = 1 \text{ MHz}$</td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>C_{RSS}</td>
<td>—</td>
<td>—</td>
<td>5</td>
<td>pF</td>
<td>$V_{GS} = 0V, V_{DS} = 25V, f = 1 \text{ MHz}$</td>
</tr>
<tr>
<td>Turn-On Delay Time</td>
<td>$t_{d(ON)}$</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>ns</td>
<td>$V_{DD} = 25V, I_D = 120 \text{ mA, } R_{GEN} = 25\Omega$</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_r</td>
<td>—</td>
<td>—</td>
<td>7</td>
<td>ns</td>
<td>$V_{DD} = 25V, I_D = 120 \text{ mA, } R_{GEN} = 25\Omega$</td>
</tr>
<tr>
<td>Turn-Off Delay Time</td>
<td>$t_{d(OFF)}$</td>
<td>—</td>
<td>—</td>
<td>12</td>
<td>ns</td>
<td>$V_{DD} = 25V, I_D = 120 \text{ mA, } R_{GEN} = 25\Omega$</td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_f</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>ns</td>
<td>$V_{DD} = 25V, I_D = 120 \text{ mA, } R_{GEN} = 25\Omega$</td>
</tr>
</tbody>
</table>

DIODE PARAMETER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode Forward Voltage Drop</td>
<td>V_{SD}</td>
<td>—</td>
<td>—</td>
<td>1.8</td>
<td>V</td>
<td>$V_{GS} = 0V, I_{SD} = 120 \text{ mA}$ (Note 1)</td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>t_{tr}</td>
<td>—</td>
<td>400</td>
<td>—</td>
<td>ns</td>
<td>$V_{GS} = 0V, I_{SD} = 120 \text{ mA}$</td>
</tr>
</tbody>
</table>

Note 1: All DC parameters are 100% tested at $25^\circ C$ unless otherwise stated. (Pulse test: 300 μs pulse, 2% duty cycle)

AC ELECTRICAL CHARACTERISTICS – AUTOMOTIVE

Electrical Specifications: $T_A = 25^\circ C$ unless otherwise specified. All AC parameters are sample tested.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Transconductance</td>
<td>G_{FS}</td>
<td>—</td>
<td>205</td>
<td>—</td>
<td>mmho</td>
<td>$V_{DS} = 25V, I_D = 100 \text{ mA}$</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>C_{ISS}</td>
<td>—</td>
<td>29</td>
<td>—</td>
<td>pF</td>
<td>$V_{GS} = 0V, V_{DS} = 25V, f = 1 \text{ MHz}$</td>
</tr>
<tr>
<td>Common Source Output Capacitance</td>
<td>C_{OSS}</td>
<td>—</td>
<td>6</td>
<td>—</td>
<td>pF</td>
<td>$V_{GS} = 0V, V_{DS} = 25V, f = 1 \text{ MHz}$</td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>C_{RSS}</td>
<td>—</td>
<td>1.2</td>
<td>—</td>
<td>pF</td>
<td>$V_{GS} = 0V, V_{DS} = 25V, f = 1 \text{ MHz}$</td>
</tr>
</tbody>
</table>

Note 1: 100% Production Tested at $T_A = T_J = (-55^\circ C, 25^\circ C, \text{and} 150^\circ C)$.
AC ELECTRICAL CHARACTERISTICS – AUTOMOTIVE (CONTINUED)

Electrical Specifications: T_А = 25°C unless otherwise specified. All AC parameters are sample tested.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-On Delay Time</td>
<td>t<sub>d(ON)</sub></td>
<td>—</td>
<td>6.8</td>
<td>—</td>
<td>ns</td>
<td>V<sub>DD</sub> = 25V, I<sub>D</sub> = 120 mA, R<sub>GEN</sub> = 25Ω</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t<sub>r</sub></td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Turn-Off Delay Time</td>
<td>t<sub>d(OFF)</sub></td>
<td>—</td>
<td>12</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Fall Time</td>
<td>t<sub>f</sub></td>
<td>—</td>
<td>7</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

DIODE PARAMETER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode Forward Voltage Drop</td>
<td>V<sub>SD</sub></td>
<td>—</td>
<td>—</td>
<td>1.8</td>
<td>V</td>
<td>V<sub>GS</sub> = 0V, I<sub>SD</sub> = 120 mA (Note 1)</td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>t<sub>rr</sub></td>
<td>—</td>
<td>450</td>
<td>—</td>
<td>ns</td>
<td>V<sub>GS</sub> = 0V, I<sub>SD</sub> = 120 mA</td>
</tr>
</tbody>
</table>

TEMPERATURE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPERATURE RANGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Ambient Temperature</td>
<td>T<sub>A</sub></td>
<td>−55</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T<sub>S</sub></td>
<td>−55</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

PACKAGE THERMAL RESISTANCE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-lead SOT-23</td>
<td>θ<sub>JA</sub></td>
<td>—</td>
<td>203</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Package</th>
<th>I<sub>D</sub> (Note 1) (Continuous) (mA)</th>
<th>I<sub>D</sub> (Pulsed) (mA)</th>
<th>Power Dissipation at T<sub>A</sub> = 25°C (W)</th>
<th>I<sub>DR</sub> (Note 1) (mA)</th>
<th>I<sub>DRM</sub> (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-lead SOT-23</td>
<td>85</td>
<td>200</td>
<td>0.36</td>
<td>85</td>
<td>200</td>
</tr>
</tbody>
</table>

Note 1: I_D (continuous) is limited by maximum rated T_J.
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g. outside specified power supply range) and therefore outside the warranted range.

![Figure 2-1: Output Characteristics](image1)

FIGURE 2-1: Output Characteristics.

![Figure 2-2: Transconductance vs. Drain Current](image2)

FIGURE 2-2: Transconductance vs. Drain Current.

![Figure 2-3: Maximum Rated Safe Operating Area](image3)

FIGURE 2-3: Maximum Rated Safe Operating Area.

![Figure 2-4: Saturation Characteristics](image4)

FIGURE 2-4: Saturation Characteristics.

![Figure 2-5: Power Dissipation vs. Case Temperature](image5)

FIGURE 2-5: Power Dissipation vs. Case Temperature.

![Figure 2-6: Thermal Response Characteristics](image6)

FIGURE 2-6: Thermal Response Characteristics.
FIGURE 2-7: \(BV_{\text{DSS}} \) Variation with Temperature.

FIGURE 2-8: Transfer Characteristics.

FIGURE 2-9: Capacitance vs. Drain-to-Source Voltage.

FIGURE 2-10: On-Resistance vs. Drain Current.

FIGURE 2-11: \(V_{\text{GS(th)}} \) and \(R_{\text{DS}} \) Variation with Temperature.

FIGURE 2-12: Gate Drive Dynamic Characteristics.
3.0 PIN DESCRIPTION

The details on the pins of TN2130 are listed in Table 3-1. Refer to Package Type for the location of pins.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gate</td>
<td>Gate</td>
</tr>
<tr>
<td>2</td>
<td>Source</td>
<td>Source</td>
</tr>
<tr>
<td>3</td>
<td>Drain</td>
<td>Drain</td>
</tr>
</tbody>
</table>
4.0 FUNCTIONAL DESCRIPTION

Figure 4-1 illustrates the switching waveforms and test circuit for TN2130.

FIGURE 4-1: Switching Waveforms and Test Circuit.

<table>
<thead>
<tr>
<th>TABLE 4-1: PRODUCT SUMMARY</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{BV}{\text{DSS}} / \text{BV}{\text{DGS}}) (V)</td>
<td>(R_{\text{DS(ON)}}) (Maximum) (Ω)</td>
<td>(V_{\text{GS(th)}}) (Maximum) (V)</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>25</td>
<td>2.4</td>
<td></td>
</tr>
</tbody>
</table>
5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Legend:

- **XX...X**: Product Code or Customer-specific information
- **Y**: Year code (last digit of calendar year)
- **YY**: Year code (last 2 digits of calendar year)
- **WW**: Week code (week of January 1 is week ‘01’)
- **NNN**: Alphanumeric traceability code
- **(e³)**: Pb-free JEDEC® designator for Matte Tin (Sn)
- *****: This package is Pb-free. The Pb-free JEDEC designator (e³) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or may not include the corporate logo.
3-Lead TO-236AB (SOT-23) Package Outline (K1/T)
2.90x1.30mm body, 1.12mm height (max), 1.90mm pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.
APPENDIX A: REVISION HISTORY

Revision A (April 2019)

• Converted Supertex Doc# DSFP-TN2130 to Microchip DS20005944A
• Changed the package marking format
• Made minor text changes throughout the document

Revision B (June 2020)

• Added automotive specifications to the Electrical Characteristics section
• Added automotive specifications to the Product Information System section
• Made minor text changes throughout the document
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>Package Options</th>
<th>Environmental</th>
<th>Media Type</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TN2130 = N-Channel Enhancement-Mode Vertical DMOS FET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K1 = 3-lead SOT-23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G = Lead (Pb)-free/RoHS-compliant Package</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(blank) = 3000/Reel for a K1 Package</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VAO = Automotive Grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:

a) TN2130K1-G: N-Channel Enhancement-Mode, Vertical DMOS FET, 3-lead SOT-23 package, 3000/Reel

b) TN2130K1-G-VAO: N-Channel Enhancement-Mode, Vertical DMOS FET, Automotive Grade, 3-lead SOT-23 package, 3000/Reel
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 508-977-0087
Fax: 508-977-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880-3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5446-2100

ASIA/PACIFIC

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-72400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra'anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820