The PIC18F87K22 family devices that you have received conform functionally to the current Device Data Sheet (DS30009960F), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the PIC18F87K22 silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (B5, C6).

For example, to identify the silicon revision level using MPLAB IDE in conjunction with a hardware debugger:

1. Using the appropriate interface, connect the device to the hardware debugger.
2. Open an MPLAB IDE project.
3. Configure the MPLAB IDE project for the appropriate device and hardware debugger.
4. Based on the version of MPLAB IDE you are using, do one of the following:
 a) For MPLAB IDE 8, select Programmer > Reconnect.
 b) For MPLAB X IDE, select Window > Dashboard and click the Refresh Debug Tool Status icon ().
5. Depending on the development tool used, the part number and Device Revision ID value appear in the Output window.

Note: If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.

The DEVREV values for the various PIC18F87K22 silicon revisions are shown in Table 1.

TABLE 1: SILICON DEVREV VALUES

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Device ID(1)</th>
<th>Revision ID for Silicon Revision(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A3 B1 B3 B5 C1 C3 C5 C6</td>
</tr>
<tr>
<td>PIC18F65K22</td>
<td>530h</td>
<td>3h 4h 5h 6h 10h 11h 12h 13h</td>
</tr>
<tr>
<td>PIC18F66K22</td>
<td>52Ch</td>
<td></td>
</tr>
<tr>
<td>PIC18F85K22</td>
<td>536h</td>
<td></td>
</tr>
<tr>
<td>PIC18F86K22</td>
<td>532h</td>
<td></td>
</tr>
<tr>
<td>PIC18F67K22</td>
<td>518h</td>
<td></td>
</tr>
<tr>
<td>PIC18F87K22</td>
<td>51Ch</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The Device IDs (DEVID and DEVREV) are located at the last two implemented addresses of configuration memory space. They are shown in hexadecimal in the format “DEVID DEVREV”.

Note 2: Refer to the "PIC18F6XKXX/8XKXX Family Flash Microcontroller Programming Specification" (DS39947) for detailed information on Device and Revision IDs for your specific device.

© 2010-2018 Microchip Technology Inc. DS80000507P-page 1
<table>
<thead>
<tr>
<th>Module</th>
<th>Feature</th>
<th>Item No.</th>
<th>Issue Summary</th>
<th>Affected Revisions<sup>(1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog-to-Digital Converter (A/D)</td>
<td>A/D Offset</td>
<td>1.1</td>
<td>The A/D offset is greater than specified in the data sheet’s A/D Converter Characteristics table.</td>
<td>X</td>
</tr>
<tr>
<td>Analog-to-Digital Converter (A/D)</td>
<td>A/D Offset</td>
<td>1.2</td>
<td>The A/D offset is greater than specified in the data sheet’s A/D Converter Characteristics table.</td>
<td>X X X X X X X X</td>
</tr>
<tr>
<td>Ports</td>
<td>Leakage</td>
<td>2.</td>
<td>I/O port leakage is higher than the D060 spec in the data sheet.</td>
<td>X X X X X X X X</td>
</tr>
<tr>
<td>High/Low-Voltage Detect (HLVD)</td>
<td>HLVD Trip</td>
<td>3.</td>
<td>The high-to-low (VDIRMAG = 0) setting of the HLVD may send initial interrupts.</td>
<td>X X X X X X X X</td>
</tr>
<tr>
<td>ECCP</td>
<td>Auto-Shutdown</td>
<td>4.</td>
<td>The tri-state setting of the auto-shutdown feature in the enhanced PWM may not successfully drive the pin to tri-state.</td>
<td>X X X X X X X X</td>
</tr>
<tr>
<td>EUSART</td>
<td>Synchronous Transmit</td>
<td>5.</td>
<td>When using the Synchronous Transmit mode of the EUSART, at high baud rates, transmitted data may become corrupted.</td>
<td>X X X X X X X X</td>
</tr>
<tr>
<td>IPD and IDD</td>
<td>Maximum Limit</td>
<td>6.</td>
<td>Maximum current limits may be higher than specified in Section 31.2 “DC Characteristics: Power-Down and Supply Current PIC18F87K22 Family (Industrial)” of the data sheet.</td>
<td>X</td>
</tr>
<tr>
<td>Ultra Low-Power Sleep</td>
<td>Sleep Entry</td>
<td>7.1</td>
<td>Entering Ultra Low-Power Sleep mode, by setting RETEN = 0 and SRETEN = 1, will cause the part not to be programmable through ICSP™.</td>
<td>X X X</td>
</tr>
<tr>
<td>Ultra Low-Power Sleep</td>
<td>WDT Wake-up</td>
<td>7.2</td>
<td>Using the WDT to exit Ultra Low-Power Sleep mode when VDD>4.5V can cause the part to enter a Reset state requiring POR to exit.</td>
<td>X X X X X X X X</td>
</tr>
<tr>
<td>Resets (BOR)</td>
<td>Enable/Disable</td>
<td>8.</td>
<td>An unexpected Reset may occur if the Brown-out Reset module (BOR) is disabled, and then re-enabled, when the High/Low-Voltage Detection (HLVD) module is not enabled (HLVDCON<4> = 0).</td>
<td>X X X X X X X X</td>
</tr>
<tr>
<td>RG5 Pin</td>
<td>Leakage</td>
<td>9.</td>
<td>RG5 will cause excess pin leakage whenever it is driven low.</td>
<td>X</td>
</tr>
<tr>
<td>External Memory Bus (EMB)</td>
<td>Wait States</td>
<td>10.</td>
<td>The CE signal will not be extended properly if Wait states are used.</td>
<td>X X X X</td>
</tr>
<tr>
<td>Primary Oscillator</td>
<td>XT Mode</td>
<td>11.</td>
<td>XT Primary Oscillator mode does not reliably function when the driving crystals are above 3 MHz.</td>
<td>X X X X</td>
</tr>
<tr>
<td>Timer1/3/5/7</td>
<td>Interrupt</td>
<td>12.</td>
<td>When the timer is operated in Asynchronous External Input mode, unexpected interrupt flag generation may occur.</td>
<td>X X X X X X</td>
</tr>
</tbody>
</table>

Note 1: Only those issues indicated in the columns labeled B3 and C3 apply to the current silicon revision.

© 2010-2018 Microchip Technology Inc. DS80000507P-page 2
TABLE 2: SILICON ISSUE SUMMARY (CONTINUED)

<table>
<thead>
<tr>
<th>Module</th>
<th>Feature</th>
<th>Item No.</th>
<th>Issue Summary</th>
<th>Affected Revisions<sup>(1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>MSSP1</td>
<td>SPI Slave</td>
<td>13.</td>
<td>Slave samples SDI on both rising and falling edges of SCK.</td>
<td>X X X X X X X</td>
</tr>
</tbody>
</table>

Note 1: Only those issues indicated in the columns labeled B3 and C3 apply to the current silicon revision.
Silicon Errata Issues

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (B5, C6).

1. **Module: Analog-to-Digital Converter (A/D)**

 1.1 The A/D will not meet the Microchip standard A/D specification. The A/D may be usable if tested at the user end. The possible issues are high offset error, high DNL error and multiple missing codes. The A/D can be tested and used for relative measurements.

 A/D Offset
 The A/D may have a high offset error, up to a maximum of 50 LSB; it can be used if the A/D is calibrated for the offset.

 Work around
 Method to Calibrate for Offset:
 In Single-Ended mode, connect the A/D +ve input to ground and take the A/D reading. This will be the offset of the device and can be used to compensate for the subsequent A/D readings on the actual inputs.

 Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A3</th>
<th>B1</th>
<th>B3</th>
<th>B5</th>
<th>C1</th>
<th>C3</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2 The A/D will meet the Microchip standard A/D specification when used as a 10-bit A/D. When used as a 12-bit A/D, the possible issues include high offset error (up to a maximum of ±25 LSBs at 25°C, ±30 LSBs at 85°C, 125°C and -40°C), high DNL error (up to a maximum of ±4 LSBs) and multiple missing codes (up to a maximum of 20). Users should evaluate the 12-bit A/D performance in their application using the suggested work around below. See Table 3 for guidance specifications.

 A/D Offset
 The A/D may have high offset error, up to a maximum of ±25 LSBs at 25°C, ±30 LSBs at 85°C, 125°C and -40°C; it can be used if the A/D is calibrated for the offset.

 Work around
 Method to Calibrate for Offset:
 In Single-Ended mode, connect A/D +ve input to ground and take the A/D reading. This will be the offset of the device and can be used to compensate for the subsequent A/D readings on the actual inputs.
TABLE 3: A/D CONVERTER CHARACTERISTICS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>NR</td>
<td>Resolution</td>
<td>—</td>
<td>—</td>
<td>12</td>
<td>bit</td>
<td>ΔVREF ≥ 5.0V</td>
</tr>
<tr>
<td>A03</td>
<td>EIL</td>
<td>Integral Linearity Error</td>
<td>—</td>
<td>—</td>
<td>±10.0</td>
<td>LSb</td>
<td>ΔVREF ≥ 5.0V</td>
</tr>
<tr>
<td>A04</td>
<td>EDL</td>
<td>Differential Linearity Error</td>
<td>—</td>
<td>—</td>
<td>+6.0/-4.0</td>
<td>LSb</td>
<td>ΔVREF ≥ 5.0V</td>
</tr>
<tr>
<td>A06</td>
<td>EOFF</td>
<td>Offset Error</td>
<td>—</td>
<td>—</td>
<td>±25</td>
<td>LSb</td>
<td>ΔVREF ≥ 5.0V, Temperature: 25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>±30</td>
<td>LSb</td>
<td>ΔVREF ≥ 5.0V, Temperature: 85°C, -40°C</td>
</tr>
<tr>
<td>A07</td>
<td>EGN</td>
<td>Gain Error</td>
<td>—</td>
<td>—</td>
<td>±15</td>
<td>LSb</td>
<td>ΔVREF ≥ 5.0V</td>
</tr>
<tr>
<td>A10</td>
<td></td>
<td>Monotonicity(1)</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>VSS ≤ VAIN ≤ VREF</td>
</tr>
<tr>
<td>A20</td>
<td>ΔVREF</td>
<td>Reference Voltage Range</td>
<td>3</td>
<td>—</td>
<td>AVDD – AVSS</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>A21</td>
<td>VREFH</td>
<td>Reference Voltage High</td>
<td>AVSS + 3.0V</td>
<td>—</td>
<td>AVDD + 0.3V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>A22</td>
<td>VREFL</td>
<td>Reference Voltage Low</td>
<td>AVSS – 0.3V</td>
<td>—</td>
<td>AVDD – 3.0V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>A25</td>
<td>VAIN</td>
<td>Analog Input Voltage</td>
<td>VREFL</td>
<td>—</td>
<td>VREFH</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The A/D conversion result never decreases with an increase in the input voltage.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A3</th>
<th>B1</th>
<th>B3</th>
<th>B5</th>
<th>C1</th>
<th>C3</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
2. Module: Ports

The input leakage will not match the D060 specification in the data sheet. The leakage will meet the 200 nA specification at TA = 25°C. At TA = 85°C, the leakage will be up to a maximum of 2 µA.

Work around
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A3</th>
<th>B1</th>
<th>B3</th>
<th>B5</th>
<th>C1</th>
<th>C3</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

3. Module: High/Low-Voltage Detect (HLVD)

The high-to-low (VDIRMAG = 0) setting of the HLVD may send initial interrupts. High trip points that are close to the intended operating voltage are susceptible to this behavior.

Work around
Select a lower trip voltage that allows consistent start-up or clear any initial interrupts from the HLVD on start-up.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A3</th>
<th>B1</th>
<th>B3</th>
<th>B5</th>
<th>C1</th>
<th>C3</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

4. Module: ECCP

The tri-state setting of the auto-shutdown feature in the enhanced PWM may not successfully drive the pin to tri-state. The pin will remain an output and should not be driven externally. All tri-state settings will be affected.

Work around
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A3</th>
<th>B1</th>
<th>B3</th>
<th>B5</th>
<th>C1</th>
<th>C3</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

5. Module: EUSART

When using the Synchronous Transmit mode of the EUSART, at high baud rates, transmitted data may become corrupted. One or more bits of the intended transmit message may be incorrect.

Work around
Since this problem is related to the baud rate used, adding a fixed delay before loading the TXREGx may not be a reliable work around. Lower the baud rate until no errors occur, or when loading the TXREGx, check that the TRMT bit inside of the TXSTAx register is set instead of checking the TXxIF bit. The following code can be used:

EXAMPLE 1: EUSART SYNCHRONOUS TRANSMIT WORK AROUND

```c
while(!TXSTAxbits.TRMT);
// wait to load TXREGx until TRMT is set
```

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A3</th>
<th>B1</th>
<th>B3</th>
<th>B5</th>
<th>C1</th>
<th>C3</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
6. Module: IPD and IDD

The IPD and IDD limits will not match the data sheet. The values, in bold in Section 31.2 “DC Characteristics: Power-Down and Supply Current PIC18F87K22 Family (Industrial)”, reflect the updated silicon maximum limits.

31.2 DC Characteristics: Power-Down and Supply Current PIC18F87K22 Family (Industrial)

<table>
<thead>
<tr>
<th>PIC18F87K22 Family (Industrial)</th>
<th>Standard Operating Conditions (unless otherwise stated)</th>
<th>Operating temperature: -40°C ≤ TA ≤ +85°C for industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Param. No.</td>
<td>Device</td>
<td>Typ.</td>
</tr>
<tr>
<td>Power-Down Current (IPD)$^{(1)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All devices</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>630</td>
<td>2000</td>
</tr>
<tr>
<td>All devices</td>
<td>50</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>5000</td>
</tr>
<tr>
<td>All devices</td>
<td>350</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>550</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>1350</td>
<td>4000</td>
</tr>
<tr>
<td>Supply Current (IDD) Cont.$^{(2,3)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All devices</td>
<td>3.7</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>5.4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>6.6</td>
<td>13</td>
</tr>
<tr>
<td>All devices</td>
<td>8.7</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>35</td>
</tr>
<tr>
<td>All devices</td>
<td>60</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>240</td>
</tr>
</tbody>
</table>

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

Note 2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are:
- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT enabled/disabled as specified.

Note 3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

Note 4: Voltage regulator disabled (ENVREG = 0, tied to Vss, RETEN (CONFIG1L<0>) = 1).

Note 5: Voltage regulator enabled (ENVREG = 1, tied to Vdd, SRETEN (WDTCN<4>) = 1 and RETEN (CONFIG1L<0>) = 0).
31.2 DC Characteristics: Power-Down and Supply Current

PIC18F87K22 Family (Industrial) (Continued)

<table>
<thead>
<tr>
<th>Param. No.</th>
<th>Device</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>All devices</td>
<td>1.2</td>
<td>4</td>
<td>µA</td>
<td>-40°C</td>
<td>VDD = 1.8V(^{(4)}) Regulator Disabled</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>5</td>
<td>µA</td>
<td>+25°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>6</td>
<td>µA</td>
<td>+85°C</td>
<td></td>
</tr>
<tr>
<td>All devices</td>
<td>1.6</td>
<td>7</td>
<td>µA</td>
<td>-40°C</td>
<td>VDD = 3.3V(^{(4)}) Regulator Disabled</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>9</td>
<td>µA</td>
<td>+25°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>17</td>
<td>µA</td>
<td>+85°C</td>
<td></td>
</tr>
<tr>
<td>All devices</td>
<td>60</td>
<td>150</td>
<td>µA</td>
<td>-40°C</td>
<td>VDD = 5V(^{(5)}) Regulator Enabled</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>180</td>
<td>µA</td>
<td>+25°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>240</td>
<td>µA</td>
<td>+85°C</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current are disabled (such as WDT, SOSC oscillator, BOR, etc.).

Note 2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.

Note 3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

Note 4: Voltage regulator disabled (ENVREG = 0, tied to VSS, RETEN (CONFIG1L<0>) = 1).

Note 5: Voltage regulator enabled (ENVREG = 1, tied to VDD, SRETEN (WDTCON<4>) = 1 and RETEN (CONFIG1L<0>) = 0).

Work around

None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A3</th>
<th>B1</th>
<th>B3</th>
<th>B5</th>
<th>C1</th>
<th>C3</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Module: Ultra Low-Power Sleep

7.1 Entering Ultra Low-Power Sleep mode, by setting \texttt{RETEN = 0} and \texttt{SRETEN = 1}, will cause the part to not be programmable through ICSP™. This issue occurs when the \texttt{RETEN} fuse bit in \texttt{CONFIG1L<0>} is cleared to \textquoteleft{}0\textquoteright{}, the \texttt{SRETEN} bit in the \texttt{WDTCON} register is set to \textquoteleft{}1\textquoteright{} and a \texttt{SLEEP} instruction is executed. This happens within the first 350 μs of code execution or whenever the above Sleep mode is entered and MCLR is disabled. Discontinue use of the MCLR disabled ROG5 mode if ICSP™ reprogramming is necessary.

\textbf{Work around}

Use normal Sleep and Low-Power Sleep modes only, or on any Reset, ensure that at least 350 μs passes before executing a \texttt{SLEEP} instruction when ULP is enabled. To ensure the Ultra Low-Power Sleep mode is not enabled, the \texttt{RETEN} fuse bit in \texttt{CONFIG1L<0>} should be set to \textquoteleft{}1\textquoteright{}, and the \texttt{SRETEN} bit in the \texttt{WDTCON} register should be cleared to a \textquoteleft{}0\textquoteright{}. The following code can be used:

\begin{verbatim}
//This will ensure the RETEN fuse is set to 1
#pragma config RETEN = OFF
//This will ensure the SRETEN bit is 0
WDTCONbits.SRETEN = 0;
\end{verbatim}

If the Ultra Low-Power Sleep mode is needed, then the user must ensure that the minimum time, before the first \texttt{SLEEP} instruction is executed, is greater than 350 μs.

\textbf{AFFECTED SILICON REVISIONS}

\begin{tabular}{cccccccc}
\textbf{A3} & \textbf{B1} & \textbf{B3} & \textbf{B5} & \textbf{C1} & \textbf{C3} & \textbf{C5} & \textbf{C6} \\
\hline
X & X & & X & X & X & X & \\
\end{tabular}

7.2 Using the WDT to exit Ultra Low-Power Sleep mode when \texttt{VDD}>4.5V can cause the part to enter a Reset state that requires a POR to exit. The issue occurs when the \texttt{RETEN} fuse bit in \texttt{CONFIG1L<0>} is cleared to \textquoteleft{}0\textquoteright{}, the \texttt{SRETEN} bit in the \texttt{WDTCON} register is set to \textquoteleft{}1\textquoteright{}, \texttt{VDD}>4.5V. Upon entering the failure state, the device ceases to respond to MCLR events and will only exit the Reset state upon experiencing a POR.

\textbf{Work around}

Do not use the Ultra Low-Power Sleep mode with \texttt{VDD} above 4.5V.

\textbf{AFFECTED SILICON REVISIONS}

\begin{tabular}{cccccccc}
\textbf{A3} & \textbf{B1} & \textbf{B3} & \textbf{B5} & \textbf{C1} & \textbf{C3} & \textbf{C5} & \textbf{C6} \\
\hline
X & & & & & & & \\
\end{tabular}
8. Module: Resets (BOR)

An unexpected Reset may occur if the Brown-out Reset (BOR) module is disabled, and then re-enabled when the High/Low-Voltage Detection (HLVD) module is not enabled (HLVDCON<4> = 0). This issue affects BOR modes: BOREN<1:0> = 10 and BOREN<1:0> = 01. In both of these modes, if the BOR module is re-enabled while the device is active, unexpected Resets may be generated.

Work around

If BOR is required, and power consumption is not an issue, use BOREN<1:0> = 11. For BOREN<1:0> = 10 mode, either switch to BOREN<1:0> = 11 mode or enable the HLVD (HLVDCON<4> = 1) prior to entering Sleep. If power consumption is an issue and low power is desired, do not use BOREN<1:0> = 10 mode. Instead, use BOREN<1:0> = 01 and follow the steps below when entering and exiting Sleep.

1. Disable BOR by clearing SBOREN (RCON<6> = 0).

```c
WDTCONbits.SBOREN = 0;
```

2. Enter Sleep mode (if desired).

```c
Sleep();
```

3. After exiting Sleep mode (if entered), enable the HLVD (HLVDCON<4> = 1).

```c
HLVDCONbits.HLVDEN = 1;
```

4. Wait for the internal reference voltage (IrVST) to stabilize (typically 25 µs).

```c
while(!HLVDCONbits.IRVST);
```

5. Re-enable BOR by setting SBOREN (RCON<6> = 1).

```c
WDTCONbits.SBOREN = 1;
```

6. Disable the HLVD by clearing HLVDEN (HLVDCON<4> = 0).

```c
HLVDCONbits.HLVDEN = 0;
```

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A3</th>
<th>B1</th>
<th>B3</th>
<th>B5</th>
<th>C1</th>
<th>C3</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

9. Module: RG5 Pin

RG5 will cause excess pin leakage whenever it is driven low. When RG5 is held at 0V, the pin will typically source an additional 160 µA of current.

Work around

In power-sensitive applications, using RG5 as an input, ensure that any input attached to this pin Idles high.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A3</th>
<th>B1</th>
<th>B3</th>
<th>B5</th>
<th>C1</th>
<th>C3</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Module: External Memory Bus (EMB)

The CE signal will not be extended properly if Wait states are used. The duration of the CE signal will remain 0 TCY despite the setting in MEMCON<5:4>.

Work around

None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A3</th>
<th>B1</th>
<th>B3</th>
<th>B5</th>
<th>C1</th>
<th>C3</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

11. Module: Primary Oscillator (XT Mode)

On some parts, using the XT oscillator at the top end of its specified frequency range (3.0-4.0 MHz) may cause the part to cease driving the oscillator.

Work around

Use XT mode only for frequencies lower than 3.0 MHz.

Use HS mode if frequencies greater than 3.0 MHz on a crystal oscillator are required.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>B1</th>
<th>B3</th>
<th>B5</th>
<th>C1</th>
<th>C3</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
12. Module: Timer1/3/5/7

When Timer1, Timer3, Timer5 or Timer7 is operated in Asynchronous External Input mode, unexpected interrupt flag generation may occur if an external clock edge arrives too soon following a firmware write to the TMRxH:TMRxL registers. An unexpected interrupt flag event may also occur when enabling the module or switching from Synchronous to Asynchronous mode.

Work around

This issue only applies when operating the timer in Asynchronous mode. Whenever possible, operate the timer module in Synchronous mode to avoid spurious timer interrupts.

If Asynchronous mode must be used in the application, potential strategies to mitigate the issue may include any of the following:

- Design the firmware so it does not rely on the TMRxIF flag or keep the respective interrupt disabled. The timer still counts normally and does not reset to 0x0000 when the spurious interrupt flag event is generated.
- Design the firmware so that it does not write to the TMRxH:TMRxL registers or does not periodically disable/enable the timer, or switch modes. Reading from the timer does not trigger the spurious interrupt flag events.
- If the firmware must use the timer interrupts and must write to the timer (or disable/enable, or mode switch the timer), implement code to suppress the spurious interrupt event, should it occur. This can be achieved by following the process shown in Example 3.

EXAMPLE 3: ASYNCHRONOUS TIMER MODE WORK AROUND TO AVOID SPURIOUS INTERRUPT

```c
//Timer1 update procedure in asynchronous mode
//The code below uses Timer1 as example

T1CONbits.TMR1ON = 0; //Stop timer from incrementing
PIE1bits.TMR1IE = 0; //Temporarily disable Timer1 interrupt vectoring
TMR1H = 0x00; //Update timer value
TMR1L = 0x00;
T1CONbits.TMR1ON = 1; //Turn on timer

//Now wait at least two full T1CKI periods + 2TCY before re-enabling Timer1 interrupts.
//Depending upon clock edge timing relative to TMR1H/TMR1L firmware write operation,
//a spurious TMR1IF flag event may sometimes assert. If this happens, to suppress
//the actual interrupt vectoring, the TMR1IE bit should be kept clear until
//after the "window of opportunity" (for the spurious interrupt flag event has passed).
//After the window is passed, no further spurious interrupts occur, at least
//until the next timer write (or mode switch/enable event).
while(TMR1L < 0x02); //Wait for 2 timer increments more than the Updated Timer
                  //value (indicating more than 2 full T1CKI clock periods elapsed)
NOP(); //Wait two more instruction cycles
NOP();
PIE1bits.TMR1IE = 0; //Clear TMR1IF flag, in case it was spuriously set
PIE1bits.TMR1IE = 1; //Now re-enable interrupt vectoring for timer 1
```

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>B1</th>
<th>B3</th>
<th>B5</th>
<th>C1</th>
<th>C3</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
13. Module: MSSP1

MSSP1 SPI Slave samples SDI on rising and falling edges of SCK. The MSSP1 SPI in Slave mode improperly samples the SDI data input on both the rising and falling edges of the SCK clock input. This results in unexpected receive data.

Work around
Use MSSP2 for slave SPI operation.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A3</th>
<th>B1</th>
<th>B3</th>
<th>B5</th>
<th>C1</th>
<th>C3</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS30009960F):

<table>
<thead>
<tr>
<th>Note</th>
<th>Corrections are shown in bold. Where possible, the original bold text formatting has been removed for clarity.</th>
</tr>
</thead>
</table>

None.
APPENDIX A: DOCUMENT
REVISION HISTORY

Rev P Document (12/2018)
Data Sheet Clarifications: Removed data sheet corrections.

Rev N Document (01/2017)
Data Sheet Clarifications: Added Module 7 – DC Characteristic (Comparator Specifications). Other minor corrections.

Rev M Document (9/2016)
Added silicon issue 13 (MSSP1).

Rev L Document (7/2015)
Added silicon revision B5; Other minor corrections.

Rev K Document (03/2015)
Added silicon revision C6; Other minor corrections.
Added Module 12, Timer1/3/5/7
Data Sheet Clarifications: added Module 6.

Rev J Document (9/2014)
Added silicon revision C5.

Rev H Document (9/2014)
Added Module 7.2; Other minor corrections.

Data Sheet Clarifications: Added Module 5; Other minor corrections.

Rev F Document (12/2013)
Added silicon issues 1.2 (Analog-to-Digital Converter) and 11 (Primary Oscillator - XT Mode); Other minor corrections.

Rev E Document (10/2012)
Added MPLAB X IDE; Added Silicon Revision C3.
Data Sheet Clarifications: Added Module 4, DC Characteristics (Input Low Voltage and Input High Voltage).

Rev D Document (2/2012)
Added silicon issue 10 (External Memory Bus – EMB).
Added data sheet clarifications 2 (Voltage Regulator Pins – ENVREG and VCAP/VDDCORE) and 3 (DC Characteristics – Injection Current).

Added silicon issues 7 (Ultra Low-Power Sleep), 8 (Resets – BOR) and 9 (RG5 Pin). Removed data sheet clarifications 1-3 (Voltage Regulator Pins – ENVREG and VCAP/VDDCORE). Added data sheet clarification 1 (Electrical Characteristics).

Removed silicon issue 2 (Brown-out Reset). Changes were made to silicon issue 3 (HLVD). Added silicon issues 4 (ECCP), 5 (EUSART) and 6 (IPD and IDD).

Initial release of this document. Silicon issues 1 (A/D), 2 (BOR), 3 (HLVD) and 4 (Ports).
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maxXSylus, mxTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNiC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-3953-0

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KeeLoq® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV
ISO/TS 16949

© 2010-2018 Microchip Technology Inc.
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: support@microchip.com
Web Address: www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 508-364-0050
Fax: 508-364-0056

Chicago
Itasca, IL
Tel: 630-285-0087
Fax: 630-285-0088

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8666-5511

China - Chongqing
Tel: 86-23-8890-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-294-7500

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenzhen
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8964-2200

China - Suzhou
Tel: 86-186-6375-1502

China - Wuhan
Tel: 86-7-5350-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2368138

China - Zuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880-3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2308-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5446-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra'anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenburg
Tel: 46-31-708-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820