<table>
<thead>
<tr>
<th>REV</th>
<th>CHANGE DESCRIPTION</th>
<th>NAME</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Release</td>
<td></td>
<td>7-12-15</td>
</tr>
</tbody>
</table>
LAN9250 SQFN Port A Copper Twisted Pair Phy Interface:

1. TXPA (pin 53); This pin is the transmit twisted pair output positive connection from the primary internal Phy. It requires a 49.9Ω, 1.0% pull-up resistor to VDD33TXRX1 (created from +3.3V). This pin also connects to the transmit channel of the primary magnetics.

2. TXNA (pin 52); This pin is the transmit twisted pair output negative connection from the primary internal Phy. It requires a 49.9Ω, 1.0% pull-up resistor to VDD33TXRX1 (created from +3.3V). This pin also connects to the transmit channel of the primary magnetics.

3. For Port A, Transmit Channel connection and termination details, refer to Figure 1.

4. RXPA (pin 55); This pin is the receive twisted pair input positive connection to the primary internal Phy. It requires a 49.9Ω, 1.0% pull-up resistor to VDD33TXRX1 (created from +3.3V). This pin also connects to the receive channel of the primary magnetics.

5. RXNA (pin 54); This pin is the receive twisted pair input negative connection to the primary internal Phy. It requires a 49.9Ω, 1.0% pull-up resistor to VDD33TXRX1 (created from +3.3V). This pin also connects to the receive channel of the primary magnetics.

6. For Port A, Receive Channel connection and termination details, refer to Figure 2.

7. For added EMC flexibility in a LAN9250 design, the designer should include four low valued capacitors on the TXPA, TXNA, RXPA & RXNA pins. Low valued capacitors (less than 22 pF) can be added to each line and terminated to digital ground. These components can be added to the schematic and should be designated as Do Not Populate (DNP).
Figure 1 – Transmit Channel Connections and Terminations

Figure 2 - Receive Channel Connections and Terminations
LAN9250 SQFN Port A Copper Twisted Pair Phy Magnetics:

1. The center tap connection on the LAN9250 side for the transmit channel must be connected to VDD33TXRX1 (created from +3.3V) directly. The transmit channel center tap of the magnetics also connects to the receive channel center tap of the magnetics.

2. The center tap connection on the LAN9250 side for the receive channel is connected to the transmit channel center tap on the primary magnetics. In addition, a 0.022 µF capacitor is required from the receive channel center tap of the primary magnetics to digital ground.

3. The center tap connection on the cable side (RJ45 side) for the primary transmit channel should be terminated with a 75Ω resistor through a 1000 pF, 2KV capacitor (Cmagterm) to chassis ground.

4. The center tap connection on the cable side (RJ45 side) for the primary receive channel should be terminated with a 75Ω resistor through a 1000 pF, 2KV capacitor (Cmagterm) to chassis ground.

5. Only one 1000 pF, 2KV capacitor (Cmagterm) to chassis ground is required. It is shared by both TX & RX center taps.

6. Assuming the design of an end-point device (NIC), pin 1 of the RJ45 is TX+ and should trace through the magnetics to TXPA (pin 53) of the LAN9250 SQFN.

7. Assuming the design of an end-point device (NIC), pin 2 of the RJ45 is TX- and should trace through the magnetics to TXNA (pin 52) of the LAN9250 SQFN.

8. Assuming the design of an end-point device (NIC), pin 3 of the RJ45 is RX+ and should trace through the magnetics to RXPA (pin 55) of the LAN9250 SQFN.

9. Assuming the design of an end-point device (NIC), pin 6 of the RJ45 is RX- and should trace through the magnetics to RXNA (pin 54) of the LAN9250 SQFN.

10. When using the LAN9250 in the HP Auto MDIX mode of operation, the use of an Auto MDIX style magnetics module is required. Please refer to the Reference Material section of this document for proper magnetics.
Copper Twisted Pair RJ45 Connector Port A:

1. Pins 4 & 5 of the RJ45 connector connect to one pair of unused wires in CAT-5 type cables. These should be terminated to chassis ground through a 1000 \(\mu \)F, 2KV capacitor \((C_{jterm}) \). There are two methods of accomplishing this:

 a) Pins 4 & 5 can be connected together with two 49.9\(^\Omega\) resistors. The common connection of these resistors should be connected through a third 49.9\(^\Omega\) to the 1000 \(\mu \)F, 2KV capacitor \((C_{jterm}) \).

 b) For a lower component count, the resistors can be combined. The two 49.9\(^\Omega\) resistors in parallel look like a 25\(^\Omega\) resistor. The 25\(^\Omega\) resistor in series with the 49.9\(^\Omega\) makes the whole circuit look like a 75\(^\Omega\) resistor. So, by shorting pins 4 & 5 together on the RJ45 and terminating them with a 75\(^\Omega\) resistor in series with the 1000 \(\mu \)F, 2KV capacitor \((C_{jterm}) \) to chassis ground, creates an equivalent circuit.

2. Pins 7 & 8 of the RJ45 connector connect to one pair of unused wires in CAT-5 type cables. These should be terminated to chassis ground through a 1000 \(\mu \)F, 2KV capacitor \((C_{jterm}) \). There are two methods of accomplishing this:

 a) Pins 7 & 8 can be connected together with two 49.9\(^\Omega\) resistors. The common connection of these resistors should be connected through a third 49.9\(^\Omega\) to the 1000 \(\mu \)F, 2KV capacitor \((C_{jterm}) \).

 b) For a lower component count, the resistors can be combined. The two 49.9\(^\Omega\) resistors in parallel look like a 25\(^\Omega\) resistor. The 25\(^\Omega\) resistor in series with the 49.9\(^\Omega\) makes the whole circuit look like a 75\(^\Omega\) resistor. So, by shorting pins 4 & 5 together on the RJ45 and terminating them with a 75\(^\Omega\) resistor in series with the 1000 \(\mu \)F, 2KV capacitor \((C_{jterm}) \) to chassis ground, creates an equivalent circuit.

3. The RJ45 shield should be attached directly to chassis ground.
LAN9250 SQFN Port A Fiber Phy (100BASE-FX) Interface:

1. TXPA (pin 53); This pin is the Port A Fiber transmit positive output pin. This low voltage PECL output pin should connect to the external fiber transceiver in the design.

2. TXNA (pin 52); This pin is the Port A Fiber transmit negative output pin. This low voltage PECL output pin should connect to the external fiber transceiver in the design.

3. For Port A, Fiber Transmit Channel connection details, refer to Figure 1.

4. RXPA (pin 55); This pin is the Port A Fiber receive positive input pin. This analog input pin should connect to the external fiber transceiver in the design.

5. RXNA (pin 54); This pin is the Port A Fiber receive negative input pin. This analog input pin should connect to the external fiber transceiver in the design.

6. For Port A, Fiber Receive Channel connection details, refer to Figure 2.

7. FXSDA (pin 9); Port A Fiber Signal Detect. When FX-LOS mode is not selected, this pin functions as the Signal Detect input from the external fiber transceiver. A level above 2 V (typ.) indicates valid signal. When FX-LOS mode is selected, the input buffer is disabled.

8. FXLOSA (pin 9); Port A Fiber Loss of Signal. When FX-LOS mode is selected, this pin functions as the Loss of Signal input from the external transceiver. A high indicates LOS while a low indicates valid signal. When FX-LOS mode is not selected, the input buffer and pull-up are disabled.

9. **Architecture Note:** 100BASE-FX is a version of Fast Ethernet over optical fiber. It uses a 1300 nm near-infrared (NIR) light wavelength transmitted via two strands of optical fiber, one for receive(RX) and the other for transmit(TX). Maximum length is 412 metres (1,350 ft) for half-duplex connections (to ensure collisions are detected), and 2 kilometres (6,600 ft) for full-duplex over multi-mode optical fiber. 100BASE-FX uses the same 4B5B encoding and NRZI line code that 100BASE-TX does. 100BASE-FX should use SC, ST, LC, MTRJ or MIC connectors with SC being the preferred option.
Figure 3 – Fiber Transmit Channel Connections

Figure 4 – Fiber Receive Channel Connections
CTP / FX-SD / FX-LOS Configuration Pins:

1. FXLOSEN (pin 8) is a configuration strap input that selects between FX-LOS and FX-SD / Copper Twisted Pair mode. The voltage levels are as follows:

 Below +1 V = Selects FX-SD / Copper Twisted Pair for Port A, further determined by FXSDENA.

 +1.5 V = Selects FX-LOS for Port A.

 A pull-up / pull-down resistor value of 10K is recommended in order to attain the required high / low voltage levels listed above.

2. FXSDENA (pin 9), when FX-LOS mode is not selected, this configuration strap input selects between FX-SD and Copper Twisted Pair mode. When FX-LOS mode is selected, this input configuration strap is disabled.

 Below +1V = Selects Copper Twisted Pair mode for Port A.

 Above +1 V = Selects FX-SD fiber mode for Port A.

 A pull-up / pull-down resistor value of 10K is recommended in order to attain the required high / low voltage levels listed above.
+3.3V Power Supply Connections:

1. The supply for the two internal regulators on the LAN9250 SQFN is pin 5 (VDD33). This pin requires a connection to +3.3V. **Note:** +3.3V must be supplied to this pin even if the internal regulators are disabled.

2. The VDD33 power pin should have one .01 μF (or smaller) capacitor to decouple the LAN9250. The capacitor size should be SMD_0603 or smaller.

3. The analog supply (VDD33TXRX1) pin on the LAN9250 SQFN is pin 51. It requires a connection to +3.3V through a ferrite bead. Be sure to place bulk capacitance on each side of the ferrite bead.

4. The VDD33TXRX1 pin should have one .01 μF (or smaller) capacitor to decouple the LAN9250. The capacitor size should be SMD_0603 or smaller.

5. The analog supply (VDD33TXRX2) pin on the LAN9250 SQFN is pin 64. It requires a connection to +3.3V through a second ferrite bead. Be sure to place bulk capacitance on each side of the ferrite bead.

6. The VDD33TXRX2 pin should have one .01 μF (or smaller) capacitor to decouple the LAN9250. The capacitor size should be SMD_0603 or smaller.

7. VDD33BIAS (pin 58), this pin serves as the master bias voltage supply for the LAN9250. This pin requires a connection to +3.3V through a third ferrite bead. Be sure to place bulk capacitance on each side of the ferrite bead.

8. The VDD33BIAS pin should have one .01 μF (or smaller) capacitor to decouple the LAN9250. The capacitor size should be SMD_0603 or smaller.

+1.8V to +3.3V Variable I/O Power Supply Connections:

1. The variable I/O supply (VDDIO) pins on the LAN9250 SQFN are 14, 20, 32, 37 & 47. They require an externally supplied voltage supply between +1.8V and +3.3V.

2. Each VDDVARIO pin should have one .01 μF (or smaller) capacitor to decouple the LAN9250. The capacitor size should be SMD_0603 or smaller.
VDDCR:

1. VDDCR (pins 6, 24 & 38), these three pins are used to provide bypassing for the +1.2V core regulator. Each pin requires a 0.01 μF decoupling capacitor. Each capacitor should be located as close as possible to its pin without using vias. In addition, pin 6 requires a bulk capacitor placed as close as possible to pin 6. The bulk capacitor must have a value of at least 1.0 μF, and have an ESR (equivalent series resistance) of no more than 2.0 Ω. Microchip recommends a very low ESR ceramic capacitor for design stability. In addition, pin 6 also requires a 470 pF bypass capacitor. Other values, tolerances & characteristics are not recommended.

 Caution: This +1.2V supply is for internal logic only. **Do Not** power other external circuits or devices with this supply.

2. VDD12TX1 (pin 56) and VDD12TX2 (pin 59), these pins supply power for the two Ethernet blocks. These two pins must be tied together. These two pins must be connected to VDDCR through a ferrite bead. Be sure to place bulk capacitance on each side of the ferrite bead.

3. The VDD12TX1 and VDD12TX2 pins should each have one .01 μF (or smaller) capacitor to decouple the LAN9250. The capacitor size should be SMD_0603 or smaller.

Ground Connections:

1. All grounds, the digital ground pins (GND), the core ground pins (GND_CORE) and the analog ground pins (VSS_A) on the LAN9250 SQFN, are all connected internally to the exposed die paddle ground (VSS). The EDP Ground pad on the underside of the LAN9250 must be connected directly to a solid, contiguous digital ground plane.

2. On the PCB, we recommend one Digital Ground. We do not recommend running separate ground planes for any of our LAN products.
Crystal Connections:

1. A 25.000 MHz crystal must be used with the LAN9250 SQFN. For exact specifications and tolerances refer to the latest revision LAN9250 data sheet.

2. OSCI (pin 1) on the LAN9250 SQFN is the clock circuit input. This pin requires a 27 – 33 pF capacitor to digital ground. One side of the crystal connects to this pin.

3. OSCO (pin 2) on the LAN9250 SQFN is the clock circuit output. This pin requires a matching 27 – 33 pF capacitor to ground and the other side of the crystal.

4. Since every system design is unique, the capacitor values are system dependant. The PCB design, the crystal selected, the layout and the type of caps selected all contribute to the characteristics of this circuit. Once the board is complete and operational, it is up to the system engineer to analyze this circuit in a lab environment. The system engineer should verify the frequency, the stability and the voltage level of the circuit to guarantee that the circuit meets all design criteria as put forth in the data sheet.

5. For proper operation, the additional external 1.0M Ω resistor across the crystal is no longer required. The necessary resistance has been designed-in internally on the LAN9250 SQFN.

6. OSCVDD12 (pin 3), this pin is supplied by one of the internal +1.2V regulators of the LAN9250 and can be left as a no-connection in this mode (REGEN = high). When REGEN = low, this pin must be supplied by an external +1.2V power supply.

7. OSCVSS (pin 4), this pin should be connected directly to digital ground for all applications.

8. **Design Verification Tip:** Microchip recommends taking advantage of the Clock Output Test Mode in the LAN9250. In order to facilitate system level validation and debug, the crystal clock can be enabled onto the IRQ pin by setting the IRQ Clock Select (IRQ_CLK_SELECT) bit of the Interrupt Configuration Register (IRQ_CFG). The IRQ pin should be set to a push-pull driver by using the IRQ Buffer Type (IRQ_TYPE) bit for the best result. Be sure to include a test pin on the IRQ pin (pin 44) and a ground pin close to the test pin. Using a high-quality, precise frequency counter with 8-digits or better will accurately determine the frequency of the 25.000 MHz in the design. Adjusting the crystal circuit load caps slightly will fine tune the frequency of the circuit.

RBIAS Resistor:

1. RBIAS (pin 57) on the LAN9250 SQFN should connect to digital ground through a 12.1K Ω resistor with a tolerance of 1.0%. This pin is used to set-up critical bias currents for the embedded 10/100 Ethernet Physical device.
Required External Pull-ups/Pull-downs:

1. IRQ (pin 44) may require an external pull-up resistor to VDDIO if configured as an Open Drain type.
Host Bus Interface (HBI) Indexed Mode pins:

1. RD (pin 31) This pin is the host bus read strobe. Normally active low, the polarity can be changed via the HBI Read, Read/Write Polarity bit of the PDI Configuration Register (HBI Modes).

2. WR (pin 30) This pin is the host bus write strobe. Normally active low, the polarity can be changed via the HBI Write, Enable Polarity bit of the PDI Configuration Register (HBI Modes).

3. RD_WR (pin 31) This pin is the host bus direction control. Used in conjunction with the ENB pin, it indicates a read or write operation. The normal polarity is read when 1, write when 0 (R/nW) but can be changed via the HBI Read, Read/Write Polarity bit of the PDI Configuration Register (HBI Modes).

4. ENB (pin 30) This pin is the host bus data enable strobe. Used in conjunction with the RD_WR pin it indicates the data phase of the operation. Normally active low, the polarity can be changed via the HBI Write, Enable Polarity bit of the PDI Configuration Register (HBI Modes).

5. CS (pin 28) This pin is the host bus chip select and indicates that the device is selected for the current transfer. Normally active low, the polarity can be changed via the HBI Chip Select Polarity bit of the PDI Configuration Register (HBI Modes).

6. A[4:0] (pins 27, 26, 29, 25, 33) These pins provide the address for non-multiplexed address mode. In 16-bit data mode, bit 0 is not used.

7. D[15:0] (pins 33, 15, 16, 21, 22, 23, 19, 40, 39, 36, 50, 49, 35, 12, 13, 17) These pins are the host bus data bus for non-multiplexed address mode. In 8-bit data mode, bits 15-8 are not used and their input and output drivers are disabled.
Host Bus Interface (HBI) Multiplexed Mode pins:

1. RD (pin 31) This pin is the host bus read strobe. Normally active low, the polarity can be changed via the HBI Read, Read/Write Polarity bit of the PDI Configuration Register (HBI Modes).

2. WR (pin 30) This pin is the host bus write strobe. Normally active low, the polarity can be changed via the HBI Write, Enable Polarity bit of the PDI Configuration Register (HBI Modes).

3. RD_WR (pin 31) This pin is the host bus direction control. Used in conjunction with the ENB pin, it indicates a read or write operation. The normal polarity is read when 1, write when 0 (R/nW) but can be changed via the HBI Read, Read/Write Polarity bit of the PDI Configuration Register (HBI Modes).

4. ENB (pin 30) This pin is the host bus data enable strobe. Used in conjunction with the RD_WR pin it indicates the data phase of the operation. Normally active low, the polarity can be changed via the HBI Write, Enable Polarity bit of the PDI Configuration Register (HBI Modes).

5. CS (pin 28) This pin is the host bus chip select and indicates that the device is selected for the current transfer. Normally active low, the polarity can be changed via the HBI Chip Select Polarity bit of the PDI Configuration Register (HBI Modes).

6. AD[15:0] (pins 33, 15, 16, 21, 22, 23, 19, 40, 39, 36, 50, 49, 35, 12, 13, 17) These pins are the host bus address / data bus for multiplexed address mode. Bits 15-8 provide the upper byte of address for single phase multiplexed address mode. Bits 7-0 provide the lower byte of address for single phase multiplexed address mode and both bytes of address for dual phase multiplexed address mode. In 8-bit data dual phase multiplexed address mode, bits 15-8 are not used and their input and output drivers are disabled.

7. ALEHI (pin 29) This pin indicates the address phase for multiplexed address modes. It is used to load the higher address byte in dual phase multiplexed address mode. Normally active low (address saved on rising edge), the polarity can be changed via the HBI ALE Polarity bit of the PDI Configuration Register (HBI Modes).

8. ALELO (pin 25) This pin indicates the address phase for multiplexed address modes. It is used to load both address bytes in single phase multiplexed address mode and the lower address byte in dual phase multiplexed address mode. Normally active low (address saved on rising edge), the polarity can be changed via the HBI ALE Polarity bit of the PDI Configuration Register (HBI Modes).
Serial Peripheral Interface (SPI) Bus pins:

1. SI (pin 17) This pin is the SPI slave serial data input. SI is shared with the SIO0 pin. This input pin has an internal pull-up.

2. SO (pin 13) This pin is the SPI slave serial data output. SO is shared with the SIO1 pin. This output pin has an internal pull-up.

3. SCK (pin 19) This pin is the SPI/SQI slave serial clock input. This input pin has an internal pull-up.

4. SCS# (pin 50) This pin is the SPI/SQI slave chip select input. When low, the SPI/SQI slave is selected for SPI/SQI transfers. When high, the SPI/SQI serial data output(s) is(are) 3-stated. This input has an internal pull-up.

5. SIO[3:0] (pins 35, 12, 13, 17) These pins are the SPI/SQI slave data input and output for multiple bit I/O. These bi-directional pins have internal pull-ups. SIO0 is shared with the SI pin. SIO1 is shared with the SO pin.

GPIO pins:

1. GPIO[2:0] (pins 45, 46, 48) These pins are configured to operate as a GPIO when the LEDx Enable bit of the LED Configuration Register (LED_CFG) is clear. These pins are fully programmable as either a push-pull output, an open-drain output or a Schmitt-triggered input by writing the General Purpose I/O Configuration Register (GPIO_CFG) and the General Purpose I/O Data & Direction Register (GPIO_DATA_DIR).
LED pins:

1. LED2 (pin 45) This pin is configured to operate as an LED when the LED2 Enable bit of the LED Configuration Register (LED_CFG) is set. The buffer type depends on the setting of the LED Function 2-0 (LED_FUN[2:0]) field in the LED Configuration Register (LED_CFG) and is configured to be either a push-pull or open-drain / open-source output. When selected as an open-drain / open-source output, the polarity of this pin depends upon the \texttt{E2PSIZE} strap value sampled at reset.

2. LED1 (pin 46) This pin is configured to operate as an LED when the LED 1 Enable bit of the LED Configuration Register (LED_CFG) is set. The buffer type depends on the setting of the LED Function 2-0 (LED_FUN[2:0]) field in the LED Configuration Register (LED_CFG) and is configured to be either a push-pull or open-drain / open-source output. When selected as an open-drain/open-source output, the polarity of this pin depends upon the \texttt{MNGT1} strap value sampled at reset.

3. LED0 (pin 48) This pin is configured to operate as an LED when the LED 0 Enable bit of the LED Configuration Register (LED_CFG) is set. The buffer type depends on the setting of the LED Function 2-0 (LED_FUN[2:0]) field in the LED Configuration Register (LED_CFG) and is configured to be either a push-pull or open-drain / open-source output. When selected as an open-drain/open-source output, the polarity of this pin depends upon the \texttt{MNGT0} strap value sampled at reset.

\textbf{I}^{2}\textbf{C} EEPROM pins:

1. EESDA (pin 42) When the device is accessing an external EEPROM, this pin is the \textbf{I}^{2}\textbf{C} serial data input/open-drain output. \textbf{Note:} This pin must be pulled-up by a 10K ohm external resistor at all times.

2. EESCL (pin 43) When the device is accessing an external EEPROM this pin is the \textbf{I}^{2}\textbf{C} clock open-drain output. \textbf{Note:} This pin must be pulled-up by a 10K ohm external resistor at all times.

3. The use of an EEPROM with the LAN9250 is optional. The contents of certain registers may be loaded directly by the host, or optionally, by the EEPROM Loader from the EEPROM at power-on (if a programmed EEPROM is detected). Register data that may be loaded by the EEPROM include:

 a) The 48-bit Physical Address of the Host MAC
 b) Configuration Strap Values Valid Flag
 c) Configuration Strap Values
 d) Burst Sequence Valid Flag
 e) Number of Bursts
 f) Burst Data
Dedicated Configuration Strap Pins:

1. E2PSIZE (pin 45), this strap pin configures the I²C EEPROM size. When latched low, EEPROM sizes 128 x 8-bit (1K) through 2048 x 8-bit (16K) are supported. When latched high, EEPROM sizes 4096 x 8-bit (32K) through 64K x 8-bit (512K) are supported. This pin has a weak internal pull-up and can be driven low with an external 1.0K Ω resistor to digital ground.

[Diagram showing LED2/E2PSIZE with pull-up resistors for different configurations]
2. MNGT3 / A4 (pin 27), MNGT2 / A3 (pin 26), MNGT1 / LED1 (pin 46) & MNGT0 / LED0 (pin 48), these four pins configure the Host Bus Interface mode of the LAN9250. The modes are as follows:

- 0000 = SPI
- 0001 = HBI Multiplexed 1 Phase 8-bit
- 0010 = HBI Indexed 8-bit
- 0011 = HBI Indexed 16-bit
- 0100 = SPI
- 0101 = HBI Multiplexed 1 Phase 16-bit
- 0110 = HBI Indexed 8-bit
- 0111 = HBI Indexed 16-bit
- 1000 = SPI
- 1001 = HBI Multiplexed 2 Phase 8-bit
- 1010 = HBI Indexed 8-bit
- 1011 = HBI Indexed 16-bit
- 1100 = SPI
- 1101 = HBI Multiplexed 2 Phase 16-bit
- 1110 = HBI Indexed 8-bit
- 1111 = HBI Indexed 16-bit

See the latest version of the LAN9250 data sheet for complete details. These four configuration strap input pins have weak internal pull-ups and can be driven low with an external 10K Ω resistor to digital ground.

3. MNGT1 (pin 46) & MNGT0 (pin 48) are shared with LED functions. Following shows the proper LED configurations for the MNGTx bits.

![LED Configuration Diagram]

MNGTx Bit = 1
- LED Output Signal from LAN9250 is Active Low

MNGTx Bit = 0
- LED Output Signal from LAN9250 is Active High
Miscellaneous:

1. RST# (pin 11), As an input, this active low signal allows external hardware to reset the device. The device also contains an internal power-on reset circuit. Thus this signal may be left unconnected if an external hardware reset is not needed. When used this signal must adhere to the reset timing requirements as detailed in the Section 18.0, "Operational Characteristics," on page 302. As an output, this signal is driven low during POR.

2. REG_EN (pin 7), this pin enables / disables the two +1.2V internal regulators of the LAN9250. Refer to the latest revision of the data sheet for additional information. Connecting this pin to +3.3V will enable the regulators. Connecting this pin to digital ground will disable both regulators. This pin has no internal terminations and must be strapped accordingly.

3. The LAN9250 has an IEEE 1149.1 compliant JTAG Boundary Scan interface. This test interface can be utilized to accomplish board level testing to ensure system functionality and board manufacturability. For details, see the LAN9250 data sheet.

4. TESTMODE (pin 41) This input pin must be tied to VSS to ensure proper operation.

5. IRQ (pin 44) Interrupt request output. The polarity, source and buffer type of this signal is programmable via the Interrupt Configuration Register (IRQ_CFG). For more information, refer to Section 8.0, "System Interrupts".

6. PME (pin 18) When programmed accordingly this signal is asserted upon detection of a wakeup event. The polarity and buffer type of this signal is programmable via the PME Enable (PME_EN) bit of the Power Management Control Register (PMT_CTRL).

7. FIFOSEL (pin 34) This input directly selects the Host MAC TX and RX Data FIFOs for HBI Indexed (Non-Multiplexed) address mode.

8. Incorporate a large SMD resistor (SMD_1210) to connect the chassis ground to the digital ground. This will allow some flexibility at EMI testing for different grounding options. Leave the resistor out, the two grounds are separate. Short them together with a zero ohm resistor. Short them together with a cap or a ferrite bead for best performance.

9. Be sure to incorporate enough bulk capacitors (4.7 - 22μF caps) for each power plane.

10. Configuration strap values are typically latched on power-on reset and system reset. Microchip will guarantee that the proper high / low level will be latched in on any device pin with an internal pull-up or pull-down where the device pin is a true no-connect. However, when the configuration strap pin (typically an output pin) is connected to a load, the input leakage current associated with the input load may have an adverse effect on the high / low level ability of the internal pull-up / pull-down. In this case, it is Microchip’s recommendation to include an external resistor to augment the internal pull-up / pull-down to ensure the proper high / low level for configuration strap values. Lower VDDIO voltages will further exacerbate this condition.
LAN9250 SQFN QuickCheck Pinout Table:

Use the following table to check the LAN9250 SQFN shape in your schematic.

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Pin No.</th>
<th>Pin Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OSCI 33 A0 / D15 / AD15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OSCO 34 FIFOSEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OSCVDD12 35 D3 / AD3 / SIO3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>OSCVSS 36 D6 / AD6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>VDD33 37 VDDIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>VDDCR 38 VDDCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>REG_EN 39 D7 / AD7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>FXLOSEN 40 D8 / AD8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>FXSDA / FXLOSA / FXSDENA 41 TESTMODE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>RESERVED 42 EESDA / TMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>RST# 43 EESCL / TCK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>D2 / AD2 / SIO2 44 IRQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>D1 / AD1 / SO / SIO1 45 LED2 / GPIO2 / E2PSIZE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>VDDIO 46 LED1 / GPIO1 / TDI / MNGT1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>D14 / AD14 47 VDDIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>D13 / AD13 48 LED0 / GPIO0 / TDO / MNGT0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>D0 / AD0 / SI / SIO0 49 D4 / AD4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>PME 50 D5 / AD5 / SCS#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>D9 / AD9 / SCK 51 VDD33TXRX1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>VDDIO 52 TXNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>D12 / AD12 53 TXPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>D11 / AD11 54 RXNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>D10 / AD10 55 RXPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>VDDCR 56 VDD12TX1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>A1 / ALELO 57 RBIAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>A3 / MNGT2 58 VDD33BIAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>A4 / MNGT3 59 VDD12TX2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>CS 60 RESERVED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>A2 / ALEHI 61 RESERVED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>WR / ENB 62 RESERVED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>RD / RD_WR 63 RESERVED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>VDDIO 64 VDD33TXRX2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

65	EDP Ground Connection
	Exposed Die Paddle Ground
	Pad on Bottom of Package
Notes:
Reference Material:

1. Microchip LAN9250 Data Sheet; check web site for latest revision.
3. Microchip Reference Designs are schematics only; there are no associated PCBs.
4. EVB-LAN9250 Customer Evaluation Board & Schematics