Features
- Input Voltage Range: 2.5V to 5.5V
- Fixed Output Voltages Down to 1.0V
- ±2% Room Temperature Accuracy
- Low Quiescent Current 38 µA
- Stable with 2.2 µF Ceramic Output Capacitors
- Low Dropout Voltage 260 mV @ 500 mA
- Auto-Discharge and Internal Enable Pull-Down
- Thermal Shutdown and Current-Limit Protection
- 6-Pin 1.2 mm × 1.2 mm Extra Thin DFN Package
- 6-Pin 1.2 mm × 1.2 mm Thin DFN Package

Applications
- Portable Communication Equipment
- DSC, GPS, PMP, and PDAs
- Portable Medical Devices
- 5V POL Applications

General Description
The MIC5528 is a low-power, µCap, low dropout regulator designed for optimal performance in a very small footprint. It is capable of sourcing up to 500 mA of output current while only drawing 38 µA of operating current. This high performance LDO is a µCap design in a thermally enhanced 1.2 mm × 1.2 mm extra thin (0.4 mm height) DFN package. It operates with small ceramic output capacitor for stability, thereby reducing required board space.

Ideal for battery-operated applications, the MIC5528 offers ±2% accuracy, extremely low dropout voltage (260 mV @ 500 mA), and can regulate output voltages down to 1.0V. Equipped with a TTL logic-compatible enable pin, the MIC5528 can be put into a zero-off-mode current state, drawing no current when disabled.

The MIC5528 is a µCap design, operating with very small ceramic output capacitors for stability, reducing required board space and component cost for space-critical applications. The MIC5528 has an operating junction temperature range of −40°C to 125°C.
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage (V_IN) .. –0.3V to +6V
Enable Voltage (V_EN) ...–0.3V to V_IN
Power Dissipation (P_D) ... Internally Limited, Note 1
ESD Rating (Note 2) .. 3 kV

Operating Ratings ‡

Supply Voltage (V_IN) ... +2.5V to +5.5V
Enable Voltage (V_EN) ..0V to V_IN

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

‡ Notice: The device is not guaranteed to function outside its operating ratings.

Note 1: The maximum allowable power dissipation of any T_A (ambient temperature) is P_D(max) = (T_J(max) – T_A)/θ_JA. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.

2: Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5 kΩ in series with 100 pF.

TABLE 1-1: ELECTRICAL CHARACTERISTICS

Electrical Characteristics: V_IN = V_EN = V_OUT + 1V; C_IN = C_OUT = 2.2 µF; I_OUT = 100 µA; T_J = +25°C, bold values indicate –40°C to +85°C, unless noted. Note 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage Accuracy</td>
<td>—</td>
<td>–2.0</td>
<td>±1</td>
<td>+2.0</td>
<td>%</td>
<td>Variation from nominal V_OUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–3.0</td>
<td>—</td>
<td>+3.0</td>
<td>%</td>
<td>Variation from nominal V_OUT; –40°C to +85°C</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>—</td>
<td>—</td>
<td>0.02</td>
<td>0.3</td>
<td>%/V</td>
<td>V_IN = V_OUT + 1V to 5.5V; I_OUT = 100 µA</td>
</tr>
<tr>
<td>Load Regulation (Note 2)</td>
<td>—</td>
<td>—</td>
<td>14</td>
<td>65</td>
<td>mV</td>
<td>I_OUT = 100 µA to 500 mA</td>
</tr>
<tr>
<td>Dropout Voltage (Note 3)</td>
<td>V_DO</td>
<td>—</td>
<td>80</td>
<td>180</td>
<td>mV</td>
<td>I_OUT = 150 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>260</td>
<td>500</td>
<td>mV</td>
<td>I_OUT = 500 mA</td>
</tr>
<tr>
<td>Ground Pin Current (Note 4)</td>
<td>I_GND</td>
<td>—</td>
<td>38</td>
<td>55</td>
<td>µA</td>
<td>I_OUT = 0 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>42</td>
<td>65</td>
<td>µA</td>
<td>I_OUT = 500 mA</td>
</tr>
<tr>
<td>Ground Pin Current in Shutdown</td>
<td>I_SHDN</td>
<td>—</td>
<td>0.05</td>
<td>1</td>
<td>µA</td>
<td>V_EN = 0V</td>
</tr>
<tr>
<td>Ripple Rejection</td>
<td>PSRR</td>
<td>—</td>
<td>70</td>
<td>—</td>
<td>dB</td>
<td>f = 100 Hz, I_OUT = 100 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>60</td>
<td>—</td>
<td>dB</td>
<td>f = 1 kHz, I_OUT = 100 mA</td>
</tr>
<tr>
<td>Current Limit</td>
<td>I_LIM</td>
<td>525</td>
<td>800</td>
<td>—</td>
<td>mA</td>
<td>V_OUT = 0V</td>
</tr>
<tr>
<td>Output Voltage Noise</td>
<td>—</td>
<td>—</td>
<td>175</td>
<td>—</td>
<td>µV_RMS</td>
<td>f = 10 Hz to 100 kHz</td>
</tr>
<tr>
<td>Auto-Discharge NFET Resistance</td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>—</td>
<td>Ω</td>
<td>V_EN = 0V; V_IN = 3.6V; I_OUT = –3 mA</td>
</tr>
</tbody>
</table>

Enable Input

Enable Pull-Down Resistor | — | — | 4 | — | MΩ | — |
Enable Input Voltage | V_EN | — | — | 0.2 | V | Logic low |
<p>| | | 1.2 | — | — | V | Logic high |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Input Current</td>
<td>(I_{EN})</td>
<td>—</td>
<td>0.01</td>
<td>1</td>
<td>(\mu A)</td>
<td>(V_{EN} = 0V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>1.4</td>
<td>2</td>
<td>(\mu A)</td>
<td>(V_{EN} = 5.5V)</td>
</tr>
<tr>
<td>Turn-On Time</td>
<td>(t_{ON})</td>
<td>—</td>
<td>50</td>
<td>125</td>
<td>(\mu s)</td>
<td>(I_{OUT} = 150 mA)</td>
</tr>
</tbody>
</table>

Note 1: Specification for packaged product only.

2: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

3: Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal value measured at 1V differential. For outputs below 2.5V, dropout voltage is the input-to-output differential with the minimum input voltage 2.5V.

4: Ground pin current is the regulator quiescent current. The total current drawn from the supply is the sum of the load current plus the ground pin current.
TEMPERATURE SPECIFICATIONS (Note 1)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature Range</td>
<td>(T_S)</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td>—</td>
</tr>
<tr>
<td>Maximum Junction Temperature Range</td>
<td>(T_J)</td>
<td>-40</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td>—</td>
</tr>
<tr>
<td>Junction Operating Temperature Range</td>
<td>(T_J)</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td>—</td>
</tr>
<tr>
<td>Lead Temperature</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>+260</td>
<td>°C</td>
<td>Soldering, 10s</td>
</tr>
</tbody>
</table>

Package Thermal Resistances

| Thermal Resistance 6-Lead Extra Thin DFN | \(\theta_{JA} \) | — | 173 | — | °C/W | — |

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., \(T_A, T_J, \theta_{JA} \)). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: Power Supply Rejection Ratio.

FIGURE 2-2: Dropout Voltage vs. Output Current.

FIGURE 2-3: Dropout Voltage vs. Temperature.

FIGURE 2-4: Ground Current vs. Supply Voltage.

FIGURE 2-5: Ground Current vs. Load Current.

FIGURE 2-6: Ground Current vs. Temperature.
FIGURE 2-7: Output Voltage vs. Output Current.

FIGURE 2-8: Output Voltage vs. Supply Voltage.

FIGURE 2-9: Output Voltage vs. Temperature.

FIGURE 2-10: Current Limit vs. Supply Voltage.

FIGURE 2-11: Output Noise Spectral Density (MIC5528-3.3YMT).

FIGURE 2-12: Enable Turn-On.
FIGURE 2-13: Auto-Discharge (No Load).

FIGURE 2-14: Line Transient.

FIGURE 2-15: Load Transient.

FIGURE 2-16: Power Supply Rejection Ratio.

FIGURE 2-17: Ground Current vs. Input Voltage.

FIGURE 2-18: Ground Current vs. Output Current.
FIGURE 2-19: Output Voltage vs. Output Current.

FIGURE 2-20: Output Voltage vs. Input Voltage.

FIGURE 2-21: Current Limit vs. Input Voltage.

FIGURE 2-23: Start-Up from VIN.

FIGURE 2-24: Start-Up from ENABLE.
FIGURE 2-25: Auto-Discharge (No Load).

FIGURE 2-26: Line Transient.

FIGURE 2-27: Line Transient.

FIGURE 2-28: Load Transient.

FIGURE 2-29: Load Transient.

FIGURE 2-30: Load Transient.
Figure 2-31: Load Transient.
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>VOUT</td>
<td>Output Voltage. When disabled, the MIC5528 switches in an internal 25Ω load to discharge the external capacitors.</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>4</td>
<td>EN</td>
<td>Enable Input: Active-High. High = ON; Low = OFF. The MIC5528 has an internal pull-down and this pin can be left floating.</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td>No Connection.</td>
</tr>
<tr>
<td>6</td>
<td>VIN</td>
<td>Supply input.</td>
</tr>
</tbody>
</table>
4.0 APPLICATION INFORMATION

The MIC5528 is a high performance, low power 500 mA LDO. The MIC5528 includes an auto-discharge circuit that is switched on when the regulator is disabled through the enable pin. The MIC5528 also offers an internal pull-down resistor on the enable pin to ensure the output is disabled if the control signal is tri-stated. The MIC5528 regulator is fully protected from damage due to fault conditions, offering linear current-limiting and thermal shutdown.

4.1 Input Capacitor

The MIC5528 is a high performance, high bandwidth device. An input capacitor of 2.2 µF is required from the input to ground to provide stability. Low-ESR ceramic capacitors provide optimal performance at a minimum of space. Additional high frequency capacitors, such as small-valued NPO dielectric-type capacitors, help filter out high frequency noise and are good practice in any RF-based circuit. X5R or X7R dielectrics are recommended for the input capacitor. Y5V dielectrics lose most of their capacitance over temperature and are therefore, not recommended.

4.2 Output Capacitor

The MIC5528 requires an output capacitor of 2.2 µF or greater to maintain stability. The design is optimized for use with low-ESR ceramic chip capacitors. High-ESR capacitors are not recommended because they may cause high frequency oscillation. The output capacitor can be increased, but performance has been optimized for a 2.2 µF ceramic output capacitor and does not improve significantly with larger capacitance.

X7R/X5R dielectric-type ceramic capacitors are recommended because of their temperature performance. X7R-type capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change value by as much as 50% and 60%, respectively, over their operating temperature ranges. To use a ceramic chip capacitor with Y5V dielectric, the value must be much higher than an X7R ceramic capacitor to ensure the same minimum capacitance over the equivalent operating temperature range.

4.3 No-Load Stability

Unlike many other voltage regulators, the MIC5528 remains stable and in regulation with no load. This is especially important in CMOS RAM keep-alive applications.

4.4 Enable/Shutdown

The MIC5528 comes with an active-high enable pin that allows the regulator to be disabled. Forcing the enable pin low disables the regulator and sends it into an off mode current state drawing virtually zero current. When disabled the MIC5528 switches an internal 25Ω load on the regulator output to discharge the external capacitor.

Forcing the enable pin high enables the output voltage. The MIC5528 has an internal pull-down resistor on the enable pin to disable the output when the enable pin is floating.

4.5 Thermal Considerations

The MIC5528 is designed to provide 500 mA of continuous current in a very small package. Maximum ambient operating temperature can be calculated based on the output current and the voltage drop across the part. For example, if the input voltage is 3.6V, the output voltage is 3.3V, and the output current is 500 mA. The actual power dissipation of the regulator circuit can be determined using Equation 4-1:

\[
P_D = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_{GND}
\]

Because this device is CMOS and the ground current is typically <100 µA over the load range, the power dissipation contributed by the ground current is <1% and can be ignored Equation 4-2:

\[
P_D = (3.6V - 3.3V) \times 500mA = 0.150W
\]

To determine the maximum ambient operating temperature of the package, use the junction-to-ambient thermal resistance of the device Equation 4-3:
EQUATION 4-3:

\[
P_{D(MAX)} = \frac{T_{J(MAX)} - T_A}{\theta_{JA}}
\]

Where:

- \(T_{J(MAX)} \) = 125°C, the maximum junction temperature of the die.
- \(\theta_{JA} \) = Thermal resistance of 173°C/W for the XTDFN.

Substituting \(P_D \) for \(P_{D(MAX)} \) and solving for the ambient operating temperature will give the maximum operating conditions for the regulator circuit. The junction-to-ambient thermal resistance for the minimum footprint is 173°C/W.

The maximum power dissipation must not be exceeded for proper operation.

For example, when operating the MIC5528-3.3YMX at an input voltage of 3.6V and a 500 mA load with a minimum footprint layout, the maximum ambient operating temperature \(T_A \) can be determined as in Equation 4-4:

EQUATION 4-4:

\[
0.15W = \frac{(125°C - T_A)}{(173°C/W)}
\]

\(T_A = 99°C \)

Therefore, the maximum ambient operating temperature allowed in a thermally enhanced 1.2 mm × 1.2 mm XTDFN package is 99°C. For a full discussion of heat sinking and thermal effects on voltage regulators, refer to the “Regulator Thermals” section of Microchip’s Designing with Low-Dropout Voltage Regulators handbook.
5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Legend:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX...X</td>
<td>Product code or customer-specific information</td>
</tr>
<tr>
<td>Y</td>
<td>Year code (last digit of calendar year)</td>
</tr>
<tr>
<td>YY</td>
<td>Year code (last 2 digits of calendar year)</td>
</tr>
<tr>
<td>WW</td>
<td>Week code (week of January 1 is week ‘01’)</td>
</tr>
<tr>
<td>NNN</td>
<td>Alphanumeric traceability code</td>
</tr>
<tr>
<td>e3</td>
<td>Pb-free JEDEC® designator for Matte Tin (Sn)</td>
</tr>
</tbody>
</table>

* This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

- , ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

Note:

In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar (_) and/or Overbar (―) symbol may not be to scale.
6-Lead Thin DFN 1.2 mm x 1.2 mm Package Outline and Recommended Land Pattern

TITLE
6 LEAD TDFN 1.2X1.2mm PACKAGE OUTLINE & RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>DRAWING #</th>
<th>TDFN1212-6LD-PL-1</th>
<th>UNIT</th>
<th>MM</th>
</tr>
</thead>
</table>

TOP VIEW
NOTE: 1, 2, 3

SIDE VIEW
NOTE: 1, 2, 3

BOTTOM VIEW
NOTE: 1, 2, 3

RECOMMENDED LAND PATTERN

NOTE:
1. MAX PACKAGE WARPAGE IS 0.05 MM
2. MAX ALLOWABLE BURR IS 0.076MM IN ALL DIRECTIONS
3. PIN #1 IS ON TOP WILL BE LASER MARKED

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.
MIC5528

6-Lead Extra Thin DFN 1.2 mm x 1.2 mm Package Outline and Recommended Land Pattern

TITLE
6 LEAD XTDFN 1.2x1.2mm PACKAGE OUTLINE & RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>DRAWING #</th>
<th>XTDFN1212-6LD-PL-1</th>
<th>UNIT</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Frame</td>
<td>NiPdAu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Finish</td>
<td>NiPdAu</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOP VIEW

- NOTE: 1, 2

BOTTOM VIEW

- NOTE: 1, 2, 3

SIDE VIEW

- NOTE: 1, 2

RECOMMENDED LAND PATTERN

NOTE:
1. MAX PACKAGE WARPAGE IS 0.05 MM
2. MAX ALLOWABLE BURR IS 0.076MM IN ALL DIRECTIONS
3. LEAD AND EPAD CORNER MAXIMUM RADIUS 0.075MM

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.
APPENDIX A: REVISION HISTORY

Revision A (March 2018)

• Converted Micrel document MIC5528 to Microchip data sheet DS20005982A.
• Minor text changes throughout.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

Examples:

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Output Voltage</th>
<th>Junction Temp. Range</th>
<th>Package</th>
<th>Media Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC5528-1.1YMX-T5:</td>
<td>1.1V</td>
<td>–40°C to +125°C</td>
<td>6-Lead TDFN, 500/Reel</td>
<td></td>
</tr>
<tr>
<td>MIC5528-1.1YMX-TR:</td>
<td>1.1V</td>
<td>–40°C to +125°C</td>
<td>6-Lead XTDFN, 5,000/Reel</td>
<td></td>
</tr>
<tr>
<td>MIC5528-2.8YMX-T5:</td>
<td>2.8V (MX Package only)</td>
<td>–40°C to +125°C</td>
<td>6-Lead XTDFN, 500/Reel</td>
<td></td>
</tr>
<tr>
<td>MIC5528-2.8YMX-TR:</td>
<td>2.8V (MX Package only)</td>
<td>–40°C to +125°C</td>
<td>6-Lead XTDFN, 5,000/Reel</td>
<td></td>
</tr>
<tr>
<td>MIC5528-3.3YMT-T5:</td>
<td>3.3V</td>
<td>–40°C to +125°C</td>
<td>6-Lead TDFN, 500/Reel</td>
<td></td>
</tr>
<tr>
<td>MIC5528-3.3YMT-TR:</td>
<td>3.3V</td>
<td>–40°C to +125°C</td>
<td>6-Lead TDFN, 5,000/Reel</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Other voltage options available. Contact your Microchip Sales Office for more information.
- Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Helda, JukeBlox, KEELOQ logo, KeelOQ, Kleer, LANCheck, LINK MD, maXSylus, maXTouch, MediaLAB, megaAVR, MOST, MOST logo, MPLAB, Optolynx, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntellIMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved.
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: http://www.microchip.com/support

Web Address: www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 508-387-6900
Fax: 508-387-6988

Chicago
Itasca, IL
Tel: 630-285-0087
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8890-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8664-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xi'an
Tel: 86-29-8833-7252

China - Xi'an
Tel: 86-592-2368138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880-3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Han
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra'anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7289-7561

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenburg
Tel: 46-31-708-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820