Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as ”unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeelLo, KeelLoG logo, Kleer, LANCheck, LINK MD, maxXtystus, maxXtouch, MediaLB, megavAIR, MOST, MOST logo, MPLAB, OptoLyrer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-2804-6
Table of Contents

Preface ... 5
Introduction ... 5
Document Layout ... 5
Conventions Used in this Guide ... 6
Recommended Reading .. 7
The Microchip Web Site .. 7
Customer Support ... 7
Document Revision History ... 7

Chapter 1. Product Overview
1.1 Introduction ... 9
1.2 MIC9130 Short Overview .. 9
1.3 MIC9130 Key Features ... 9
1.4 What Is the MIC9130 Power Over Ethernet Reference Design? ... 10
1.5 What Does the MIC9130 Power Over Ethernet Reference Design Kit Include? 12

Chapter 2. Installation and Operation
2.1 Introduction .. 13
2.2 Board Features ... 13
2.3 How Does the MIC9130 Power Over Ethernet Work? .. 13
2.4 Setup and Testing the Board Procedure ... 14
 2.4.1 Board Setup with PSE ... 14
 2.4.2 Board Discrete Setup ... 14
2.5 Powered Device (PD) Controller Circuit ... 15
 2.5.1 Detection Signature ... 15
 2.5.2 Classification ... 15
 2.5.3 Front End Analog Handshaking Limits .. 15
 2.5.4 Power Mode ... 16

Appendix A. Schematic and Layouts
A.1 Introduction ... 17
A.2 Board – Schematic ... 18
A.3 Board – Top Silk Layer ... 19
A.4 Board – Top Copper and Silk Layer ... 20
A.5 Board – Top Copper Layer ... 21
A.6 Board – Bottom Copper Layer ... 22
A.7 Board – Bottom Copper and Silk Layer .. 23
A.8 Board – Bottom Silk Layer ... 24
Appendix B. Bill of Materials (BOM) ...25

Appendix C. Plots and Waveforms
 C.1 Flyback Converter Performance ..29
 C.2 Board Set Typical Waveforms ...29
 C.2.1 Bode Plot ...32
 C.3 Board Set Typical Measurements ...33

Worldwide Sales and Service ...35
INTRODUCTION

This chapter contains general information that will be useful to know before using the MIC9130 Power Over Ethernet Reference Design. Items discussed in this chapter include:

- Document Layout
- Conventions Used in This Guide
- Recommended Reading
- The Microchip Web Site
- Customer Support
- Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MIC9130 Power Over Ethernet Reference Design as a compliant power solution. The manual layout is as follows:

- **Chapter 1. “Product Overview”** – Important information about the MIC9130 Power Over Ethernet Reference Design.
- **Chapter 2. “Installation and Operation”** – Includes instructions on installing and starting the MIC9130 Power Over Ethernet Reference Design.
- **Appendix A. “Schematic and Layouts”** – Shows the schematic and layout diagrams for the MIC9130 Power Over Ethernet Reference Design.
- **Appendix B. “Bill of Materials (BOM)”** – Lists the parts used to build the MIC9130 Power Over Ethernet Reference Design.
- **Appendix C. “Plots and Waveforms”** – Shows the MIC9130 Power Over Ethernet Reference Design waveforms and typical measurements.
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

<table>
<thead>
<tr>
<th>Documentation Conventions</th>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial font:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italic characters</td>
<td>Referenced books</td>
<td>MPLAB® IDE User’s Guide</td>
<td>is the only compiler...</td>
</tr>
<tr>
<td></td>
<td>Emphasized text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial caps</td>
<td>A window</td>
<td>the Output window</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A dialog</td>
<td>the Settings dialog</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A menu selection</td>
<td>select Enable Programmer</td>
<td></td>
</tr>
<tr>
<td>Quotes</td>
<td>A field name in a window or dialog</td>
<td>“Save project before build”</td>
<td></td>
</tr>
<tr>
<td>Underlined, italic text</td>
<td>A menu path</td>
<td>File>Save</td>
<td></td>
</tr>
<tr>
<td>with right angle bracket</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bold characters</td>
<td>A dialog button</td>
<td>Click OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A tab</td>
<td>Click the Power tab</td>
<td></td>
</tr>
<tr>
<td>N'Rnnnn</td>
<td>A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.</td>
<td>4'b0010, 2'hF1</td>
<td></td>
</tr>
<tr>
<td>Text in angle brackets</td>
<td>A key on the keyboard</td>
<td>Press <Enter>, <F1></td>
<td></td>
</tr>
<tr>
<td>< ></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courier New font:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Courier New</td>
<td>Sample source code</td>
<td>#define START</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filenames</td>
<td>autoexec.bat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>File paths</td>
<td>c:\mcc18\h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keywords</td>
<td>_asm, _endasm, static</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Command-line options</td>
<td>-Opa+, -Opa-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit values</td>
<td>0, 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constants</td>
<td>0xFF, ‘A’</td>
<td></td>
</tr>
<tr>
<td>Italic Courier New</td>
<td>A variable argument</td>
<td>file.o, where file can be any valid filename</td>
<td></td>
</tr>
<tr>
<td>Square brackets []</td>
<td>Optional arguments</td>
<td>mcc18 [options] file [options]</td>
<td></td>
</tr>
<tr>
<td>Curly brackets and pipe</td>
<td>Choice of mutually exclusive arguments; an OR selection</td>
<td>*errorlevel {0</td>
<td>1}*</td>
</tr>
<tr>
<td>character: {}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellipses...</td>
<td>Replaces repeated text</td>
<td>var_name [,, var_name...]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Represents code supplied by user</td>
<td>void main (void) { ... }</td>
<td></td>
</tr>
</tbody>
</table>
RECOMMENDED READING

This user’s guide describes how to use the MIC9130 Power Over Ethernet Reference Design. Another useful document is listed below. The following Microchip document is available and recommended as a supplemental reference resource:

- MIC9130 Data Sheet – “High-Voltage, High-Speed Telecom DC/DC Controller” (DS20000000)

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at:

http://www.microchip.com/support.

DOCUMENT REVISION HISTORY

Revision A (March 2018)

- Initial Release of this Document.
Chapter 1. Product Overview

1.1 INTRODUCTION

This chapter provides an overview of the MIC9130 Power Over Ethernet Reference Design and covers the following topics:

- MIC9130 Short Overview
- MIC9130 Key Features
- What Is the MIC9130 Power Over Ethernet Reference Design?
- What Does the MIC9130 Power Over Ethernet Reference Design Kit Include?

1.2 MIC9130 SHORT OVERVIEW

The MIC9130 is a current-mode PWM controller that efficiently converts −48V telecom voltages to logic levels. The MIC9130 features a high-voltage start-up circuit that allows the device to be connected to input voltages as high as 180V. The high input voltage capability protects the MIC9130 from line transients that are common in telecom systems. The start-up circuitry also saves valuable board space and simplifies designs by integrating several external components.

The MIC9130 is capable of high-speed operation. Typically the MIC9130 can control a sub-25ns pulse width on the gate out pin. Its internal oscillator can operate over 2.5 MHz, with even higher frequencies available through synchronization. The high-speed operation of the MIC9130 is made safe by the very fast, 34 ns response from current sense to output, minimizing power dissipation in a fault condition.

The MIC9130 allows for the designs of high-efficiency power supplies. It can achieve efficiencies of more than 90% at high-output currents. Its low 1.3 mA quiescent current allows high efficiency even at light loads.

The MIC9130 has a maximum duty cycle of 50%. For designs requiring a high duty cycle, refer to the MIC9131 data sheet. The MIC9130 is available in 16-pin SOP and QSOP package options. The rated junction temperature range is from −40°C to +125°C.

1.3 MIC9130 KEY FEATURES

- Input voltage up to 180V
- Internal oscillator capable of > 2.5 MHz operation
- Synchronization capability to 4 MHz
- Current sense delay of 34 ns
- Minimum pulse width < 25 ns
- 90% efficiency
- 1.3 mA quiescent current
- 1.0 μA shutdown current
- Soft-start
- Resistor programmable current sense threshold
- Selectable soft-start retry
- 4Ω sink, 12Ω source output driver
1.4 WHAT IS THE MIC9130 POWER OVER ETHERNET REFERENCE DESIGN?

The MIC9130 Power over Ethernet, PoE, Powered Device (PD) Reference Design is designed to offer a complete IEEE802.3at PoE Plus compliant power solution. The board includes an integrated solution (NCP1093), PoE signature and classification circuit, an EMI filter, and an isolated FLYBACK DC/DC converter using the MIC9130 controller. The MIC9130 is a high-speed current-mode PWM controller that features a high-voltage start-up circuit that enables the device to operate directly from 36V to 57V Power Sourcing Equipment (PSE) source voltage.

When a powered Ethernet cable is plugged into the board, the front-end handshaking circuit will apply the correct signature and classification impedances to accept power from the PSE. At the application of the power from the PSE, with input voltages between 36V and 57V, the DC/DC FLYBACK converter will engage and generate a 18.3V output with up to 1.7A of output current.

This board is for use with IEEE802.3at PoE Plus enabled Switch/Routers which provide power to the Ethernet cable as defined in IEEE802.3at PoE Plus PSE requirements.
FIGURE 1-2: ADM00844 3D View.

FIGURE 1-3: ADM00844 Board.
1.5 WHAT DOES THE MIC9130 POWER OVER ETHERNET REFERENCE DESIGN KIT INCLUDE?

The MIC9130 Power Over Ethernet Reference Design kit includes the following items:

- MIC9130 Power Over Ethernet Reference Design (ADM00844)
- Important Information Sheet
Chapter 2. Installation and Operation

2.1 INTRODUCTION

Explanations are provided for board setup with PSE and discrete setup. The MIC9130 Power Over Ethernet Reference Design kit set is fully tested to evaluate and demonstrate a complete IEEE802.3at PoE Plus compliant power solution and the MIC9130 controller.

2.2 BOARD FEATURES

The MIC9130 Power Over Ethernet Reference Design (ADM00844), has the following features:

- Input voltage: 36V to 57V input voltage
- 18.3V output voltage
- Output capability: up to 1.7A
- RJ45 input and output connectors
- NCP1093 a PoE-PD IC that fully supports IEEE 802.3af/at specifications and includes a hot swap switch control and current limit block
- EMI filter
- Low cost single winding transformer
- MIC9130 DC/DC flyback converter
- > 3750VAC isolation
- 400 kHz fixed frequency PWM control
- Efficiency: over 90%
- Maximum output power: 30W

2.3 HOW DOES THE MIC9130 POWER OVER ETHERNET WORK?

When the RJ45 connector is plugged into a PSE, the front-end handshaking circuit applies the correct signature and classification impedances to gain power from the power source.

At the application of the power, the FLYBACK primary circuit is applied with 36V to 57V. This then converts power to the secondary circuit at 18.3V up to 1.7A.

For detailed explanation on DC/DC converter operation, refer to the MIC9130 data sheet.
2.4 SETUP AND TESTING THE BOARD PROCEDURE

2.4.1 Board Setup with PSE

Follow these steps to set up the board with available 802.3af compliant PSE:

1. Plug-in a IEEE 802.3af compliant powered Ethernet cable into RJ45_1 input connector.
2. After the automatic handshake sequence, 18.3V are applied to post PL1.
3. Data from the input is available at output connector RJ45_2.

2.4.2 Board Discrete Setup

Follow these steps to set up the board discretely to emulate 802.3af power sourcing equipment:

1. Plug-in one end of CAT5 Ethernet cable into RJ45_1 connector, with the wires of the other end exposed.
2. Connect banana plug termination to brown, blue, orange, and green pairs.
3. Prepare test gear:
 a) One Power Supply Unit PSU capable of supplying 60V with a 1A current limit.
 b) Two Digital Volt Meters (DVMs) with 60V measuring capability
 c) Two Ampere meters: 300 μA to 400 mA range (input side), and 2.5A rated for output side.
 d) One Electronic Load, 18.3V capable set to 2A.
4. Apply test setup.
5. Turn ON all measurement devices.
6. Check Signature:
 a) Set PSU to 9V.
 b) Ammeter 1 should read between 280 μA to 368 mA (Class4).
7. Check Classification:
 a) Set PSU to: 14.5V to 20.5V range.
 b) Ammeter 1 should read between 36 mA to 44 mA (Class4).
8. DC/DC Power Supply Turn On and Start-up:
 a) Set PSU to: 36V to 57V range.
 b) DMV2 at the PL1 post should read 18.3V ± 1%.
 c) Ammeter 2 should read between 1.7A ± 1%.

FIGURE 2-1: Connection Diagram.
2.5 POWERED DEVICE (PD) CONTROLLER CIRCUIT

The integrated PD interface supports the IEE 802.3af defined operating modes:
- Detection signature
- Current source classification
- Inrush current limits
- Operating current limits

2.5.1 Detection Signature

During the detection phase, the incremental equivalent resistance seen by PSE through the cable must be in the IEEE 802.3at standard specification range (23.70 kΩ to 26.30 kΩ) for a PSE voltage from 2.7V to 10.1V. In order to compensate for the nonlinear effect of the diode bridge and satisfy the specification at low PSE voltage, the NCP1093 presents a suitable impedance in parallel with 24.9 kΩ RDET (R8) external resistor. During the detection phase, the DET pin is pulled to ground and goes in High Impedance mode (open-drain) once the device exits this mode, thus reducing the current consumption on the cable.

2.5.2 Classification

Once the PSE device has detected the PD device, the classification process begins. In classification, the PD regulates a constant current source that is set by the external resistor RCLASS (R13) value on the CLASS pin.

The current source is defined as:

\[
I_{\text{CLASS}} = \frac{9.8V}{R_{\text{CLASS}}}
\]

Table 2-1 shows how to configure the MIC9130 Power Over Ethernet classification circuit to set a Classification Level.

<table>
<thead>
<tr>
<th>Class</th>
<th>Input Current VIN = 15.4V to 20.5 V</th>
<th>PD Power Class</th>
<th>Component Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 0</td>
<td>0 mA - 4 mA</td>
<td>0.5W to 12.95W</td>
<td>R13 = 4k9</td>
</tr>
<tr>
<td>Class 1</td>
<td>9 mA - 12 mA</td>
<td>0.5W to 3.8W</td>
<td>R13 = 933</td>
</tr>
<tr>
<td>Class 2</td>
<td>7 mA - 20 mA</td>
<td>3.8W to 6.5W</td>
<td>R13 = 726</td>
</tr>
<tr>
<td>Class 3</td>
<td>26 mA - 30 mA</td>
<td>6.5W to 12.95W</td>
<td>R13 = 350</td>
</tr>
<tr>
<td>Class 4</td>
<td>36 mA - 44 mA</td>
<td>Not defined</td>
<td>R13 = 255</td>
</tr>
</tbody>
</table>

2.5.3 Front End Analog Handshaking Limits

Table 2-2 shows the designed limits of the board.

<table>
<thead>
<tr>
<th>Description</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature Test (Resistance)</td>
<td>(V_{\text{IN}} = 2.7V) to 10.1V</td>
<td>23.7 kΩ</td>
<td>26.3 kΩ</td>
</tr>
<tr>
<td>Classification Test, Class 4 (Line Current)</td>
<td>(V_{\text{IN}} = 14.5V) to 20.5V</td>
<td>36 mA</td>
<td>44 mA</td>
</tr>
<tr>
<td>DC/DC Full Power (Line Current)</td>
<td>(V_{\text{IN}} = 36V) to 57V; (I_{\text{OUT}} = 1.7A V_{\text{OUT}} = 18.3V)</td>
<td>627 mA</td>
<td>994 mA</td>
</tr>
</tbody>
</table>
2.5.4 Power Mode

When the classification handshake is completed, the PSE and PD device move into Operating mode.
Appendix A. Schematic and Layouts

A.1 INTRODUCTION

This appendix contains the following schematics and layouts for the MIC9130 Power Over Ethernet Reference Design:

- Board – Schematic
- Board – Top Silk Layer
- Board – Top Copper and Silk Layer
- Board – Top Copper Layer
- Board – Bottom Copper Layer
- Board – Bottom Copper and Silk Layer
- Board – Bottom Silk Layer
A.3 BOARD – TOP SILK LAYER
A.4 BOARD – TOP COPPER AND SILK LAYER
A.5 BOARD – TOP COPPER LAYER
A.6 BOARD – BOTTOM COPPER LAYER
A.7 BOARD – BOTTOM COPPER AND SILK LAYER
A.8 BOARD – BOTTOM SILK LAYER
Appendix B. Bill of Materials (BOM)

TABLE B-1: BILL OF MATERIALS (BOM) FOR MIC9130 POWER OVER ETHERNET REFERENCE DESIGN (ADM00844)(1)

<table>
<thead>
<tr>
<th>Qty</th>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>BR1, BR2</td>
<td>Bridge rectifier, single phase standard 100V, surface mount DF-S</td>
<td>Diodes Incorporated®</td>
<td>DF1501S-T</td>
</tr>
<tr>
<td>1</td>
<td>C1</td>
<td>Capacitor ceramic 10 µF, ±10%, 6.3V, X5R, 1206, (3216 Metric)</td>
<td>Yageo Corporation</td>
<td>CC1206KXX5R5BB106</td>
</tr>
<tr>
<td>1</td>
<td>C2</td>
<td>Capacitor ceramic 0.1 µF, 100V, 10%, X7R, SMD, 1206</td>
<td>Yageo Corporation</td>
<td>CC1206KXX7R0BB104</td>
</tr>
<tr>
<td>1</td>
<td>C3</td>
<td>Aluminum polymer capacitor radial, 82 µF, 35V, Can-SMD, 20 mΩ, 5000 Hours at 105°C</td>
<td>Panasonic® - ECG</td>
<td>35SVPF82M</td>
</tr>
<tr>
<td>2</td>
<td>C4, C5</td>
<td>Capacitor ceramic 22 µF, 35V, 20%, JB, SMD, 0805</td>
<td>TDK Corporation</td>
<td>C2012JB1V226M125AC</td>
</tr>
<tr>
<td>1</td>
<td>C6</td>
<td>Aluminum electrolytic capacitors 47 µF, 35V, Radial, Can - SMD, 1000 Hours at 105°C</td>
<td>Nichicon Corporation</td>
<td>UWT1V470MCL1GS</td>
</tr>
<tr>
<td>5</td>
<td>C7, C8, C15, C18, C19</td>
<td>Capacitor ceramic 0.1 µF, 50V, 10%, X7R, SMD, 0805</td>
<td>Yageo Corporation</td>
<td>CC0805KRX7R9BB104</td>
</tr>
<tr>
<td>1</td>
<td>C9</td>
<td>Capacitor aluminum 100 µF, 100V, 20%, SMD, J21</td>
<td>Nichicon Corporation</td>
<td>UCD2A101MNQ1MS</td>
</tr>
<tr>
<td>1</td>
<td>C11</td>
<td>Capacitor ceramic 1 µF, 100V, 20%, X7R, SMD, 1210</td>
<td>TDK Corporation</td>
<td>C3225X7R2A105M200AA</td>
</tr>
<tr>
<td>1</td>
<td>C12</td>
<td>Capacitor ceramic 0.1 µF, 100V, 10%, X7R, SMD, 1210</td>
<td>KEMET</td>
<td>C1210C104K1RACTU</td>
</tr>
<tr>
<td>1</td>
<td>C13</td>
<td>Capacitor ceramic 10 µF, ±10%, 16V, X7R, 1206, (3216 Metric)</td>
<td>Yageo Corporation</td>
<td>CC1206KXX7R7BB106</td>
</tr>
<tr>
<td>1</td>
<td>C14</td>
<td>Capacitor ceramic 0.027 µF, 50V, 10%, X7R, SMD, 0805</td>
<td>Yageo Corporation</td>
<td>CC0805KRX7R9BB273</td>
</tr>
<tr>
<td>1</td>
<td>C16</td>
<td>Capacitor ceramic 330 pF, 50V, 10%, X7R, SMD, 0805</td>
<td>Yageo Corporation</td>
<td>CC0805KRX7R9BB331</td>
</tr>
<tr>
<td>1</td>
<td>C17</td>
<td>Capacitor ceramic 0.056 µF, 50V, 10%, X7R, SMD, 0805</td>
<td>KEMET</td>
<td>C0805C563K5RACTU</td>
</tr>
<tr>
<td>1</td>
<td>C20</td>
<td>Capacitor ceramic 220 pF, 50V, COG/NPO, 0805</td>
<td>Yageo Corporation</td>
<td>CC0805JRNPO9BN221</td>
</tr>
<tr>
<td>1</td>
<td>C21</td>
<td>Capacitor ceramic 39 pF, 50V, 10%, COG, SMD, 0805</td>
<td>KEMET</td>
<td>C1210C104K1RACTU</td>
</tr>
<tr>
<td>1</td>
<td>C22</td>
<td>Capacitor ceramic 2.2 µF, 100V, 10%, X7S, SMD, 1206</td>
<td>TDK Corporation</td>
<td>C3216X7S2A225K160AB</td>
</tr>
<tr>
<td>2</td>
<td>CON1, CON2</td>
<td>Jack modular connector, 8p8c (RJ45, Ethernet), 90°Angle (Right) Shielded, Cat3</td>
<td>Molex®</td>
<td>956223981</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>Diode schottky, B560C, 5A, 60V, SMD, DO-214AB_SMC</td>
<td>Diodes Incorporated®</td>
<td>B560C-13-F</td>
</tr>
</tbody>
</table>

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.
TABLE B-1: BILL OF MATERIALS (BOM) (CONTINUED) FOR MIC9130 POWER OVER ETHERNET REFERENCE DESIGN (ADM00844)(1)

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D3</td>
<td>Diode standard, 100V, 1A, surface mount, SMA</td>
<td>Diodes Incorporated®</td>
<td>RS1B-13-F</td>
</tr>
<tr>
<td>1</td>
<td>D4</td>
<td>Diode standard, 250V, 200 mA (DC), surface mount, SOD-232</td>
<td>ON Semiconductor®</td>
<td>BAS21AH1G</td>
</tr>
<tr>
<td>1</td>
<td>D5</td>
<td>Diode zener, 12V, 200MW, SOD323</td>
<td>ON Semiconductor®</td>
<td>MM3Z12VST1G</td>
</tr>
<tr>
<td>1</td>
<td>D6</td>
<td>Diode schottky, BAT54H, 30V, 0.2A, SMD, SOD-323</td>
<td>ON Semiconductor®</td>
<td>NSVBAT54HT1G</td>
</tr>
<tr>
<td>2</td>
<td>J1, J2</td>
<td>2 position wire-to-board terminal block, horizontal with board, 5.08 mm, through hole</td>
<td>On-Shore Technology, Inc.</td>
<td>OSTVI022152</td>
</tr>
<tr>
<td>1</td>
<td>L1</td>
<td>Inductor Hi SRF, Shilded, 10 uH, 1.7A, 10%, SMD 1812</td>
<td>Coilcraft</td>
<td>1812PS-103KLB</td>
</tr>
<tr>
<td>1</td>
<td>PCB</td>
<td>MIC9130 Power Over Ethernet Reference Design Printed Circuit Board</td>
<td>Microchip Technology Inc.</td>
<td>04-10678</td>
</tr>
<tr>
<td>1</td>
<td>Q1</td>
<td>Bipolar transistors, BJT SS SOT23, GP, XSTR, NPN, 30V</td>
<td>ON Semiconductor®</td>
<td>MMBT2222ALT3G</td>
</tr>
<tr>
<td>1</td>
<td>Q2</td>
<td>N-Channel, 150V, 33A (Tc), 74W (Tc), surface mount, PG-TDSON-8</td>
<td>Infineon Technologies AG</td>
<td>BSC360N15NS3GATMA1</td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>Resistor, TKF, 100k, 1%, 1/4W, SMD, 1206</td>
<td>Panasonic® - ECG</td>
<td>ERJ-8ENF1003V</td>
</tr>
<tr>
<td>1</td>
<td>R2</td>
<td>Resistor, TKF, 5.1k, 1%, 1W, SMD, 2512</td>
<td>Panasonic® - ECG</td>
<td>ERJ1TNF5101U</td>
</tr>
<tr>
<td>1</td>
<td>R3</td>
<td>Resistor, TKF, 1.2R, 1%, 1/8W, SMD, 0805</td>
<td>Panasonic® - ECG</td>
<td>ERJ-6RQF1R2V</td>
</tr>
<tr>
<td>1</td>
<td>R4</td>
<td>Resistor, TKF, 4.75K, 1%, 1/8W, SMD, 0805</td>
<td>Panasonic® - ECG</td>
<td>ERJ-6ENF4751V</td>
</tr>
<tr>
<td>1</td>
<td>R5</td>
<td>Resistor, TKF, 2.67k, 1%, 1/8W, SMD, 0805</td>
<td>Yageo Corporation</td>
<td>RC0805FR-072K67L</td>
</tr>
<tr>
<td>1</td>
<td>R6</td>
<td>Resistor, TKF, 0.33R, 1%, 1W, SMD, 2512</td>
<td>Vishay/Dale</td>
<td>WSL2512R3300FEA</td>
</tr>
<tr>
<td>1</td>
<td>R7</td>
<td>Resistor, TKF, 243k, 1%, 1/8W, SMD, 0805</td>
<td>Yageo Corporation</td>
<td>RC0805FR-07243KL</td>
</tr>
<tr>
<td>1</td>
<td>R8</td>
<td>Resistor, TF, 24.9k, 1%, 1/4W, SMD, 0805</td>
<td>Stackpole Electronics, Inc.</td>
<td>RNCP0805FDT24K9</td>
</tr>
<tr>
<td>2</td>
<td>R9, R20</td>
<td>Resistor, TKF, 30.1k, 1%, 1/8W, SMD, 0805</td>
<td>Yageo Corporation</td>
<td>RC0805FR-0730K1L</td>
</tr>
<tr>
<td>3</td>
<td>R10, R14, R24</td>
<td>Resistor, TKF, 10k, 1%, 1/8W, SMD, 0805</td>
<td>Panasonic® - ECG</td>
<td>ERJ-6ENF1002V</td>
</tr>
<tr>
<td>1</td>
<td>R11</td>
<td>Resistor, TKF, 1.15K, 1%, 0.25W, SMD, 1206</td>
<td>Yageo Corporation</td>
<td>RC1206FR-071K15L</td>
</tr>
<tr>
<td>2</td>
<td>R12, R16</td>
<td>Resistor, TKF, 169k, 1%, 1/8W, SMD, 0805</td>
<td>Panasonic® - ECG</td>
<td>ERJ-6ENF1693V</td>
</tr>
<tr>
<td>1</td>
<td>R13</td>
<td>Resistor, TKF, 255R, 1%, 1/8W, SMD, 0805</td>
<td>Yageo Corporation</td>
<td>RC0805FR-07255RL</td>
</tr>
<tr>
<td>1</td>
<td>R15</td>
<td>Resistor, TKF, 100k, 1/8W, 1%, SMD, 0805</td>
<td>Panasonic® - ECG</td>
<td>ERJ-6ENF1003V</td>
</tr>
<tr>
<td>2</td>
<td>R17, R26</td>
<td>Resistor, TKF, 0R, 1/8W, SMD, 0805</td>
<td>Panasonic® - ECG</td>
<td>ERJ-6GEY0R00V</td>
</tr>
<tr>
<td>1</td>
<td>R18</td>
<td>Resistor, TKF, 422k, 1%, 1/8W, SMD, 0805</td>
<td>Panasonic® - ECG</td>
<td>ERJ-6ENF4223V</td>
</tr>
<tr>
<td>1</td>
<td>R19</td>
<td>Resistor, SMD, 5.1 kΩ, 1%, 1/8W, SMD</td>
<td>TE Connectivity, Ltd.</td>
<td>CRG0805F5K1</td>
</tr>
<tr>
<td>1</td>
<td>R21</td>
<td>Resistor, TKF, 21.5k, 1%, 1/8W, SMD, 0805</td>
<td>Yageo Corporation</td>
<td>RC0805FR-0721K5L</td>
</tr>
<tr>
<td>1</td>
<td>R22</td>
<td>Resistor, TKF, 806R, 1%, 1/8W, SMD, 0805</td>
<td>Yageo Corporation</td>
<td>RC0805FR-07806RL</td>
</tr>
<tr>
<td>1</td>
<td>R23</td>
<td>Resistor, TKF, 15.8k, 1%, 1/8W, SMD, 0805</td>
<td>Yageo Corporation</td>
<td>RC0805FR-0715K8L</td>
</tr>
<tr>
<td>1</td>
<td>R25</td>
<td>Resistor, TKF, 64.9k, 1%, 1/8W, SMD, 0805</td>
<td>Vishay/Dale</td>
<td>CRC080564K9K3EA</td>
</tr>
<tr>
<td>1</td>
<td>T1</td>
<td>Signal transformer ETH1, 30W, 2 pairs PoE plus magnetic module, SMD</td>
<td>Coilcraft</td>
<td>ETH1-230L</td>
</tr>
<tr>
<td>1</td>
<td>T2</td>
<td>Flyback transformer, 1:0.56, 1:0.33, 36V–72V, SMD</td>
<td>Coilcraft</td>
<td>POE300F-19L</td>
</tr>
</tbody>
</table>

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.
<table>
<thead>
<tr>
<th>Qty.</th>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U1</td>
<td>Power over Ethernet controller, 1-Channel, 802.3at (PoE+), 802.3af (PoE) 10-DFN (3 x 3)</td>
<td>ON Semiconductor®</td>
<td>NCP1093MNRC</td>
</tr>
<tr>
<td>1</td>
<td>U2</td>
<td>MCHP ANALOG PWM CONTROLLER, 2.5 MHz, MIC9130YQS, QSOP-16</td>
<td>Microchip Technology Inc.</td>
<td>MIC9130YQS</td>
</tr>
<tr>
<td>1</td>
<td>U3</td>
<td>IC POWER, ATL432AQDBZR, Shunt Voltage Reference, SOT-23-3</td>
<td>Texas Instruments</td>
<td>ATL432AQDBZR</td>
</tr>
<tr>
<td>1</td>
<td>U4</td>
<td>IC PHOTO HCPL-181 4-SMD</td>
<td>Avago Technologies</td>
<td>HCPL-181-00CE</td>
</tr>
</tbody>
</table>

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.
Appendix C. Plots and Waveforms

C.1 FLYBACK CONVERTER PERFORMANCE

VIN = 36V to 57V.
Efficiency ~85% at full load.
V_{OUT RIPPLE} < 150 mV.
Load Regulation = 0.1% at VIN = 48V.

C.2 BOARD SET TYPICAL WAVEFORMS

FIGURE C-1: V_{OUT Ripple}.
FIGURE C-2: Switching Edges, Q2 Gate and Drain Voltage.

FIGURE C-3: Switching Edges, Q2 Gate and Drain Voltage.
FIGURE C-4: Switching Edges, Q2 Gate and Drain Voltage.

FIGURE C-5: Switching Edges, Q2 Gate and Drain Voltage.
C.2.1 Bode Plot

Resistive Load 12.8Ω, 1.4A, P_{OUT} = 25W

FIGURE C-6: Gain Magnitude and Gain Phase vs. Frequency for 48V Input.
Gain Margin, GM = 14.9 dB, Phase Margin, PM = 69.6°.

FIGURE C-7: Gain Magnitude and Gain Phase vs. Frequency for 60V Input.
Gain Margin, GM = 15.5 dB, Phase Margin, PM = 67.5°.
C.3 BOARD SET TYPICAL MEASUREMENTS

FIGURE C-8: Line Regulation - Output Voltage vs. Input Voltage.

FIGURE C-9: Load Regulation - Output Voltage vs. Output Current.
FIGURE C-10: Output Voltage Accuracy - V_{OUT} Accuracy vs. Output Current.

FIGURE C-11: Efficiency vs. Load Current at Different Input Voltages.