Features

- Internal LCD drivers
 - 16 common signal drivers
 - 80 segment signal drivers
- Maximum display dimensions
 - 16 characters X 2 lines or
 - 32 characters X 1 line
- Interfaces with 4-bit or 8-bit MPU
- Versatile display functions provided on chip:
 - Display Clear, Cursor Home, Display ON/OFF, Cursor ON/OFF, Character Blinking, Cursor Shift, and Display Shift
- Three duty factors, selected by PROGRAM:
 - 1/8, 1/11, and 1/16
- Displays Data RAM (DD RAM): 80 X 8 bits
 (Displays up to 80 characters)
- Character Generator RAM (CG RAM):
 - 64 X 8 bits for general data,
 - 8 X 5 X 7 and 8 X 5 X 8 programmable dot patterns, or
 - 4 X 5 X 10 programmable dot patterns
- Low voltage reset
- ITO option for A-type and B-type LCD waveform

Character Generator ROM (CG ROM):
- 2 kinds of CG ROM sizes:
 - 192 characters:
 - 160 5 X 8 dot patterns
 - 32 5 X 10 dot patterns
 - 240 characters:
 - 192 5 X 8 dot patterns
 - 48 5 X 10 dot patterns
- Custom CG ROM is also available
- Built-in power-on reset function
- Logic power supply: 2.8V ~ 5.5V
- LCD driver power supply: V1 ~ V5
 (VDD + 0.3 - VDD - 7.0), divided by Built-in LCD power
 division resister.
- Two oscillator operations
 (Freq. = 500KHz - 540KHz):
 - Built-in RC oscillation
 - External clock
- CMOS Process
- Available in COG FORM

General Description

The NT7603 is a dot matrix LCD controller and driver LSI that can operate with either a 4-bit or an 8-bit microprocessor (MPU). The NT7603 receives control character codes from the MPU, stores them in an internal RAM (up to 80 characters) before transforming each character code into a 5 X 7, 5 X 8, or 5 X 10 dot matrix character pattern and then displaying the codes on the LCD panel. The built-in Character Generator ROM consists of 256 different character patterns.

The NT7603 also contains Character Generator RAM where the user can store 8 different character patterns at run time. These memory features make the character display flexible. NT7603 also provides many display instructions to achieve versatile LCD display functions. The NT7603 is fabricated on a single LSI chip using the CMOS process, resulting in very low power requirements.
Pad Configuration

<table>
<thead>
<tr>
<th>Item</th>
<th>Pad No.</th>
<th>Size</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip size</td>
<td>-</td>
<td>5156</td>
<td>1349</td>
</tr>
<tr>
<td>Pad pitch</td>
<td>1 - 166</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>
Pad Description (Total 166 pads for COG type)

<table>
<thead>
<tr>
<th>Pad No.</th>
<th>Designation</th>
<th>I/O</th>
<th>External Connection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 15</td>
<td>GND</td>
<td>P</td>
<td>Power supply</td>
<td>GND: 0V</td>
</tr>
<tr>
<td>16</td>
<td>OSC1</td>
<td>I</td>
<td></td>
<td>For external clock operation, clock inputs to OSC1</td>
</tr>
<tr>
<td>17</td>
<td>OSC2</td>
<td>O</td>
<td></td>
<td>Clock output</td>
</tr>
<tr>
<td>18</td>
<td>V1</td>
<td>P</td>
<td>Power supply</td>
<td>Power supply for LCD driver. $V_{dd} \geq V_1 \geq V_2 \geq V_3 \geq V_4 \geq V_5 \geq GND$</td>
</tr>
<tr>
<td>19</td>
<td>V2</td>
<td>P</td>
<td>Power supply</td>
<td>Power supply for LCD driver</td>
</tr>
<tr>
<td>20</td>
<td>V3</td>
<td>P</td>
<td>Power supply</td>
<td>Power supply for LCD driver</td>
</tr>
<tr>
<td>21</td>
<td>V4</td>
<td>P</td>
<td>Power supply</td>
<td>Power supply for LCD driver</td>
</tr>
<tr>
<td>22 - 25</td>
<td>V5</td>
<td>P</td>
<td>Power supply</td>
<td>Power supply for LCD driver</td>
</tr>
<tr>
<td>26, 28</td>
<td>OPT_R0,</td>
<td>I</td>
<td>ITO Option</td>
<td>The built-in bias resister select: OPT_R0: No ITO = 1. ITO on = 0</td>
</tr>
<tr>
<td></td>
<td>OPT_R1</td>
<td></td>
<td></td>
<td>1, 1: 2.2K(\Omega); 1, 0: 4K(\Omega); 0, 1: 6.8K(\Omega); 0, 0: No built-in bias resistor</td>
</tr>
<tr>
<td>29 - 43</td>
<td>Vdp</td>
<td>P</td>
<td>Power supply</td>
<td>V_{dd}: +5V</td>
</tr>
<tr>
<td>44, 45</td>
<td>RS</td>
<td>I</td>
<td>MPU</td>
<td>Register select signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0: Instruction register (write), Busy flag, address counter (read)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: Data register (write, read)</td>
</tr>
<tr>
<td>46, 47</td>
<td>R/W</td>
<td>I</td>
<td>MPU</td>
<td>Read/Write control signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0: Write; 1: Read</td>
</tr>
<tr>
<td>48, 49</td>
<td>E</td>
<td>I</td>
<td>MPU</td>
<td>Read/Write start signal</td>
</tr>
<tr>
<td>50, 51</td>
<td>DB0</td>
<td>I/O</td>
<td>MPU</td>
<td>Lower 4 tri-state bi-directional data bus for transmitting data between MPU and NT7603. Not used during 4-bit operation.</td>
</tr>
<tr>
<td>52, 53</td>
<td>DB1</td>
<td></td>
<td>MPU</td>
<td></td>
</tr>
<tr>
<td>54, 55</td>
<td>DB2</td>
<td></td>
<td>MPU</td>
<td></td>
</tr>
<tr>
<td>56, 57</td>
<td>DB3</td>
<td></td>
<td>MPU</td>
<td></td>
</tr>
<tr>
<td>58, 59</td>
<td>DB4</td>
<td></td>
<td>MPU</td>
<td></td>
</tr>
<tr>
<td>60, 61</td>
<td>DB5</td>
<td></td>
<td>MPU</td>
<td></td>
</tr>
<tr>
<td>62, 63</td>
<td>DB6</td>
<td></td>
<td>MPU</td>
<td></td>
</tr>
<tr>
<td>64, 65</td>
<td>DB7</td>
<td></td>
<td>MPU</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>OPT_LCD</td>
<td>I</td>
<td>ITO Option</td>
<td>No ITO. (Option = 1): B-Type waveform</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ITO On. (Option = 0): A-Type waveform</td>
</tr>
<tr>
<td>68</td>
<td>TESTD</td>
<td>O</td>
<td>Test output</td>
<td>Test data output. (No connect for user)</td>
</tr>
<tr>
<td>164 - 157</td>
<td>COM1 - 8</td>
<td>O</td>
<td>LCD panel</td>
<td>Common signal output pins, for place on the upper glass</td>
</tr>
<tr>
<td>69 - 76</td>
<td>COM9 - 16</td>
<td>O</td>
<td>LCD panel</td>
<td>(IC face up)</td>
</tr>
<tr>
<td>156 - 77</td>
<td>SEG1 - 80</td>
<td>O</td>
<td>LCD panel</td>
<td>Segment signal output pins</td>
</tr>
<tr>
<td>165</td>
<td>TEST</td>
<td>I</td>
<td>Test pin</td>
<td>Test pin (internal pull down) (No connection for user)</td>
</tr>
<tr>
<td>166</td>
<td>TESTM</td>
<td>O</td>
<td>Test output</td>
<td>LCD driver clock output. (No connection for user)</td>
</tr>
<tr>
<td>67, 27</td>
<td>GND_OUT</td>
<td>P</td>
<td></td>
<td>GND output pin, used for pull-down ITO option</td>
</tr>
</tbody>
</table>

NOTICE

1. This notice is valid only when the external clock is not used.

2. In this case, it is not necessary to connect TESTD. PRST will operate as a clock input to OSC1.
Functional Description

The NT7603 is a dot-matrix LCD controller and driver LSI. It operates with either a 4-bit or an 8-bit microprocessor (MPU). The NT7603 receives both instructions and data from the MPU. Some instructions set operation modes, such as the function mode, data entry mode, and display mode; as well as some control LCD display functions, such as clear display, restore display, shift display, and cursor. Other instructions include reading and writing both data and addresses. All instructions allow users convenient and powerful functions to control the LCD dot-matrix displays.

Data is written into, and read from the Data Display RAM (DD RAM) or the Character Generator RAM (CG RAM). As display character codes, the data stored in the DD RAM decodes a set of dot-matrix character patterns that are built into the Character Generator ROM (CG ROM). The CG ROM, with many character patterns (up to 256 patterns), defines the character pattern fonts. The NT7603 regularly scans the character patterns through the segment drivers. The CG RAM stores character pattern fonts at run time if users intend to show character patterns that are not defined in the CG ROM. This feature makes character display flexible. Other unused bytes can be used as general-purpose data storage.

The LCD driver circuit consists of 16 common signal drivers and 80 segment signal drivers allowing a variety of application configurations to be implemented.

Character Generator ROM (CG ROM)

The character generator ROM generates LCD dot character patterns from the 8-bit character pattern codes. The NT7603 provides 2 CG ROM configurations:

1. 192 Characters:
The CG ROM contains 160 5 X 8 dot character patterns and 32 5 X 10 dot character patterns. The relation between the character codes and character patterns is shown in Table 1. The character codes from 00H to 0FH are used to get character patterns from the CG RAM. Character codes from 10H to 1FH, from 80H to 9FH, and 20H map to null character patterns. Character codes from E0H to FFH are assigned to generate 5 X 10 dot character patterns, and other codes are used to generate 5x8 dot character patterns.

2. 240 Characters:
The CG ROM contains 192 5 X 8 dot character patterns and 48 5 X 10 dot character patterns. The relation between the character codes and character patterns is shown in Table 2. The character codes from 00H to 0FH are used to get character patterns from the CG RAM. Character codes from 10H to 1FH and from E0H to FFH are assigned to generate 5 X 10 dot character patterns, and other codes to generate 5 X 8 dot character patterns. Only one null character pattern exists in this type. Note that the underlined cursor, displayed on the 8th duty may be obscure if the 8th row of a dot character pattern is coded. We recommend that users display the cursor in the blinking mode if they code 5x8 dot character patterns as their custom CG ROM.

Custom character patterns are available by mask-programming ROM. For convenience of character pattern development, NOVATEK has developed a user-friendly editor program for the NT7603 to help determine the character patterns users prefer. By executing the program on the computer, users can easily create and modify their character patterns. By transferring the resulting files generated by the program through a modem or some other communication method, the user and NOVATEK will have established a reliable, fast link for programming the CG ROM.
Absolute Maximum Ratings*
*Comments
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

- All voltage values are referenced to GND = 0V
- V1 to V5, must maintain \(V_{DD} \geq V_1 \geq V_2 \geq V_3 \geq V_4 \geq V_5 \geq GND \)

DC Electrical Characteristics
\(V_{DD} = 5.0V, \ GND = 0V, \ TA = 25^\circ C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
<th>Applicable Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD})</td>
<td>Operating Voltage</td>
<td>2.8</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{IH1})</td>
<td>"H" Level Input Voltage (1)</td>
<td>0.8 (V_{DD})</td>
<td>-</td>
<td>(V_{DD})</td>
<td>V</td>
<td></td>
<td>DB0 - DB7, RS, R/W, E, OSC1</td>
</tr>
<tr>
<td>(V_{IL1})</td>
<td>"L" Level Input Voltage (1)</td>
<td>-0.3</td>
<td>-</td>
<td>0.2 (V_{DD})</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OH1})</td>
<td>"H" Level Output Voltage (1)</td>
<td>(V_{DD} - 0.6)</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>(I_{OH} = -1.2mA)</td>
<td></td>
</tr>
<tr>
<td>(V_{OL1})</td>
<td>"L" Level Output Voltage (1)</td>
<td>-</td>
<td>-</td>
<td>(GND + 0.6)</td>
<td>V</td>
<td>(I_{OL} = 1.2mA)</td>
<td></td>
</tr>
<tr>
<td>(V_{COM})</td>
<td>Driver Voltage Descending (COM)</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>V</td>
<td>(I_D = 5\mu A)</td>
<td>COM1 - 16</td>
</tr>
<tr>
<td>(V_{SEG})</td>
<td>Driver Voltage Descending (SEG)</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>V</td>
<td>(I_D = 5\mu A)</td>
<td>SEG1 - 80</td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>Input Leakage Current</td>
<td>-1</td>
<td>-</td>
<td>1</td>
<td>(\mu A)</td>
<td>(V_{IN} = 0) to (V_{DD})</td>
<td>Not include OSC1</td>
</tr>
<tr>
<td>(-I_P)</td>
<td>Pull-up MOS Current</td>
<td>50</td>
<td>125</td>
<td>250</td>
<td>(\mu A)</td>
<td>|</td>
<td></td>
</tr>
<tr>
<td>(I_{OP})</td>
<td>Power Supply Current</td>
<td>-</td>
<td>1</td>
<td>1.5</td>
<td>mA</td>
<td>(V_{DD} = 5V)</td>
<td>RS, R/W, DB0-DB7</td>
</tr>
</tbody>
</table>

External Clock Operation
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{CP})</td>
<td>External Clock Operating Frequency</td>
<td>380</td>
<td>540</td>
<td>750</td>
<td>KHz</td>
</tr>
<tr>
<td>(t_{DUTY})</td>
<td>External Clock Duty Cycle</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>%</td>
</tr>
<tr>
<td>(t_{RCP})</td>
<td>External Clock Rising Time</td>
<td>0.1</td>
<td>-</td>
<td>0.5</td>
<td>(\mu S)</td>
</tr>
<tr>
<td>(t_{FCP})</td>
<td>External Clock Falling Time</td>
<td>0.1</td>
<td>-</td>
<td>0.5</td>
<td>(\mu S)</td>
</tr>
</tbody>
</table>

Internal Clock Operation (Built-in RC Oscillator)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{OSC})</td>
<td>Oscillator Frequency</td>
<td>380</td>
<td>540</td>
<td>750</td>
<td>KHz</td>
</tr>
<tr>
<td>(V_{LCD})</td>
<td>LCD Driving Voltage</td>
<td>3.0</td>
<td>-</td>
<td>(V_{DD})</td>
<td>V</td>
</tr>
</tbody>
</table>

* All voltage values are referenced to GND = 0V
* V1 to V5, must maintain \(V_{DD} \geq V_1 \geq V_2 \geq V_3 \geq V_4 \geq V_5 \geq GND \)
DC Electrical Characteristics (continued) \((V_{DD} = 3.0V, \ GND = 0V, \ TA = 25^\circ C) \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
<th>Applicable Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD})</td>
<td>Operating Voltage</td>
<td>2.8</td>
<td>3.0</td>
<td>5.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{V}_{IH1})</td>
<td>"H" Level Input Voltage (1)</td>
<td>0.8 (V_{DD})</td>
<td>-</td>
<td>(V_{DD})</td>
<td>V</td>
<td></td>
<td>DB0 - DB7, RS, R/W, E, OSC1</td>
</tr>
<tr>
<td>(\text{V}_{IL1})</td>
<td>"L" Level Input Voltage (1)</td>
<td>-0.3</td>
<td>-</td>
<td>0.2 (V_{DD})</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{V}_{OH1})</td>
<td>"H" Level Output Voltage (1)</td>
<td>(V_{DD}) - 0.4</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>(\text{IoH} = 0.8mA)</td>
<td>DB0 - DB7</td>
</tr>
<tr>
<td>(\text{V}_{OL1})</td>
<td>"L" Level Output Voltage (1)</td>
<td>-</td>
<td>-</td>
<td>GND + 0.4</td>
<td>V</td>
<td>(\text{IoL} = 0.8mA)</td>
<td>(CMOS)</td>
</tr>
<tr>
<td>(\text{V}_{COM})</td>
<td>Driver Voltage Descending (COM)</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>V</td>
<td>(\text{Id} = 5\mu A)</td>
<td>COM1 - 16</td>
</tr>
<tr>
<td>(\text{V}_{SEG})</td>
<td>Driver Voltage Descending (SEG)</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>V</td>
<td>(\text{Id} = 5\mu A)</td>
<td>SEG1 - 80</td>
</tr>
<tr>
<td>(\text{l}_{IL})</td>
<td>Input Leakage Current</td>
<td>-1</td>
<td>-</td>
<td>1</td>
<td>(\mu A)</td>
<td>(\text{Vin} = 0) to (V_{DD})</td>
<td>Not include OSC1</td>
</tr>
<tr>
<td>(\text{I}_{IP})</td>
<td>Pull-up MOS Current</td>
<td>30</td>
<td>75</td>
<td>150</td>
<td>(\mu A)</td>
<td>(V_{DD} = 3V)</td>
<td>RS, R/W, DB0-DB7</td>
</tr>
<tr>
<td>(\text{l}_{OP})</td>
<td>Power Supply Current</td>
<td>-</td>
<td>1</td>
<td>1.5</td>
<td>mA</td>
<td>(\text{RF oscillation, from external clock} \ \ V_{DD} = 3.0V, \ f_{OSC} = f_{CP} = 540KHz, \ include LCD bias current.)</td>
<td>(V_{DD})</td>
</tr>
</tbody>
</table>

External Clock Operation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{f}_{CP})</td>
<td>External Clock Operating Frequency</td>
<td>380</td>
<td>540</td>
<td>750</td>
<td>KHz</td>
<td></td>
</tr>
<tr>
<td>(\text{t}_{DUTY})</td>
<td>External Clock Duty Cycle</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>(\text{t}_{RCP})</td>
<td>External Clock Rising Time</td>
<td>0.1</td>
<td>-</td>
<td>0.5</td>
<td>(\mu S)</td>
<td></td>
</tr>
<tr>
<td>(\text{t}_{FCP})</td>
<td>External Clock Falling Time</td>
<td>0.1</td>
<td>-</td>
<td>0.5</td>
<td>(\mu S)</td>
<td></td>
</tr>
</tbody>
</table>

Internal Clock Operation (Built-in RC Oscillator)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{f}_{OSC})</td>
<td>Oscillator Frequency</td>
<td>380</td>
<td>540</td>
<td>750</td>
<td>KHz</td>
<td>(\text{RF} = 50\Omega) (reference only) (V_{DD} = 2.8V \sim 5.5V)</td>
</tr>
<tr>
<td>(\text{V}_{LCD})</td>
<td>LCD Driving Voltage</td>
<td>2.5</td>
<td>-</td>
<td>(V_{DD})</td>
<td>V</td>
<td>(V_{DD} - V5)</td>
</tr>
</tbody>
</table>
AC Characteristics

Read Cycle (V_{DD} = 5.0V, GND = 0V, T_A = 25°C)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>t<sub>CYCE</sub></td>
<td>Enable Cycle Time</td>
<td>500</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 1</td>
</tr>
<tr>
<td>t<sub>WHE</sub></td>
<td>Enable "H" Level Pulse Width</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 1</td>
</tr>
<tr>
<td>t<sub>RE</sub>, t<sub>FE</sub></td>
<td>Enable Rising/Falling Time</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>ns</td>
<td>Figure 1</td>
</tr>
<tr>
<td>t<sub>AS</sub></td>
<td>RS, R/W Setup Time</td>
<td>60<sup>1</sup></td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 1</td>
</tr>
<tr>
<td>t<sub>AS</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t<sub>AH</sub></td>
<td>RS, R/W Address Hold Time</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 1</td>
</tr>
<tr>
<td>t<sub>RD</sub></td>
<td>Read Data Output Delay</td>
<td>-</td>
<td>-</td>
<td>190</td>
<td>ns</td>
<td>Figure 1</td>
</tr>
<tr>
<td>t<sub>DHR</sub></td>
<td>Read Data Hold Time</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 1</td>
</tr>
</tbody>
</table>

Write Cycle (V_{DD} = 5.0V, GND = 0V, T_A = 25°C)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>t<sub>CYCE</sub></td>
<td>Enable Cycle Time</td>
<td>500</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 2</td>
</tr>
<tr>
<td>t<sub>WHE</sub></td>
<td>Enable "H" Level Pulse Width</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 2</td>
</tr>
<tr>
<td>t<sub>RE</sub>, t<sub>FE</sub></td>
<td>Enable Rising/Falling Time</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>ns</td>
<td>Figure 2</td>
</tr>
<tr>
<td>t<sub>AS</sub></td>
<td>RS, R/W Setup Time</td>
<td>60<sup>1</sup></td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 2</td>
</tr>
<tr>
<td>t<sub>AS</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t<sub>DS</sub></td>
<td>Data Output Delay</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 2</td>
</tr>
<tr>
<td>t<sub>DHW</sub></td>
<td>Data Hold Time</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 2</td>
</tr>
</tbody>
</table>

Notes: 1: 8-bit operation mode
2: 4-bit operation mode

Power Supply Conditions Using Internal Reset Circuit

(V_{DD} = 5.0V, GND = 0V, T_A = 25°C)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>t<sub>RON</sub></td>
<td>Power Supply Rising Time</td>
<td>0.1</td>
<td>-</td>
<td>10</td>
<td>ms</td>
<td>Figure 3</td>
</tr>
<tr>
<td>t<sub>OFF</sub></td>
<td>Power Supply OFF Time</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>ms</td>
<td>Figure 3</td>
</tr>
</tbody>
</table>
AC Characteristics (continued)

Read Cycle ($V_{DD} = 3.0V$, $GND = 0V$, $TA = 25^\circ C$)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{CYCE}</td>
<td>Enable Cycle Time</td>
<td>500</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 1</td>
</tr>
<tr>
<td>t_{WHE}</td>
<td>Enable "H" Level Pulse Width</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 1</td>
</tr>
<tr>
<td>$t_{RE, IFE}$</td>
<td>Enable Rising/Falling Time</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>ns</td>
<td>Figure 1</td>
</tr>
<tr>
<td>t_{AS}</td>
<td>RS, R/W Setup Time</td>
<td>601</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{AH}</td>
<td>RS, R/W Address Hold Time</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 1</td>
</tr>
<tr>
<td>t_{RD}</td>
<td>Read Data Output Delay</td>
<td>-</td>
<td>-</td>
<td>190</td>
<td>ns</td>
<td>Figure 1</td>
</tr>
<tr>
<td>t_{DHR}</td>
<td>Read Data Hold Time</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 1</td>
</tr>
</tbody>
</table>

Write Cycle ($V_{DD} = 3.0V$, $GND = 0V$, $TA = 25^\circ C$)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{CYCE}</td>
<td>Enable Cycle Time</td>
<td>500</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 2</td>
</tr>
<tr>
<td>t_{WHE}</td>
<td>Enable "H" Level Pulse Width</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 2</td>
</tr>
<tr>
<td>$t_{RE, IFE}$</td>
<td>Enable Rising/Falling Time</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>ns</td>
<td>Figure 2</td>
</tr>
<tr>
<td>t_{AS}</td>
<td>RS, R/W Setup Time</td>
<td>601</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{AH}</td>
<td>RS, R/W Address Hold Time</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 2</td>
</tr>
<tr>
<td>t_{DS}</td>
<td>Data Output Delay</td>
<td>150</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 2</td>
</tr>
<tr>
<td>t_{DHW}</td>
<td>Data Hold Time</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>ns</td>
<td>Figure 2</td>
</tr>
</tbody>
</table>

Notes: 1: 8-bit operation mode
2: 4-bit operation mode

Power Supply Conditions Using Internal Reset Circuit

($V_{DD} = 3.0V$, $GND = 0V$, $TA = 25^\circ C$)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{RON}</td>
<td>Power Supply Rising Time</td>
<td>0.1</td>
<td>-</td>
<td>10</td>
<td>ms</td>
<td>Figure 3</td>
</tr>
<tr>
<td>t_{OFF}</td>
<td>Power Supply OFF Time</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>ms</td>
<td>Figure 3</td>
</tr>
</tbody>
</table>
Timing Waveforms

Read Operation

![Read Operation Diagram](image1)

Figure 1. Bus Read Operation Sequence
(Reading out data from NT7603 to 8-bit MPU)

Write Operation

![Write Operation Diagram](image2)

Figure 2. Bus Write Operation Sequence
(Writing data from 8-bit MPU to NT7603)

Interface Signals with Segment Driver LSI

![Interface Signals Diagram](image3)

Figure 3. \(t_{\text{OFF}} \) stipulates the time of power OFF for instantaneous
Power supply to or when power supply repeats ON and OFF
Note 1: The NT7603 has two clock options:
A. Internal Oscillator (Built-in RC)

B. External Clock Operation

Note 2: Input/Output Terminals:
A. Input Terminal
Applicable Terminal: E (No Pull Up MOS)

Applicable Terminal: RS, R/W (with Pull Up MOS)
B. Output Terminal

Applicable Terminal: TESTM

C I/O Terminal

Applicable Terminal: DB0 to DB7

Note 3: ITO Options:
Set Option = 0: Place ITO on the Option Pad
Set Option = 1: No ITO on the Option Pad

No ITO:
ITO On:
Table 1. NT7603H-BDT01 Correspondence between Character Codes and Character Patterns
(NOVA TEK Standard 192 Character CG ROM)

<table>
<thead>
<tr>
<th>Higher 4-bit (D4 to D7) of Character Code (Hexadecimal)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 CG RAM (1)</td>
<td></td>
</tr>
<tr>
<td>1 CG RAM (2)</td>
<td></td>
</tr>
<tr>
<td>2 CG RAM (3)</td>
<td></td>
</tr>
<tr>
<td>3 CG RAM (4)</td>
<td></td>
</tr>
<tr>
<td>4 CG RAM (5)</td>
<td></td>
</tr>
<tr>
<td>5 CG RAM (6)</td>
<td></td>
</tr>
<tr>
<td>6 CG RAM (7)</td>
<td></td>
</tr>
<tr>
<td>7 CG RAM (8)</td>
<td></td>
</tr>
<tr>
<td>8 CG RAM (1)</td>
<td></td>
</tr>
<tr>
<td>9 CG RAM (2)</td>
<td></td>
</tr>
<tr>
<td>A CG RAM (3)</td>
<td></td>
</tr>
<tr>
<td>B CG RAM (4)</td>
<td></td>
</tr>
<tr>
<td>C CG RAM (5)</td>
<td></td>
</tr>
<tr>
<td>D CG RAM (6)</td>
<td></td>
</tr>
<tr>
<td>E CG RAM (7)</td>
<td></td>
</tr>
<tr>
<td>F CG RAM (8)</td>
<td></td>
</tr>
</tbody>
</table>
Instruction Set

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Code</th>
<th>Function</th>
<th>Execution time (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Clear</td>
<td>0 0 0 0 0 0 0 0 0 1</td>
<td>Clear entire display area, Restore display from shift, and load address counter with DD RAM address 00H.</td>
<td>1.64ms</td>
</tr>
<tr>
<td>Display/ Cursor Home</td>
<td>0 0 0 0 0 0 0 0 1 *</td>
<td>Restore display from shift and load address counter with DD RAM address 00H.</td>
<td>1.64ms</td>
</tr>
<tr>
<td>Entry Mode Set</td>
<td>0 0 0 0 0 0 0 1 I/D S</td>
<td>Specify direction of cursor movement and display shift mode. This operation takes place after each data transfer (read/write).</td>
<td>40µs</td>
</tr>
<tr>
<td>Display ON/OFF</td>
<td>0 0 0 0 0 0 0 1 D C B</td>
<td>Specify activation of display (D) cursor (C) and blinking of character at cursor position (B).</td>
<td>40µs</td>
</tr>
<tr>
<td>Display/ Cursor Shift</td>
<td>0 0 0 0 0 1 S/C R/L * *</td>
<td>Shift display or move cursor.</td>
<td>40µs</td>
</tr>
<tr>
<td>Function Set</td>
<td>0 0 0 0 1 DL N F * *</td>
<td>Set interface data length (DL), number of display line (N), and character font (F).</td>
<td>40µs</td>
</tr>
<tr>
<td>RAM Address Set</td>
<td>0 0 0 1</td>
<td>Load the address counter with a CG RAM address. Subsequent data access is for CG RAM data.</td>
<td>40µs</td>
</tr>
<tr>
<td>DD RAM Address Set</td>
<td>0 0 1</td>
<td>Load the address counter with a DD RAM address. Subsequent data access is for DD RAM data.</td>
<td>40µs</td>
</tr>
<tr>
<td>Busy Flag/ Address Counter Read</td>
<td>0 1 BF AC</td>
<td>Read Busy Flag (BF) and contents of Address Counter (AC).</td>
<td>1µs</td>
</tr>
<tr>
<td>CG RAM/ DD RAM Data Write</td>
<td>1 0</td>
<td>Write data</td>
<td>Write data to CG RAM or DD RAM.</td>
</tr>
<tr>
<td>CG RAM/ DD RAM Data Read</td>
<td>1 1</td>
<td>Read data</td>
<td>Read data from CG RAM or DD RAM.</td>
</tr>
</tbody>
</table>

Note 1: Symbol *** signifies an insignificant bit (disregard).
Note 2: Correct input value for "N" is predetermined for each model.
Note 3: The variation of execution time depends on the change of oscillator frequency; for example:

- if $f_{OSC} = 380KHz$, then execution time = $40\mu s \times \frac{540KHz}{380KHz} = 57\mu s$
Interface to LCD

(1) Character Font and Number of Lines

The NT7603 provides a 5 X 7 dot character font 1-line mode, a 5 X 10 dot character font 1-line mode and a 5 X 7 dot character font 2-line mode, as shown in the table below.

<table>
<thead>
<tr>
<th>Number of Lines</th>
<th>Character Font</th>
<th>Number of Common Signals</th>
<th>Duty Factor</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 X 7 dots + Cursor (or 5 X 8 dots)</td>
<td>8</td>
<td>1/8</td>
<td>1/4</td>
</tr>
<tr>
<td>1</td>
<td>5 X 10 dots + Cursor</td>
<td>11</td>
<td>1/11</td>
<td>1/4</td>
</tr>
<tr>
<td>2</td>
<td>5 X 7 dots + Cursor (or 5 X 8 dots)</td>
<td>16</td>
<td>1/16</td>
<td>1/5</td>
</tr>
</tbody>
</table>

Three types of common signals are available as displayed in the table. The number of lines and the font type can be selected by the program.

(2) Connection to LCD

The following 4 LCD connection examples show the various combinations between characters and lines. NT7603 can directly drive the following combinations:

(a) 5 X 8 Font - 16 character X 1 line (1/8 duty cycle, 1/4 bias)
(b) 5 X 10 Font - 16 character X 1 line (1/11 duty cycle, 1/4 bias)

(c) 5 X 8 Font - 16 character X 2 line (1/16 duty cycle, 1/5 bias)
(d) 5 X 8 Font - 32 character X 1 line (1/16 duty cycle, 1/5 bias)

(3) Orientation type of NT7603:

Place the chip on the upper glass (IC face up)
(4) Bias Power Connection

NT7603 provides 1/4 or 1/5 bias for various duty cycle applications. The built-in power division resistor divide voltage is described in the following table. The division resistor is the connection of the NT7603, power supply, and resistors are also shown as follows:

<table>
<thead>
<tr>
<th>Power Division</th>
<th>1/8, 1/11 Duty Cycle - 1/4 Bias</th>
<th>1/16 Duty Cycle - 1/5 Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>VDD - 1/4 V_LCD</td>
<td>VDD - 1/5 V_LCD</td>
</tr>
<tr>
<td>V2</td>
<td>VDD - 1/2 V_LCD</td>
<td>VDD - 2/5 V_LCD</td>
</tr>
<tr>
<td>V3</td>
<td>VDD - 1/2 V_LCD</td>
<td>VDD - 3/5 V_LCD</td>
</tr>
<tr>
<td>V4</td>
<td>VDD - 3/4 V_LCD</td>
<td>VDD - 4/5 V_LCD</td>
</tr>
<tr>
<td>V5</td>
<td>VDD - V_LCD</td>
<td>VDD - V_LCD</td>
</tr>
</tbody>
</table>

The bias is auto selected by duty cycle. When the LCD is set to 1/16 duty, the bias is set to 1/5. Otherwise, the bias is set to 1/4. The ITO Option can then select the division resistor value:

<table>
<thead>
<tr>
<th>OPT_R1</th>
<th>OPT_R0</th>
<th>Division Resister</th>
</tr>
</thead>
<tbody>
<tr>
<td>No ITO (1)</td>
<td>No ITO (1)</td>
<td>2.2K Ω</td>
</tr>
<tr>
<td>No ITO (1)</td>
<td>ITO On (0)</td>
<td>4K Ω</td>
</tr>
<tr>
<td>ITO On (0)</td>
<td>No ITO (1)</td>
<td>6.8K Ω</td>
</tr>
<tr>
<td>ITO On (0)</td>
<td>No ITO (0)</td>
<td>No built-in resister (external input)</td>
</tr>
</tbody>
</table>

Exit Power division. (The resistance value depends on the LCD panel size)
(4) LCD Waveform

A-type, 1/8 Duty Cycle, 1/4 Bias

A-type, 1/11 Duty Cycle, 1/4 Bias

A-type, 1/16 Duty Cycle, 1/5 Bias
B-type, 1/8 Duty Cycle, 1/4 Bias

B-type, 1/11 Duty Cycle, 1/4 Bias

B-type, 1/16 Duty Cycle, 1/5 Bias
Low Voltage Reset

The Low voltage reset function is used to monitor the supply voltage and applies an internal reset at the time when low voltage is detected.

Functions of the Low Voltage Reset Circuit

The Low voltage reset circuit has the following functions:
- Generates an internal reset signal when $V_{DD} \leq V_{LVR}$
- Cancels the internal reset signal when $V_{DD} > V_{LVR}$

Here, V_{DD}: power supply voltage, V_{LVR}: Low voltage reset detect voltage, about 2.0V.

Application Circuit (for reference only)
Example (for reference only)

Interface with 8-bit MPU (read status)

Interface with 4-bit MPU (read status)
Interface with 8-bit MPU (read data)

![Diagram of 8-bit MPU interface]

Interface with 4-bit MPU (read data)

![Diagram of 4-bit MPU interface]
Initializing by instruction

1. 8-bit interface

- **Power On**
 - Wait for more than 30 ms after VDD on

- **Function set**
 - RS | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0
 - 0 0 0 0 0 0 0 1 1 N F X X
 - Wait for more than 40 µs

- **Display ON/OFF Control**
 - RS | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0
 - 0 0 0 0 0 0 0 1 1 B C D 0
 - Wait for more than 40 µs

- **Clear Display**
 - RS | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0
 - 0 0 0 0 0 0 0 0 0 0 0 1
 - Wait for more than 1.64 ms

- **Entry Mode Set**
 - RS | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0
 - 0 0 0 0 0 0 0 1 1 I/D S
 - Initialization end

- **Write date to DDRAM: Write N**
 - RS | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0
 - 1 0 0 0 0 0 0 1 1 1 1 0
 -
2. 4-bit interface

- **Power On**
 - Wait for more than 30 ms after VDD on

- **Function set**
 - N: 0 = 1-line mode, 1 = 2-line mode
 - F: 0 = 5 x 7 dots, 1 = 5 x 10 dots

- **Display ON/OFF Control**
 - D: 0 = display off, 1 = display on
 - C: 0 = cursor off, 1 = cursor on
 - B: 0 = blink off, 1 = blink on

- **Clear Display**
 - Wait for more than 1.64ms

- **Entry Mode Set**
 - I/D: 0 = decrement mode, 1 = increment mode
 - S: 0 = entire shift off, 1 = entire shift on

- **Write date to DDRAM: Write N**

<table>
<thead>
<tr>
<th>RS</th>
<th>RW</th>
<th>DB7</th>
<th>DB6</th>
<th>DB5</th>
<th>DB4</th>
<th>DB3</th>
<th>DB2</th>
<th>DB1</th>
<th>DB0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>N</td>
<td>F</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

- Initialization end

- Wait for more than 40 µs

- Wait for more than 40 µs

- Wait for more than 1.64ms
Ordering Information

<table>
<thead>
<tr>
<th>Part No.</th>
<th>CG ROM</th>
<th>Package</th>
<th>Shipment Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT7603H-BDB1</td>
<td>192 CGROM (ref P13)</td>
<td>COG CHIP FORM</td>
<td>Bumped Die on Blue tape</td>
</tr>
<tr>
<td>NT7603H-BDT1</td>
<td>192 CGROM (ref P13)</td>
<td>COG CHIP FORM</td>
<td>Bumped Die on chip Tray</td>
</tr>
<tr>
<td>NT7603-BDW1</td>
<td>192 CGROM (ref P13)</td>
<td>COG CHIP FORM</td>
<td>Bumped Die on Wafer</td>
</tr>
</tbody>
</table>
Pad Configuration of NT7603

Unit: µm

Chip Window: 1220 X 5010 µm²

<table>
<thead>
<tr>
<th>NO.</th>
<th>PAD NAME</th>
<th>X</th>
<th>Y</th>
<th>NO.</th>
<th>PAD NAME</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>-2275</td>
<td>-540</td>
<td>13</td>
<td>GND</td>
<td>-1435</td>
<td>-540</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>-2205</td>
<td>-540</td>
<td>14</td>
<td>GND</td>
<td>-1365</td>
<td>-540</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>-2135</td>
<td>-540</td>
<td>15</td>
<td>GND</td>
<td>-1295</td>
<td>-540</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>-2065</td>
<td>-540</td>
<td>16</td>
<td>OSC1</td>
<td>-1225</td>
<td>-540</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>-1995</td>
<td>-540</td>
<td>17</td>
<td>OSC2</td>
<td>-1155</td>
<td>-540</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>-1925</td>
<td>-540</td>
<td>18</td>
<td>V1</td>
<td>-1085</td>
<td>-540</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>-1855</td>
<td>-540</td>
<td>19</td>
<td>V2</td>
<td>-1015</td>
<td>-540</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>-1785</td>
<td>-540</td>
<td>20</td>
<td>V3</td>
<td>-945</td>
<td>-540</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>-1715</td>
<td>-540</td>
<td>21</td>
<td>V4</td>
<td>-875</td>
<td>-540</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>-1645</td>
<td>-540</td>
<td>22</td>
<td>V5</td>
<td>-805</td>
<td>-540</td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
<td>-1575</td>
<td>-540</td>
<td>23</td>
<td>V5</td>
<td>-735</td>
<td>-540</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td>-1505</td>
<td>-540</td>
<td>24</td>
<td>V5</td>
<td>-665</td>
<td>-540</td>
</tr>
<tr>
<td>NO.</td>
<td>PAD NAME</td>
<td>X</td>
<td>Y</td>
<td>NO.</td>
<td>PAD NAME</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>----------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>21</td>
<td>V4</td>
<td>-875</td>
<td>-540</td>
<td>67</td>
<td>GND</td>
<td>2439</td>
<td>-560</td>
</tr>
<tr>
<td>22</td>
<td>V5</td>
<td>-805</td>
<td>-540</td>
<td>68</td>
<td>TESTD</td>
<td>2439</td>
<td>-490</td>
</tr>
<tr>
<td>23</td>
<td>V5</td>
<td>-735</td>
<td>-540</td>
<td>69</td>
<td>COM[9]</td>
<td>2439</td>
<td>-420</td>
</tr>
<tr>
<td>26</td>
<td>OPT_R0</td>
<td>-525</td>
<td>-540</td>
<td>72</td>
<td>COM[12]</td>
<td>2439</td>
<td>-210</td>
</tr>
<tr>
<td>28</td>
<td>OPT_R1</td>
<td>-385</td>
<td>-540</td>
<td>74</td>
<td>COM[14]</td>
<td>2439</td>
<td>-70</td>
</tr>
<tr>
<td>29</td>
<td>Vdd</td>
<td>-315</td>
<td>-540</td>
<td>75</td>
<td>COM[15]</td>
<td>2439</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>Vdd</td>
<td>-245</td>
<td>-540</td>
<td>76</td>
<td>COM[16]</td>
<td>2439</td>
<td>70</td>
</tr>
<tr>
<td>31</td>
<td>Vdd</td>
<td>-175</td>
<td>-540</td>
<td>77</td>
<td>SEG[80]</td>
<td>2439</td>
<td>140</td>
</tr>
<tr>
<td>32</td>
<td>Vdd</td>
<td>-105</td>
<td>-540</td>
<td>78</td>
<td>SEG[79]</td>
<td>2439</td>
<td>210</td>
</tr>
<tr>
<td>33</td>
<td>Vdd</td>
<td>-35</td>
<td>-540</td>
<td>79</td>
<td>SEG[78]</td>
<td>2439</td>
<td>280</td>
</tr>
<tr>
<td>34</td>
<td>Vdd</td>
<td>35</td>
<td>-540</td>
<td>80</td>
<td>SEG[77]</td>
<td>2439</td>
<td>350</td>
</tr>
<tr>
<td>35</td>
<td>Vdd</td>
<td>105</td>
<td>-540</td>
<td>81</td>
<td>SEG[76]</td>
<td>2439</td>
<td>420</td>
</tr>
<tr>
<td>36</td>
<td>Vdd</td>
<td>175</td>
<td>-540</td>
<td>82</td>
<td>SEG[75]</td>
<td>2439</td>
<td>490</td>
</tr>
<tr>
<td>37</td>
<td>Vdd</td>
<td>245</td>
<td>-540</td>
<td>83</td>
<td>SEG[74]</td>
<td>2439</td>
<td>560</td>
</tr>
<tr>
<td>38</td>
<td>Vdd</td>
<td>315</td>
<td>-540</td>
<td>84</td>
<td>SEG[73]</td>
<td>2275</td>
<td>540</td>
</tr>
<tr>
<td>39</td>
<td>Vdd</td>
<td>385</td>
<td>-540</td>
<td>85</td>
<td>SEG[72]</td>
<td>2205</td>
<td>540</td>
</tr>
<tr>
<td>40</td>
<td>Vdd</td>
<td>455</td>
<td>-540</td>
<td>86</td>
<td>SEG[71]</td>
<td>2135</td>
<td>540</td>
</tr>
<tr>
<td>41</td>
<td>Vdd</td>
<td>525</td>
<td>-540</td>
<td>87</td>
<td>SEG[70]</td>
<td>2065</td>
<td>540</td>
</tr>
<tr>
<td>42</td>
<td>Vdd</td>
<td>595</td>
<td>-540</td>
<td>88</td>
<td>SEG[69]</td>
<td>1995</td>
<td>540</td>
</tr>
<tr>
<td>43</td>
<td>Vdd</td>
<td>665</td>
<td>-540</td>
<td>89</td>
<td>SEG[68]</td>
<td>1925</td>
<td>540</td>
</tr>
<tr>
<td>44</td>
<td>RS</td>
<td>735</td>
<td>-540</td>
<td>90</td>
<td>SEG[67]</td>
<td>1855</td>
<td>540</td>
</tr>
<tr>
<td>45</td>
<td>RS</td>
<td>805</td>
<td>-540</td>
<td>91</td>
<td>SEG[66]</td>
<td>1785</td>
<td>540</td>
</tr>
<tr>
<td>46</td>
<td>RW</td>
<td>875</td>
<td>-540</td>
<td>92</td>
<td>SEG[65]</td>
<td>1715</td>
<td>540</td>
</tr>
<tr>
<td>47</td>
<td>RW</td>
<td>945</td>
<td>-540</td>
<td>93</td>
<td>SEG[64]</td>
<td>1645</td>
<td>540</td>
</tr>
<tr>
<td>48</td>
<td>E</td>
<td>1015</td>
<td>-540</td>
<td>94</td>
<td>SEG[63]</td>
<td>1575</td>
<td>540</td>
</tr>
<tr>
<td>49</td>
<td>E</td>
<td>1085</td>
<td>-540</td>
<td>95</td>
<td>SEG[62]</td>
<td>1505</td>
<td>540</td>
</tr>
<tr>
<td>50</td>
<td>DB[0]</td>
<td>1155</td>
<td>-540</td>
<td>96</td>
<td>SEG[61]</td>
<td>1435</td>
<td>540</td>
</tr>
<tr>
<td>51</td>
<td>DB[0]</td>
<td>1225</td>
<td>-540</td>
<td>97</td>
<td>SEG[60]</td>
<td>1365</td>
<td>540</td>
</tr>
<tr>
<td>53</td>
<td>DB[1]</td>
<td>1365</td>
<td>-540</td>
<td>99</td>
<td>SEG[58]</td>
<td>1225</td>
<td>540</td>
</tr>
<tr>
<td>54</td>
<td>DB[2]</td>
<td>1435</td>
<td>-540</td>
<td>100</td>
<td>SEG[57]</td>
<td>1155</td>
<td>540</td>
</tr>
<tr>
<td>66</td>
<td>OPT_LCD</td>
<td>2275</td>
<td>-540</td>
<td>112</td>
<td>SEG[45]</td>
<td>315</td>
<td>540</td>
</tr>
<tr>
<td>NO.</td>
<td>PAD NAME</td>
<td>X</td>
<td>Y</td>
<td>NO.</td>
<td>PAD NAME</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>113</td>
<td>SEG[44]</td>
<td>245</td>
<td>540</td>
<td>141</td>
<td>SEG[16]</td>
<td>-1715</td>
<td>540</td>
</tr>
<tr>
<td>119</td>
<td>SEG[38]</td>
<td>-175</td>
<td>540</td>
<td>147</td>
<td>SEG[10]</td>
<td>-2135</td>
<td>540</td>
</tr>
<tr>
<td>120</td>
<td>SEG[37]</td>
<td>-245</td>
<td>540</td>
<td>148</td>
<td>SEG[9]</td>
<td>-2205</td>
<td>540</td>
</tr>
<tr>
<td>123</td>
<td>SEG[34]</td>
<td>-455</td>
<td>540</td>
<td>151</td>
<td>SEG[6]</td>
<td>-2439</td>
<td>490</td>
</tr>
<tr>
<td>128</td>
<td>SEG[29]</td>
<td>-805</td>
<td>540</td>
<td>156</td>
<td>SEG[1]</td>
<td>-2439</td>
<td>140</td>
</tr>
<tr>
<td>130</td>
<td>SEG[27]</td>
<td>-945</td>
<td>540</td>
<td>158</td>
<td>COM[7]</td>
<td>-2439</td>
<td>0</td>
</tr>
<tr>
<td>137</td>
<td>SEG[20]</td>
<td>-1435</td>
<td>540</td>
<td>165</td>
<td>TEST</td>
<td>-2439</td>
<td>-490</td>
</tr>
<tr>
<td>138</td>
<td>SEG[19]</td>
<td>-1505</td>
<td>540</td>
<td>166</td>
<td>TESTM</td>
<td>-2439</td>
<td>-560</td>
</tr>
<tr>
<td>139</td>
<td>SEG[18]</td>
<td>-1575</td>
<td>540</td>
<td>ALK_L</td>
<td>-1993.45</td>
<td>109.8</td>
<td></td>
</tr>
</tbody>
</table>
Tray Information

Tray Outline Dimensions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5.33</td>
</tr>
<tr>
<td>b</td>
<td>5.93</td>
</tr>
<tr>
<td>c</td>
<td>1.52</td>
</tr>
<tr>
<td>d</td>
<td>2.12</td>
</tr>
<tr>
<td>e</td>
<td>1.75</td>
</tr>
<tr>
<td>f</td>
<td>1.45</td>
</tr>
</tbody>
</table>

Symbol	Dimensions in mm
g	0.85
h	4.05
W1	50.70
W2	45.50
T	45.75

unit: mm
NT7603 Specification Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Content</th>
<th>Date</th>
</tr>
</thead>
</table>
| 2.3 | Modify 4-bits Interface check busy sequence (page 22) (Document mistake corrected)
Adding 8-bits and 4-bits interface read data sequence (page 23) | Jul 2003 |
| 2.2 | Adding Note 3 and modified fosc from 270KHz to 540KHz (Page 14, Document mistake corrected)
Modify the number of clock in single duty from 400 to 800 (1/8 duty and 1/11 duty),200 to 400(1/16 duty) and fosc from 270K to 540K (Page 21) (Document mistake corrected) | Jun 2002 |
| 2.1 | ROM Table deleted (Page 14)
B-type waveform content modified (Page 20, Document mistake corrected) | Apr 2002 |
| 2.0 | | Nov 2001 |
| 1.0 | Original | Feb 2001 |