MIC4832

Low Noise 220V_{pp} EL Driver

Features
• 1.8V to 5.5V DC Input Voltage
• 220V_{pp} Output Voltage Capable
• Low Audible Noise EL Drive Waveform
• Supports EL Panel Sizes up to 3 in² (19 cm²)
• Low 45 µA Operating Supply Current
• Small Inductor Size with Low Profile (220 µH)
• Tiny 8-Lead 3 mm x 3 mm DFN Package
• Adjustable Boost Converter Frequency
• Adjustable EL Lamp Frequency
• 10 nA Shutdown Current

Applications
• LCD Panel Backlight
• Mobile Phones
• PDAs
• Pagers
• Calculators
• Multimedia Players
• Remote Controls
• GPS Receivers

General Description
The MIC4832 is a low noise 220V\textsubscript{pp} electroluminescent lamp (EL) driver. Using advanced Bipolar, CMOS, DMOS (BCD) technology, the MIC4832 integrates a high voltage boost converter and an H-Bridge driver for driving a large EL lamp. The MIC4832 can drive large panel displays for mobile phones, multimedia players or automotive electronics where EL panels are used for backlighting.

The MIC4832 offers design flexibility with adjustable lamp and boost converter frequencies, simply by applying external resistors. A new H-Bridge design reduces audible noise by creating smoother AC voltage across the EL panel.

The MIC4832 is offered in a 3 mm x 3 mm DFN and MSOP-8 lead-free and RoHS-compliant packaging with a –40°C to 85°C junction temperature range.

Package Types

![MIC4832 Package Diagrams](image-url)
Typical Application Circuit

Low Noise EL Driver

Functional Block Diagram
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage (VDD) .. –0.5V to +6V
Output Voltage (VCS) .. –0.5V to +120V
EL Lamp Terminals (VA, VB) ... VCS + 3V
Switch Voltage (VSW) .. –0.5V to +120V
Frequency Control Voltage (VRSW, VREL) –0.5V to (VDD + 0.3V)
ESD Rating (Note 1) .. 2 kV

Operating Ratings ††

Supply Voltage (VDD) .. +1.8V to +5.5V
Lamp Drive Frequency (fEL) ... 60 Hz to 1000 Hz
Switching Frequency (fSW) ... 65 kHz to 250 kHz

† Notice: Exceeding the absolute maximum ratings may damage the device.
†† Notice: The device is not guaranteed to function outside its operating ratings.

Note 1: Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5 kΩ in series with 100 pF.

ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Resistance RDS(ON)</td>
<td>RDS(ON)</td>
<td>—</td>
<td>3.8</td>
<td>7</td>
<td>Ω</td>
<td>I_SW = 100 mA</td>
</tr>
<tr>
<td>CS Voltage Variation VCS</td>
<td>VCS</td>
<td>91</td>
<td>105</td>
<td>119</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td>Enable Input Low Voltage (Turn-Off)</td>
<td>VEN-L</td>
<td>—</td>
<td>—</td>
<td>0.5</td>
<td>V</td>
<td>VDD = 1.8V to 5.5V</td>
</tr>
<tr>
<td>Enable Input High Voltage (Turn-On)</td>
<td>VEN-H</td>
<td>VDD-0.5</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>VDD = 1.8V to 5.5V</td>
</tr>
<tr>
<td>Shutdown Current I_SD</td>
<td>I_SD</td>
<td>—</td>
<td>0.01</td>
<td>0.5</td>
<td>μA</td>
<td>R_SW Resistor = Low; R_EL Resistor = Low; VDD = 5.5V</td>
</tr>
<tr>
<td>Input Supply Current I_VDD</td>
<td>I_VDD</td>
<td>—</td>
<td>45</td>
<td>75</td>
<td>μA</td>
<td>R_SW Resistor = High; R_EL Resistor = High; VCS = 110V; V_A, V_B = OPEN</td>
</tr>
<tr>
<td>Input Current Including Inductor I_CS</td>
<td>I_CS</td>
<td>—</td>
<td>24</td>
<td>—</td>
<td>mA</td>
<td>V_IN = V_DD = 3.2V; R_SW = 338 kΩ; R_EL = 1.78 MΩ; L = 220 μH; R_OUT = 10 kΩ; Lamp = 2 in²</td>
</tr>
<tr>
<td>V_A – V_B Output Drive Frequency f_EL</td>
<td>f_EL</td>
<td>158</td>
<td>200</td>
<td>242</td>
<td>Hz</td>
<td>R_EL = 1.78 MΩ</td>
</tr>
<tr>
<td>Switching Transistor Frequency f_SW</td>
<td>f_SW</td>
<td>90</td>
<td>112</td>
<td>134</td>
<td>kHz</td>
<td>R_SW = 338 kΩ</td>
</tr>
<tr>
<td>Switching Transistor Duty Cycle D</td>
<td>D</td>
<td>—</td>
<td>90</td>
<td>—</td>
<td>%</td>
<td>—</td>
</tr>
</tbody>
</table>

Note 1: Specification for packaged product only.
TEMPERATURE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature Range</td>
<td>(T_S)</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td>—</td>
</tr>
<tr>
<td>Ambient Temperature Range</td>
<td>(T_A)</td>
<td>-40</td>
<td>—</td>
<td>+85</td>
<td>°C</td>
<td>—</td>
</tr>
<tr>
<td>Package Thermal Resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance 8-Lead DFN</td>
<td>(\theta_{JA})</td>
<td>—</td>
<td>63</td>
<td>—</td>
<td>°C/W</td>
<td>—</td>
</tr>
<tr>
<td>Thermal Resistance MSOP-8</td>
<td>(\theta_{JA})</td>
<td>—</td>
<td>206</td>
<td>—</td>
<td>°C/W</td>
<td>—</td>
</tr>
</tbody>
</table>

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., \(T_A \), \(T_J \), \(\theta_{JA} \)). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: Switching Frequency vs. SW Resistor.
FIGURE 2-2: EL Frequency vs. EL Resistor.
FIGURE 2-3: Input Current vs. EL Frequency.
FIGURE 2-4: Switching Frequency vs. Lamp Size.
FIGURE 2-5: Total Input Current vs. Input Voltage.
FIGURE 2-6: Peak CS Voltage vs. Input Voltage.
FIGURE 2-7: Peak Output Voltage vs. Input Voltage.
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>Supply (Input): 1.8V to 5.5V for internal circuitry.</td>
</tr>
<tr>
<td>2</td>
<td>RSW</td>
<td>Switch Resistor (External Component): Set switch frequency of the internal power MOSFET by connecting an external resistor to VDD. Connecting the external resistor to GND disables the switch oscillator and shuts down the device.</td>
</tr>
<tr>
<td>3</td>
<td>REL</td>
<td>EL Resistor (External Component): Set EL frequency of the internal H-Bridge driver by connecting an external resistor to VDD. Connecting the external resistor to GND disables the EL oscillator.</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>5</td>
<td>SW</td>
<td>Switch Node (Input): Internal high-voltage power MOSFET drain.</td>
</tr>
<tr>
<td>6</td>
<td>CS</td>
<td>Regulated Boost Output (External Component): Connect to the output capacitor of the boost regulator and connect to the cathode of the diode.</td>
</tr>
<tr>
<td>7</td>
<td>VB</td>
<td>EL Output: Connect to one end of the EL lamp. Polarity is not important.</td>
</tr>
<tr>
<td>8</td>
<td>VA</td>
<td>EL Output: Connect to one end of the EL lamp. Polarity is not important.</td>
</tr>
</tbody>
</table>
4.0 FUNCTIONAL DESCRIPTION

4.1 Overview

The MIC4832 is a high-voltage EL driver with an AC output voltage of 220V peak-to-peak that's capable of driving EL lamps up to 3 in². Input supply current for the MIC4832 is typically 45 µA, reducing to 10 nA in shutdown. The high voltage EL driver has two internal oscillators to control the switching MOSFET and the H-Bridge driver. Both of the internal oscillators’ frequencies can be individually programmed through the external resistors to maximize the efficiency and the brightness of the EL lamp.

4.2 Regulation

Referring to the Functional Block Diagram, initially power is applied to VDD. The internal feedback voltage is less than the reference voltage, causing the internal comparator to go high, which then enables the switching MOSFET’s oscillator. When the switching MOSFET turns on, current flows through the inductor and flows into the switch. The switching MOSFET will typically turn on for 90% of the switching period. During the on-time, energy is stored in the inductor. When the switching MOSFET turns off, current flowing into the inductor forces the voltage across the inductor to reverse polarity. The voltage across the inductor rises until the external diode conducts and clamps the voltage at VOUT + VD1. The energy in the inductor is then discharged into the COUT capacitor. The internal comparator continues to turn the switching MOSFET on and off until the internal feedback voltage is above the reference voltage. Once the internal feedback voltage is above the reference voltage, the internal comparator turns off the switching MOSFET’s oscillator.

When the EL oscillator is enabled, VA and VB switch in opposite states to achieve a 220V peak-to-peak AC output signal. The external resistor that connects to the REL pin determines the EL frequency.

4.3 Switching Frequency

The switching frequency of the converter is controlled via an external resistor between the RSW pin and VDD pin of the device. The switching frequency increases as the resistor value decreases. For resistor value selections, see Figure 2-1 or use Equation 4-1. The switching frequency range is 65 kHz to 250 kHz, with an accuracy of ±20%. In general, the lower the switching frequency, the greater the input current is drawn to deliver more power to the output. However, the switching frequency should not be so low as to allow the voltage at the switch node or the CS pin to go beyond the absolute maximum voltage of those pins.

EQUATION 4-1:

\[f_{SW}(kHz) = \frac{36}{R_{SW}(M\Omega)} \]

4.4 EL Frequency

The EL lamp frequency is controlled via an external resistor connected between the REL pin and VDD pin of the device. The lamp frequency increases as the resistor value decreases. For resistor value selections, see Figure 2-2 or use Equation 4-2. The EL lamp frequency range is 60 Hz to 1000 Hz, with an accuracy of ±20%.

EQUATION 4-2:

\[f_{EL}(Hz) = \frac{360}{R_{EL}(M\Omega)} \]
In general, as the EL lamp frequency increases, the amount of current drawn from the battery will increase. The color of the EL lamp and the intensity are dependent upon its frequency.

FIGURE 4-3: 300 Hz Output Waveform.

4.5 Enable Function

The MIC4832 is disabled by connecting the external resistor (R\textsubscript{SW}) to GND. This turns off the switch oscillator of the boost converter. Connecting the external resistor (R\textsubscript{SW}) to VDD enables the oscillator and turns on the device. The enable voltage should rise or fall monotonically without interruption.
5.0 APPLICATION INFORMATION

5.1 Inductor
A 220 µH Murata (LQH4C221K04) inductor is recommended for most applications. Generally, inductors with smaller values can handle more current. Lowering the inductance allows the boost regulator to draw more input current to deliver more energy every cycle. As a result, a lower value inductor may be used to drive larger panels or make the current panel brighter. However, caution is required as using a low value inductor with a low switching frequency may result in voltages exceeding the absolute maximum rating of the switch node and/or the CS pin. If the application uses a low input voltage (1.8V to 3V), a lower value inductor, such as 100 µH, may be used in order to drive the EL lamp at max brightness without issue.

5.2 Diode
The diode must have a high reverse voltage (150V), because the output voltage at the CS pin can reach up to 130V. A fast switching diode with lower forward voltage and higher reverse voltage (150V), such as BAV20WS/BAS20W, can be used to enhance efficiency.

5.3 Output Capacitor
Low-ESR capacitors should be used at the regulated boost output (CS pin) of the MIC4832 to minimize the switching output ripple voltage. The larger the output capacitance, the lower the output ripple at the CS pin. The reduced output ripple at the CS pin, along with a low-ESR capacitor, improves the efficiency of the MIC4832 circuit. Selection of the capacitor value will depend upon the peak inductor current, inductor size, and the load. The MIC4832 is designed for use with an output capacitance as low as 2.2 nF. For minimum audible noise, the use of a C0G/NPO dielectric output capacitor is recommended. TDK and AVX offer C0G/NPO dielectric capacitors in capacitances up to 2.7 nF at 200V to 250V rating in 0805 size. If output ripple is a concern, a 0.01 µF/200V X7R output capacitor is recommended.

5.4 EL Lamp Terminals (VA, VB)
An EL lamp is connected from VA to VB as the load. The high voltage alternated across VA and VB by the H-Bridge cycles generate luminance. The voltage at VA and VB should not exceed the voltage at VCS by more than 3V. This situation may become present when noisy enable signals such as those often generated by mechanical switches are applied to the driver’s inputs. To prevent overvoltage at VA and VB, 10 kΩ resistors may be placed in series from VA to the EL panel and from VB to the EL panel. An alternative to the use of 10 kΩ resistors is to apply a diode from the CS pin to VA and VB, where the cathode of the diode is on the CS side and the anode is on the VA and VB side, respectively.
6.0 APPLICATION CIRCUIT

FIGURE 6-1: Typical Li-Ion Powered MIC4832 Circuit.

TABLE 6-1: RECOMMENDED R_{SW} & R_{EL} VALUES FOR VARIOUS PANEL SIZES

<table>
<thead>
<tr>
<th>Size</th>
<th>Cap.</th>
<th>Lamp Freq.</th>
<th>100 Hz</th>
<th>200 Hz</th>
<th>300 Hz</th>
<th>400 Hz</th>
<th>500 Hz</th>
<th>600 Hz</th>
<th>700 Hz</th>
<th>800 Hz</th>
<th>900 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4 in2</td>
<td>2 nF</td>
<td>R_{SW} 240 kΩ</td>
<td>252 kΩ</td>
<td>273 kΩ</td>
<td>281 kΩ</td>
<td>257 kΩ</td>
<td>269 kΩ</td>
<td>281 kΩ</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f_{SW} 150 kHz</td>
<td>143 kHz</td>
<td>132 kHz</td>
<td>128 kHz</td>
<td>116 kHz</td>
<td>105 kHz</td>
<td>98 kHz</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1 in2</td>
<td>5 nF</td>
<td>R_{SW} 257 kΩ</td>
<td>295 kΩ</td>
<td>353 kΩ</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f_{SW} 140 kHz</td>
<td>122 kHz</td>
<td>102 kHz</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2 in2</td>
<td>10 nF</td>
<td>R_{SW} 300 kΩ</td>
<td>333 kΩ</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f_{SW} 120 kHz</td>
<td>108 kHz</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3 in2</td>
<td>15 nF</td>
<td>R_{SW} 313 kΩ</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f_{SW} 115 kHz</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 6-1 applies to the circuit shown in Figure 6-1.
7.0 PACKAGING INFORMATION

7.1 Package Marking Information

Legend:
- **XX...X**: Product code or customer-specific information
- **Y**: Year code (last digit of calendar year)
- **YY**: Year code (last 2 digits of calendar year)
- **WW**: Week code (week of January 1 is week ‘01’)
- **NNN**: Alphanumeric traceability code
- **(e3)**: Pb-free JEDEC® designator for Matte Tin (Sn)
- *: This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
- ●, ▲, ▼: Pin one index is identified by a dot, delta up, or delta down (triangle mark).

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar (_) and/or Overbar (¯) symbol may not be to scale.
TITLE
8 LEAD MSOP PACKAGE OUTLINE & RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>DRAWING #</th>
<th>MSOP-0LD-PL-1</th>
<th>UNIT</th>
<th>INCH [MM]</th>
</tr>
</thead>
</table>

TOP VIEW

BOTTOM VIEW

SIDE VIEW

DETAIL A

NOTES:
1. DIMENSIONS ARE IN INCHES [MM].
2. CONTROLLING DIMENSION: MM.
3. DIMENSION DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS, EITHER OF WHICH SHALL NOT EXCEED 0.008 [0.20] PER SIDE.

RECOMMENDED LAND PATTERN

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.
POD-Land Pattern drawing #DFN33-8LD-PL-1

RECOMMENDED LAND PATTERN

STACKED-UP

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.
APPENDIX A: REVISION HISTORY

Revision A (March 2019)

- Converted Micrel document MIC4832 to Microchip data sheet template DS20006163A.
- Minor grammatical text changes throughout.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

Examples:

<table>
<thead>
<tr>
<th>Device: MIC4832</th>
<th>X</th>
<th>XX</th>
<th>TR</th>
<th>-XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part No.</td>
<td>Junction Temp. Range</td>
<td>Package</td>
<td>Media Type</td>
<td></td>
</tr>
<tr>
<td>Device: MIC4832</td>
<td>Low Noise 220Vpp EL Driver</td>
<td>MM = 8-Lead MSOP</td>
<td>TR = 2,500/Reel (MM Package)</td>
<td></td>
</tr>
<tr>
<td>Junction Temperature Range</td>
<td>Y = –40°C to +85°C, Industrial</td>
<td>ML = 8-Lead 3 mm x 3 mm DFN</td>
<td>TR = 5,000/Reel (ML Package)</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

a) MIC4832YMM: MIC4832, –40°C to +85°C Temperature Range, 8-Lead MSOP, 100/Tube
b) MIC4832YMM-TR: MIC4832, –40°C to +85°C Temperature Range, 8-Lead MSOP, 2,500/Reel
c) MIC4832YML-TR: MIC4832, –40°C to +85°C Temperature Range, 8-Lead 3 mm x 3 mm DFN, 5,000/Reel
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademark

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JuiceBox, KeeLoq, Kleer, LANCheck, LINK MD, maxXStylus, maxXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIc, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KeeLoq® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Quality Management System	
Certified by DNV

ISO/TS 16949

Trademarks

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntellIMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-4253-0