N-Channel Enhancement-Mode Vertical DMOS FET

Features
► Low threshold - 2.0V max.
► High input impedance
► Low input capacitance - 50pF typical
► Fast switching speeds
► Low on-resistance
► Free from secondary breakdown
► Low input and output leakage

Applications
► Logic level interfaces – ideal for TTL and CMOS
► Solid state relays
► Battery operated systems
► Photo voltaic drives
► Analog switches
► General purpose line drivers
► Telecom switches

General Description
This low threshold, enhancement-mode (normally-off) transistor utilizes a vertical DMOS structure and Supertex’s well-proven, silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown.

Supertex’s vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-to-source voltage</td>
<td>(BV_{DSS})</td>
</tr>
<tr>
<td>Drain-to-gate voltage</td>
<td>(BV_{DGS})</td>
</tr>
<tr>
<td>Gate-to-source voltage</td>
<td>(\pm 20V)</td>
</tr>
<tr>
<td>Operating and storage temperature</td>
<td>-55°C to +150°C</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Typical Thermal Resistance

<table>
<thead>
<tr>
<th>Package</th>
<th>(\theta_{ja})</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO-92</td>
<td>132°C/W</td>
</tr>
</tbody>
</table>

Product Summary

<table>
<thead>
<tr>
<th>Parameter (BV_{DSS}/BV_{DGS})</th>
<th>(R_{DS(ON)}) (max)</th>
<th>(I_{D(ON)}) (min)</th>
<th>(V_{GS(th)}) (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60V</td>
<td>3.0Ω</td>
<td>2.0A</td>
<td>2.0V</td>
</tr>
</tbody>
</table>

Pin Configuration

Product Marking

YY = Year Sealed
WW = Week Sealed

Contact factory for Wafer / Die availability.
Devices in Wafer / Die form are lead (Pb)-free / RoHS compliant.
Electrical Characteristics ($T_A = 25^\circ C$ unless otherwise specified)

<table>
<thead>
<tr>
<th>Sym Parameter</th>
<th>Sym Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV_{DSS}</td>
<td>Drain-to-source breakdown voltage</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>$V_{GS} = 0V, I_D = 1.0mA$</td>
</tr>
<tr>
<td>$V_{GS(th)}$</td>
<td>Gate threshold voltage</td>
<td>0.6</td>
<td>-</td>
<td>2.0</td>
<td>V</td>
<td>$V_{GS} = V_{DS}, I_D = 0.5mA$</td>
</tr>
<tr>
<td>$\Delta V_{GS(th)}$</td>
<td>Change in $V_{GS(th)}$ with temperature</td>
<td>-</td>
<td>-3.2</td>
<td>-5.0</td>
<td>mV/°C</td>
<td>$V_{GS} = V_{DS}, I_D = 1.0mA$</td>
</tr>
<tr>
<td>I_{GSS}</td>
<td>Gate body leakage</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>nA</td>
<td>$V_{GS} = \pm 20V, V_{DS} = 0V$</td>
</tr>
<tr>
<td>I_{DSS}</td>
<td>Zero Gate voltage drain current</td>
<td>-</td>
<td>-</td>
<td>500</td>
<td>µA</td>
<td>$V_{GS} = 0V, V_{DS} = Max Rating$</td>
</tr>
<tr>
<td>$I_{D(ON)}$</td>
<td>On-state drain current</td>
<td>0.75</td>
<td>1.4</td>
<td>-</td>
<td>A</td>
<td>$V_{GS} = 5.0V, V_{DS} = 25V$</td>
</tr>
<tr>
<td>$R_{DS(ON)}$</td>
<td>Static drain-to-source on-state resistance</td>
<td>-</td>
<td>2.0</td>
<td>4.5</td>
<td>Ω</td>
<td>$V_{GS} = 4.5V, I_D = 250mA$</td>
</tr>
<tr>
<td>$\Delta R_{DS(ON)}$</td>
<td>Change in $R_{DS(ON)}$ with temperature</td>
<td>-</td>
<td>0.6</td>
<td>1.1</td>
<td>%/°C</td>
<td>$V_{GS} = 10V, I_D = 500mA$</td>
</tr>
<tr>
<td>C_{FB}</td>
<td>Forward transductance</td>
<td>225</td>
<td>400</td>
<td>-</td>
<td>mmho</td>
<td>$V_{DS} = 25V, I_D = 500mA$</td>
</tr>
<tr>
<td>C_{ISS}</td>
<td>Input capacitance</td>
<td>-</td>
<td>50</td>
<td>60</td>
<td>pF</td>
<td>$V_{GS} = 0V, V_{DS} = 25V, f = 1.0MHz$</td>
</tr>
<tr>
<td>C_{GSS}</td>
<td>Common source output capacitance</td>
<td>-</td>
<td>25</td>
<td>35</td>
<td>pF</td>
<td>$V_{DD} = 25V, I_D = 1.0A, R_{GEN} = 25\Omega$</td>
</tr>
<tr>
<td>C_{RBS}</td>
<td>Reverse transfer capacitance</td>
<td>-</td>
<td>4.0</td>
<td>8.0</td>
<td>pF</td>
<td>$V_{GS} = 0V, I_{SD} = 500mA$</td>
</tr>
<tr>
<td>$t_{(ON)}$</td>
<td>Turn-on delay time</td>
<td>-</td>
<td>2.0</td>
<td>5.0</td>
<td>ns</td>
<td>$V_{DD} = 25V, I_{SD} = 500mA$</td>
</tr>
<tr>
<td>t_{r}</td>
<td>Rise time</td>
<td>-</td>
<td>3.0</td>
<td>5.0</td>
<td>ns</td>
<td>$V_{GS} = 0V, I_{SD} = 500mA$</td>
</tr>
<tr>
<td>$t_{(OFF)}$</td>
<td>Turn-off delay time</td>
<td>-</td>
<td>6.0</td>
<td>7.0</td>
<td>ns</td>
<td>$V_{DD} = 25V, I_{SD} = 500mA$</td>
</tr>
<tr>
<td>t_{f}</td>
<td>Fall time</td>
<td>-</td>
<td>3.0</td>
<td>6.0</td>
<td>ns</td>
<td>$V_{GS} = 0V, I_{SD} = 500mA$</td>
</tr>
<tr>
<td>V_{SD}</td>
<td>Diode forward voltage drop</td>
<td>1.0</td>
<td>1.5</td>
<td>-</td>
<td>V</td>
<td>$V_{GS} = 0V, I_{SD} = 500mA$</td>
</tr>
<tr>
<td>t_{tr}</td>
<td>Reverse recovery time</td>
<td>-</td>
<td>400</td>
<td>-</td>
<td>ns</td>
<td>$V_{DD} = 25V, I_{SD} = 500mA$</td>
</tr>
</tbody>
</table>

Notes:
1. All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300µs pulse, 2% duty cycle.)
2. All A.C. parameters sample tested.

Switching Waveforms and Test Circuit

![Switching Waveforms and Test Circuit Diagram]
Typical Performance Curves

Output Characteristics

Saturation Characteristics

Transconductance vs. Drain Current

Power Dissipation vs. Case Temperature

Maximum Rated Safe Operating Area

Thermal Response Characteristics
Typical Performance Curves (cont.)

- **$B_{V_{DS}}$ Variation with Temperature**
 - $B_{V_{DS}}$ (normalized) vs. T (°C)
 - $B_{V_{DS}} = 25V$
 - $T_x = -55°C$
 - $150°C$

- **Transfer Characteristics**
 - I_g (amperes) vs. V_{DS} (volts)
 - $V_{DS} = 25V$
 - $T_x = -55°C$
 - $25°C$
 - $150°C$

- **Capacitance vs. Drain-to-Source Voltage**
 - C (picofarads) vs. V_{DS} (volts)
 - $f = 1.0MHz$

- **Gate Drive Dynamic Characteristics**
 - V_{GS} (volts) vs. Q_g (nanocoulombs)
 - $V_{DS} = 10V$
 - $55pF$
 - $V_{DS} = 40V$
 - $50pF$

- **On-Resistance vs. Drain Current**
 - $R_{DS(ON)}$ (ohms) vs. I_g (amperes)
 - $V_{GS} = 5.0V$
 - $V_{GS} = 10V$

- **V_{TH} and R_{DS} Variation with Temperature**
 - V_{TH} (normalized) vs. T (°C)
 - $R_{DS(ON)}$ (normalized) vs. T (°C)
 - $V_{GS} = 0.5mA$
 - $R_{DS(ON)} @ 10V, 0.5A$

- **BV_\text{DSS} Variation with Temperature**
 - BV_{DSS} (normalized) vs. T (°C)

- **On-Resistance vs. Drain Current**
 - $R_{DS(ON)}$ (ohms) vs. I_g (amperes)

- **Transfer Characteristics**
 - I_g (amperes) vs. V_{DS} (volts)

- **Capacitance vs. Drain-to-Source Voltage**
 - C (picofarads) vs. V_{DS} (volts)

- **Gate Drive Dynamic Characteristics**
 - V_{GS} (volts) vs. Q_g (nanocoulombs)
3-Lead TO-92 Package Outline (N3)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>A</th>
<th>b</th>
<th>c</th>
<th>D</th>
<th>E</th>
<th>E1</th>
<th>e</th>
<th>e1</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>.170</td>
<td>.014†</td>
<td>.014†</td>
<td>.175</td>
<td>.125</td>
<td>.080</td>
<td>.095</td>
<td>.045</td>
<td>.500</td>
</tr>
<tr>
<td>NOM</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MAX</td>
<td>.210</td>
<td>.022†</td>
<td>.022†</td>
<td>.205</td>
<td>.165</td>
<td>.105</td>
<td>.105</td>
<td>.055</td>
<td>.610*</td>
</tr>
</tbody>
</table>

JEDEC Registration TO-92.
* This dimension is not specified in the JEDEC drawing.
† This dimension differs from the JEDEC drawing.

Drawings not to scale.
Supertex Doc.#: DSPD-3TO92N3, Version E041009.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)