Section 8. Reset

HIGHLIGHTS

This section of the manual contains the following major topics:

8.1 Introduction .. 8-2
8.2 System Reset.. 8-6
8.3 Using the RCON Status Bits .. 8-10
8.4 Special Function Register Reset States... 8-10
8.5 Register Map.. 8-11
8.6 Design Tips .. 8-12
8.7 Related Application Notes.. 8-13
8.8 Revision History... 8-14
8.1 INTRODUCTION

The Reset module combines all the reset sources, and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: \texttt{RESET} Instruction
- WDTO: Watchdog Time-out Reset
- CM: Configuration Mismatch Reset
 (This source is not available on all devices. Refer to the specific device data sheet for details.)
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 8-1. Any active source of reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state, while some are unaffected.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of reset (see Register 8-1). A POR clears all bits except for the POR and BOR bits (RCON<1:0>), which are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset.

The RCON register also contains bits associated with the Watchdog Timer and device power-saving states. For more information, refer to Section 9. “Watchdog Timer and Power-Saving Modes” (DS70615).
Figure 8-1: Reset System Block Diagram

Note 1: The configuration mismatch is not available on all devices. Refer to the specific device data sheet for details.
Register 8-1: RCON: Reset Control Register

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-1</th>
<th>U-0</th>
<th>R/W-0</th>
<th>U-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAPR</td>
<td>IOPUWR</td>
<td>SBOREN(4)</td>
<td>—</td>
<td>VREGSF</td>
<td>—</td>
<td>CM(2)</td>
<td>VREGS</td>
</tr>
</tbody>
</table>

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
 - ‘1’ = Bit is set
 - ‘0’ = Bit is cleared
 - x = Bit is unknown

bit 15 TRAPR: Trap Reset Flag bit
 1 = A Trap Conflict Reset has occurred
 0 = A Trap Conflict Reset has not occurred

bit 14 IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit
 1 = An illegal opcode detection, an illegal address mode or an uninitialized W register used as an Address Pointer caused a Reset
 0 = An illegal opcode or uninitialized W register Reset has not occurred

bit 13 SBOREN: Software BOR Enable/Disable bit
 1 = BOR is turned on in software
 0 = BOR is turned off in software

bit 12 Unimplemented: Read as ‘0’

bit 11 VREGSF: Flash Voltage Regulator Stand-by During Sleep bit
 1 = Flash voltage regulator is active during Sleep
 0 = Flash voltage regulator goes into Stand-by mode during Sleep

bit 10 Unimplemented: Read as ‘0’

bit 9 CM: Configuration Mismatch Flag bit
 1 = A configuration mismatch Reset has occurred
 0 = A configuration mismatch Reset has not occurred

bit 8 VREGS: Voltage Regulator Stand-by During Sleep bit
 1 = Voltage regulator is active during Sleep
 0 = Voltage regulator goes into Stand-by mode during Sleep

bit 7 EXTR: External Reset Pin bit
 1 = A Master Clear (pin) Reset has occurred
 0 = A Master Clear (pin) Reset has not occurred

bit 6 SWR: Software Reset (Instruction) Flag bit
 1 = A RESET instruction has been executed
 0 = A RESET instruction has not been executed

bit 5 SWDTEN: Software Enable/Disable of WDT bit
 1 = WDT is enabled
 0 = WDT is disabled

Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

Note 2: The configuration mismatch Reset flag is not available on all devices. (Refer to the specific device data sheet.)

Note 3: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

Note 4: The SBOREN bit is ignored if the BOREN Configuration bit = 0 (FPOR<3>).
Register 8-1: RCON: Reset Control Register(1) (Continued)

bit 4 WDTO: Watchdog Time-out Flag bit
 1 = WDT time-out has occurred
 0 = WDT time-out has not occurred

bit 3 SLEEP: Wake-up from Sleep Flag bit
 1 = Device has been in Sleep mode
 0 = Device has not been in Sleep mode

bit 2 IDLE: Wake-up from Idle Flag bit
 1 = Device was in Idle mode
 0 = Device was not in Idle mode

bit 1 BOR: Brown-out Reset Flag bit
 1 = A Brown-out Reset or Power-on Reset has occurred
 0 = A Brown-out Reset has not occurred

bit 0 POR: Power-on Reset Flag bit
 1 = A Power-on Reset has occurred
 0 = A Power-on Reset has not occurred

Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

2: The configuration mismatch Reset flag is not available on all devices. (Refer to the specific device data sheet.)

3: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

4: The SBOREN bit is ignored if the BOREN Configuration bit = 0 (FPOR<3>).
8.2 SYSTEM RESET

The dsPIC33E/PIC24E family of devices have two types of Reset: cold Reset and warm Reset. A cold Reset is the result of a Power-on Reset (POR) or Brown-out Reset (BOR). On a cold Reset, the FNOSC configuration bits in the FOSC device configuration register select the device clock source.

A warm Reset is the result of all other Reset sources, including the RESET instruction. On a warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection bits (COSC<2:0>) in the Oscillator Control register (OSCCON<14:12>).

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. Refer to Section 7. “Oscillator” (DS70580) for more information.

When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

The Fail-Safe Clock Monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay TFSCM has elapsed.

<table>
<thead>
<tr>
<th>Oscillator Mode</th>
<th>Oscillator Startup Delay</th>
<th>Oscillator Startup Timer</th>
<th>PLL Lock Time</th>
<th>Total Oscillator Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRC</td>
<td>TOSCD</td>
<td>—</td>
<td>—</td>
<td>TOSCD</td>
</tr>
<tr>
<td>FRCDIV16</td>
<td>TOSCD</td>
<td>—</td>
<td>—</td>
<td>TOSCD</td>
</tr>
<tr>
<td>FRCDIVN</td>
<td>TOSCD</td>
<td>—</td>
<td>—</td>
<td>TOSCD</td>
</tr>
<tr>
<td>FRCPLL</td>
<td>TOSCD</td>
<td>—</td>
<td>TLOCK</td>
<td>TOSCD + TLOCK</td>
</tr>
<tr>
<td>XT</td>
<td>TOSCD</td>
<td>TOST</td>
<td>—</td>
<td>TOSCD + TOST</td>
</tr>
<tr>
<td>HS</td>
<td>TOSCD</td>
<td>TOST</td>
<td>—</td>
<td>TOSCD + TOST</td>
</tr>
<tr>
<td>EC</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>XTPLL</td>
<td>TOSCD</td>
<td>TOST</td>
<td>TLOCK</td>
<td>TOSCD + TOST + TLOCK</td>
</tr>
<tr>
<td>HSPLL</td>
<td>TOSCD</td>
<td>TOST</td>
<td>TLOCK</td>
<td>TOSCD + TOST + TLOCK</td>
</tr>
<tr>
<td>ECPLL</td>
<td>—</td>
<td>—</td>
<td>TLOCK</td>
<td>TLOCK</td>
</tr>
<tr>
<td>SOSC</td>
<td>TOSCD</td>
<td>TOST</td>
<td>—</td>
<td>TOSCD + TOST</td>
</tr>
<tr>
<td>LPRC</td>
<td>TOSCD</td>
<td>—</td>
<td>—</td>
<td>TOSCD</td>
</tr>
</tbody>
</table>

Note 1: TOSCD = Oscillator Start-up Delay. Crystal Oscillator start-up times vary with crystal characteristics, load capacitance, and so on. Refer to the “Electrical Characteristic” chapter of the specific device data sheet for TOSCD specifications when using the internal FRC or internal LPRC oscillator.

Note 2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock periods). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

Note 3: TLOCK = PLL lock time, if the PLL is enabled. Refer to the “Electrical Characteristic” chapter of the specific device data sheet for TLOCK specifications.

Note: When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges, otherwise the device may not function correctly. The user application must ensure that the delay between the time at which the power is first applied and the time when the device comes out of Reset is long enough to get all operating parameters within specification.
8.2.1 Power-on Reset (POR)

A Power-on Reset (POR) circuit ensures the device is Reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the power-up delay, TPU, has elapsed. The delay TPU ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to the “Electrical Characteristics” chapter of the specific device data sheet for details.

In addition to TPU and TOST/TPWRT (if applicable), a NVM power-up delay, TNPD, is incurred before code execution begins.

The Power-on Reset status bit (POR) in the Reset Control (RCON<0>) register is set to indicate the Power-on Reset.

The device start-up time line and POR timing characteristics are described in the “Electrical Characteristics” chapter of the specific device data sheet.

8.2.2 Brown-out Reset (BOR) and Power-up Timer (PWRT)

The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses the VBOR threshold. Refer to the “Electrical Characteristics” chapter of the specific device data sheet for the minimum BOR pulse width (TBOR) specifications.

The Brown-out Reset status bit (BOR) in the Reset Control register (RCON<1>) is set to indicate the Brown-out Reset. Set the Software BOR Enable/Disable bit (SBOREN) in the Reset Control register (RCON<13>) to enable BOR in software, or clear this bit to disable BOR in software. Alternately, BOR can be disabled in hardware by programming the BOREN Configuration bit (FPOR<3>) to ‘0’.

The device will not run at full speed after a BOR as the VDD must rise to acceptable levels for full-speed operation. The PWRT provides a power-up timer delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the device comes out of Reset.

The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select bits (FPWRT<2:0>) in the POR Configuration register (FPOR<2:0>), which provide eight settings (from 0 ms to 128 ms). Refer to Section 30. “Device Configuration” (DS70618) for further details.

8.2.3 External Reset (EXTR)

The External Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse-width will generate a Reset. Refer to the “Electrical Characteristics” chapter of the specific device data sheet for minimum MCLR pulse width specifications (TMCLR). The External Reset Pin bit (EXTR) in the Reset Control register (RCON<7>) is set to indicate the MCLR Reset.

Many systems have external supervisory circuits that generate Reset signals to Reset multiple devices in the system. This external Reset signal can be directly connected to the MCLR pin to Reset the device when the rest of the system is Reset.

When using other sources to Reset the device, the external reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The external reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

8.2.4 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will enter a warm Reset state. This Reset state will not reinitialize the clock. The clock source in effect prior to the RESET instruction will remain in effect. The device will be released from a Reset state at the next instruction cycle, and the Reset vector fetch will commence.

The Software Reset (Instruction) Flag bit (SWR) in the Reset Control register (RCON<6>) is set to indicate the software Reset.
8.2.5 Watchdog Time-out Reset (WDTO)

Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Time-out Flag bit (WDTO) in the Reset Control register (RCON<4>) is set to indicate the Watchdog Reset. Refer to Section 9, “Watchdog Timer and Power-Saving Modes” (DS70615) for more information on Watchdog Time-out Reset.

8.2.6 Trap Conflict Reset

If a lower-priority hard trap occurs while a higher-priority trap is being processed, a hard trap conflict Reset occurs. The hard traps include exceptions of priority level 13 through level 15, inclusive. The address error (level 13) and oscillator error (level 14) traps fall into this category.

The Trap Reset Flag bit (TRAPR) in the Reset Control register (RCON<15>) is set to indicate the Trap Conflict Reset. Refer to Section 6, “Interrupts” (DS70600) for more information on Trap Conflict Reset.

8.2.7 Configuration Mismatch Reset

To maintain the integrity of the peripheral pin select control registers, they are constantly monitored with shadow registers in hardware. If an unexpected change occurs in any of the registers (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset occurs.

The Configuration Mismatch Flag bit (CM) in the Reset Control register (RCON<9>) is set to indicate the configuration mismatch Reset. Refer to Section 10, “I/O Ports” (DS70598) for more information on the Configuration Mismatch Reset.

Note: The configuration mismatch feature and associated Reset flag are not available on all devices. (Refer to the specific device data sheet.)

8.2.8 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

The Illegal Opcode or Uninitialized W Access Reset Flag bit (IOPUWR) in the Reset Control register (RCON<14>) is set to indicate the illegal condition device Reset.

8.2.8.1 ILLEGAL_OPCODE_RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from the program memory.

The illegal opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the illegal opcode Reset, use only the lower 16 bits of each program memory section to store the data values. The upper 8 bits should be programmed with 0x3F, which is an illegal opcode value.

8.2.8.2 UNINITIALIZED_W_REGISTER_RESET

Any attempts to use the uninitialized W register as an address pointer will Reset the device. The W register array (with the exception of W15) is cleared during all resets and is considered uninitialized until written to.
8.2.8.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (Boot and Secure Segment), that operation will cause a security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a Call, Jump, Computed Jump, Return, Return from Subroutine, or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an Interrupt or Trap vector.

Refer to Section 23. “CodeGuard™ Security” (DS70634) for more information on Security Reset.

Note 1: If a POR or BOR event occurs while a Run-Time Self-Programming (RTSP) erase or programming operation is in progress, the RTSP operation is aborted immediately. The user should execute the RTSP operation again after the device comes out of Reset.

2: If an EXTR, SWR, WDTR, TRAPR, CM, or IOPUWR reset event occurs while an RTSP erase or programming operation is in progress, the device will be Reset only after the RTSP operation is complete.
8.3 USING THE RCON STATUS BITS

The user application can read the Reset Control register (RCON) after any device Reset to determine the cause of the reset.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 8-2 provides a summary of the Reset flag bit operation.

Table 8-2: Reset Flag Bit Operation

<table>
<thead>
<tr>
<th>Flag Bit</th>
<th>Set by:</th>
<th>Cleared by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAPR (RCON<15>)</td>
<td>Trap conflict event</td>
<td>POR, BOR</td>
</tr>
<tr>
<td>IOPWR (RCON<14>)</td>
<td>Illegal opcode or uninitialized W register access or Security Reset</td>
<td>POR, BOR</td>
</tr>
<tr>
<td>CM (RCON<9>)</td>
<td>Configuration Mismatch</td>
<td>POR, BOR</td>
</tr>
<tr>
<td>EXTR (RCON<7>)</td>
<td>MCLR Reset</td>
<td>POR</td>
</tr>
<tr>
<td>SWR (RCON<6>)</td>
<td>RESET instruction</td>
<td>POR, BOR</td>
</tr>
<tr>
<td>WDTO (RCON<4>)</td>
<td>WDT time-out</td>
<td>PWRSAV instruction, CLRWDT instruction, POR, BOR</td>
</tr>
<tr>
<td>SLEEP (RCON<3>)</td>
<td>PWRSAV #SLEEP instruction</td>
<td>POR, BOR</td>
</tr>
<tr>
<td>IDLE (RCON<2>)</td>
<td>PWRSAV #IDLE instruction</td>
<td>POR, BOR</td>
</tr>
<tr>
<td>BOR (RCON<1>)</td>
<td>POR, BOR</td>
<td>—</td>
</tr>
<tr>
<td>POR (RCON<0>)</td>
<td>POR</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: All Reset flag bits can be set or cleared by the user software.

8.4 SPECIAL FUNCTION REGISTER RESET STATES

Most of the Special Function Registers (SFRs) associated with the dsPIC33E/PIC24E CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in the appropriate sections of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of seven registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the oscillator configuration bits in the FOSD Device Configuration register. In addition, the oscillator SFRs (OSCCON, CLKDIV, PLLFBD, OSCTUN, ACLKCONx and ACLKDIVx) and Real-Time Clock and Calendar (RTCC) registers are reset only at POR.
8.5 REGISTER MAP

Table 8-3 maps the bit functions for the RCON register.

Table 8-3: Reset Control Register Map

<table>
<thead>
<tr>
<th>SFR Name</th>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>All Resets</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCON</td>
<td>TRAPR</td>
<td>IOPUWR</td>
<td>SBOREN</td>
<td>VREGSF</td>
<td>CM</td>
<td>VREGS</td>
<td>EXTR</td>
<td>SWR</td>
<td>SWDTEN</td>
<td>WDTO</td>
<td>SLEEP</td>
<td>IDLE</td>
<td>BOR</td>
<td>POR</td>
<td></td>
<td>0003</td>
<td></td>
</tr>
</tbody>
</table>

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.
8.6 DESIGN TIPS

Question 1: How do I use the RCON register?
Answer: The initialization code after a device Reset should examine the RCON register and confirm the source of the Reset. In certain applications, this information can be used to take appropriate action to correct the problem that caused the Reset to occur. All Reset status bits in the RCON register should be cleared after reading them to ensure the RCON value will provide meaningful results after the next device Reset.

Question 2: The BOR module does not have the programmable trip points that my application needs. How can I work around this?
Answer: The BOR circuitry is used to avoid violation of the V/F specification of the device. In many devices, the minimum voltage for full-speed operation is much higher than in dsPIC33E/PIC24E devices. Therefore, in such devices, a programmable BOR circuit is needed to provide the multiple speed option. However, the dsPIC33E/PIC24E devices, support full-speed operation at a much lower voltage, so the simple BOR module is enough. If the device operating voltage drops to a value where full-speed operation is not possible, then BOR is asserted. If the device is in a non-BOR state, then full-speed operation is valid.

Question 3: I initialized a W register with a 16-bit address, but the device appears to reset when I attempt to use the register as an address.
Answer: Because all data addresses are 16-bit values, the uninitialized W register logic only recognizes that a register has been initialized correctly if it was subjected to a word load. Two-byte moves to a W register, even if successive, will not work, resulting in a device Reset if the W register is used as an address pointer in an operation.
8.7 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These application notes may not be written specifically for the dsPIC33E/PIC24E product family, but the concepts are pertinent and could be used with modification and possible limitations. The current application notes related to the Reset module include the following:

<table>
<thead>
<tr>
<th>Title</th>
<th>Application Note #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-up Trouble Shooting</td>
<td>AN607</td>
</tr>
<tr>
<td>Power-up Considerations</td>
<td>AN522</td>
</tr>
</tbody>
</table>

Note: Please visit the Microchip web site (www.microchip.com) for additional Application Notes and code examples for the dsPIC33E/PIC24E family of devices.
8.8 REVISION HISTORY

Revision A (July 2009)
This is the initial released version of this document.

Revision B (December 2010)
This revision includes the following updates:
- Added a note at the beginning of the section, which provides information on
 complementary documentation
- Updated the dsPIC33E references in the entire document as dsPIC33E/PIC24E
- Added Security Reset to the Reset System Block Diagram (see Figure 8-1)
- Added Note 4 and the VREGSF bit to the Reset Control Register (see Register 8-1)
- Updated the third paragraph (removed numbered references) in 8.2 “System Reset”
- Updated Note 1 and Note 3 in Oscillator Delay (see Table 8-1)
- Removed the System Reset Timing diagram
- Updated all paragraphs of 8.2.1 “Power-on Reset (POR)”
- Updated the first and second paragraphs, removed the last paragraph, and removed the
 Brown-out Scenarios diagram in 8.2.2 “Brown-out Reset (BOR) and Power-up Timer
 (PWRT)”
- Added Note 1 and Note 2 to 8.2.8.3 “Security Reset”
- Removed 8.4 “Device Start-up Time Lines”
- Updated the last paragraph of 8.4 “Special Function Register Reset States”
- Added the VREGSF bit to the Reset Control Register Map (see Table 8-3)
- Updates to formatting and minor text changes have been incorporated throughout the
 document
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.

- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

- Microchip is willing to work with the customer who is concerned about the integrity of their code.

- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOG, KEELog logo, MPLAB, PIC, PICmicro, PICSTART, PIC32, rPIC and Uni/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-750-7

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KezLoc® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277

Technical Support:
http://support.microchip.com

Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0084
Fax: 216-447-0083

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suits 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8880-9580
Fax: 86-23-8880-9500

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-554-7934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-370
Fax: 886-3-6578-300

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2508-0102
Fax: 886-2-2508-6610

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820