Features
- 4.5V to 42V Input Voltage Range
- High Efficiency (>90%)
- ±5% LED Current Accuracy
- MIC3203: Dither Enabled for Low EMI
- MIC3203-1: Dither Disabled
- High-Side Current Sense
- Dedicated Dimming Control Input
- Hysteretic Control (No Compensation)
- Up to 1.5 MHz Switching Frequency
- Adjustable Constant LED Current
- Overtemperature Protection
- –40°C to +125°C Junction Temperature Range

Applications
- Architectural, Industrial, and Ambient Lighting
- LED Bulbs
- Indicators and Emergency Lighting
- Street Lighting
- Channel Letters
- 12V Lighting Systems (MR-16 Bulbs, Under-Cabinet Lighting, Garden/Pathway Lighting)

General Description
The MIC3203 is a hysteretic, step-down, constant-current, high-brightness LED (HB LED) driver. It provides an ideal solution for interior/exterior lighting, architectural and ambient lighting, LED bulbs, and other general illumination applications.

The MIC3203 is well suited for lighting applications that require a wide input voltage range. The hysteretic control gives good supply rejection and fast response during load transients and PWM dimming. The high-side current sensing and on-chip current-sense comparator delivers LED current with ±5% accuracy. An external high-side current-sense resistor is used to set the output current.

The MIC3203 offers a dedicated PWM input (DIM) that enables a wide range of pulsed dimming. A high-frequency switching operation up to 1.5 MHz allows the use of smaller external components minimizing space and cost. The MIC3203 offers frequency dither feature for EMI control.

The MIC3203 operates over a junction temperature from –40°C to +125°C and is available in an 8-pin SOIC package. A dither disabled version MIC3203-1 is also available in the same package as the MIC3203.

Package Type

![MIC3203 8-Lead SOIC (M) (Top View)]
Typical Application Circuit

Functional Block Diagram
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

- V_{IN} to PGND: –0.3V to +45V
- V_{CC} to PGND: –0.3V to +6.0V
- CS to PGND: –0.3V to ($V_{IN} + 0.3V$)
- EN to AGND: –0.3V to ($V_{IN} + 0.3V$)
- DIM to AGND: –0.3V to ($V_{IN} + 0.3V$)
- DRV to PGND: –0.3V to ($V_{CC} + 0.3V$)
- PGND to AGND: –0.3V to +0.3V
- ESD Rating (Note 1): 1.5 kV, HBM
- ESD Rating (Note 1): 200V, MM

Operating Ratings ††

- Supply Voltage (V_{IN}): +4.5V to +42V
- Enable Input Voltage (V_{EN}): 0V to V_{IN}
- Dimming Input Voltage (V_{DIM}): 0V to V_{IN}

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

†† Notice: The device is not guaranteed to function outside its operating ratings.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics:

$V_{IN} = V_{EN} = V_{DIM} = 12V$; $C_{VCC} = 1.0 \mu F$; $T_J = +25^\circ C$, **bold** values indicate $-40^\circ C \leq T_J \leq +125^\circ C$ unless noted. **Note 1**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>V_{IN}</td>
<td>4.5</td>
<td>—</td>
<td>42</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td>Supply Current</td>
<td>I_S</td>
<td>—</td>
<td>1</td>
<td>3</td>
<td>mA</td>
<td>DRV = open</td>
</tr>
<tr>
<td>Shutdown Current</td>
<td>I_{SD}</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>μA</td>
<td>$V_{EN} = 0V$</td>
</tr>
<tr>
<td>V_{IN} UVLO Threshold</td>
<td>UVLO</td>
<td>3.2</td>
<td>4</td>
<td>4.5</td>
<td>V</td>
<td>V_{IN} rising</td>
</tr>
<tr>
<td>V_{IN} UVLO Hysteresis</td>
<td>UVLO$_{HYS}$</td>
<td>—</td>
<td>500</td>
<td>—</td>
<td>mV</td>
<td>—</td>
</tr>
<tr>
<td>VCC Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCC Output Voltage</td>
<td>V_{CC}</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
<td>V</td>
<td>$V_{IN} = 12V$, $I_{CC} = 10$ mA</td>
</tr>
<tr>
<td>Current Sense Comparator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Sense Voltage Upper</td>
<td>$V_{CS(MAX)}$</td>
<td>201.4</td>
<td>212</td>
<td>222.6</td>
<td>mV</td>
<td>$V_{CS(MAX)} = V_{IN} - V_{CS}$</td>
</tr>
<tr>
<td>Threshold</td>
<td></td>
<td>199</td>
<td>212</td>
<td>225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Sense Voltage Lower</td>
<td>$V_{CS(MIN)}$</td>
<td>168</td>
<td>177</td>
<td>186</td>
<td>mV</td>
<td>$V_{CS(MIN)} = V_{IN} - V_{CS}$</td>
</tr>
<tr>
<td>Threshold</td>
<td></td>
<td>165</td>
<td>177</td>
<td>189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CS} Hysteresis</td>
<td>V_{CSHY}</td>
<td>—</td>
<td>35</td>
<td>—</td>
<td>mV</td>
<td>—</td>
</tr>
</tbody>
</table>

Note 1: Specification for packaged product only.

2: Guaranteed by design.
ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: \(V_{IN} = V_{EN} = V_{DIM} = 12V; C_{VCC} = 1.0 \mu F; T_J = +25^\circ C, \textbf{bold} \) values indicate \(-40^\circ C \leq T_J \leq +125^\circ C\) unless noted. **Note 1**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Sense Response Time</td>
<td>(t_{RES(CS)})</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td>(V_{CS}) rising</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(V_{CS}) falling</td>
</tr>
<tr>
<td>CS Input Current</td>
<td>(I_{IN(CS)})</td>
<td>—</td>
<td>0.5</td>
<td>10</td>
<td>(\mu A)</td>
<td>(V_{IN} - V_{CS} = 220 \text{ mV})</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>(f_{SW})</td>
<td>—</td>
<td>—</td>
<td>1.5</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Dithering (MIC3203)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{CS}) Hysteresis Dithering Range (Note 2)</td>
<td>(V_{DITH})</td>
<td>—</td>
<td>—</td>
<td>±6</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Frequency Dithering Range (Note 2)</td>
<td>(f_{DITHER})</td>
<td>—</td>
<td>—</td>
<td>±12</td>
<td>%</td>
<td>Percent of Switching Frequency</td>
</tr>
<tr>
<td>Enable Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN Logic Level High</td>
<td>(V_{ENH})</td>
<td>2.2</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>EN Logic Level Low</td>
<td>(V_{ENL})</td>
<td>—</td>
<td>—</td>
<td>0.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>EN Bias Current</td>
<td>(I_{EN})</td>
<td>—</td>
<td>—</td>
<td>60</td>
<td>(\mu A)</td>
<td>(V_{EN} = 12V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>1</td>
<td>(\mu A)</td>
<td>(V_{EN} = 0V)</td>
</tr>
<tr>
<td>Start-Up Time</td>
<td>(t_{START})</td>
<td>—</td>
<td>30</td>
<td>—</td>
<td>(\mu s)</td>
<td>From EN pin going high to DRV going high</td>
</tr>
<tr>
<td>Dimming Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIM Logic Level High</td>
<td>(V_{DIMH})</td>
<td>2.0</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DIM Logic Level Low</td>
<td>(V_{DIML})</td>
<td>—</td>
<td>—</td>
<td>0.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>DIM Bias Current</td>
<td>(I_{DIM})</td>
<td>—</td>
<td>20</td>
<td>50</td>
<td>(\mu A)</td>
<td>(V_{DIM} = 0V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>1</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>DIM Delay Time</td>
<td>(t_{DLY})</td>
<td>—</td>
<td>—</td>
<td>450</td>
<td>(ns)</td>
<td>From DIM pin going high to DRV going high</td>
</tr>
<tr>
<td>Maximum Dimming Frequency</td>
<td>(f_{DIM})</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>External FET Driver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRV On-Resistance</td>
<td>(R_{DRV(ON)})</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>(\Omega)</td>
<td>Pull-Up, (I_{SOURCE} = 10 \text{ mA})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>1.5</td>
<td>(\Omega)</td>
<td>Pull-Down, (I_{SINK} = -10 \text{ mA})</td>
</tr>
<tr>
<td>DRV Transition Time</td>
<td>(t_r/t_f)</td>
<td>—</td>
<td>13</td>
<td>—</td>
<td>(ns)</td>
<td>Rise Time, (C_{LOAD} = 1000 \text{ pF})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>7</td>
<td>(ns)</td>
<td>Fall Time, (C_{LOAD} = 1000 \text{ pF})</td>
</tr>
<tr>
<td>Thermal Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overtemperature Shutdown Threshold</td>
<td>(T_{LIM})</td>
<td>—</td>
<td>160</td>
<td>—</td>
<td>(^\circ C)</td>
<td>(T_J) rising</td>
</tr>
<tr>
<td>Overtemperature Shutdown Hysteresis</td>
<td>(T_{LIMHYS})</td>
<td>—</td>
<td>20</td>
<td>—</td>
<td>(^\circ C)</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Specification for packaged product only.

Note 2: Guaranteed by design.
TEMPERATURE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Junction Temperature Range</td>
<td>T_J</td>
<td>-40</td>
<td>$-$</td>
<td>$+125$</td>
<td>°C</td>
<td>Note 1</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{J(MAX)}$</td>
<td>$-$</td>
<td>$-$</td>
<td>$+150$</td>
<td>°C</td>
<td>$-$</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_S</td>
<td>-60</td>
<td>$-$</td>
<td>$+150$</td>
<td>°C</td>
<td>$-$</td>
</tr>
<tr>
<td>Lead Temperature</td>
<td>T_{LEAD}</td>
<td>$-$</td>
<td>$-$</td>
<td>$+260$</td>
<td>°C</td>
<td>Soldering, 10 sec.</td>
</tr>
</tbody>
</table>

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: Efficiency vs. Input Voltage (L = 150 μH, I_{LED} = 1A).

FIGURE 2-2: Efficiency vs. Input Voltage (L = 68 μH, I_{LED} = 1A).

FIGURE 2-3: Normalized LED Currents vs. Input Voltage (L = 150 μH, I_{LED} = 1A).

FIGURE 2-4: Normalized LED Currents vs. Input Voltage (L = 68 μH, I_{LED} = 1A).

FIGURE 2-5: Frequency vs. Input Voltage (L = 150 μH, I_{LED} = 1A).

FIGURE 2-6: Frequency vs. Input Voltage (L = 68 μH, I_{LED} = 1A).
FIGURE 2-7: Duty Cycle vs. Input Voltage (L = 150 μH, I_{LED} = 1A).

FIGURE 2-8: Duty Cycle vs. Input Voltage (L = 68 μH, I_{LED} = 1A).

FIGURE 2-9: Supply Current vs. Input Voltage.

FIGURE 2-10: VCC vs. Input Voltage.

FIGURE 2-11: Enable Threshold vs. Input Voltage.

FIGURE 2-12: Current-Sense Threshold vs. Input Voltage.
FIGURE 2-13: Shutdown Current vs. Input Voltage.

FIGURE 2-14: Enable Current vs. Enable Voltage.

FIGURE 2-15: ICC Limit vs. Input Voltage.

FIGURE 2-16: Supply Current vs. Temperature.

FIGURE 2-17: VCC vs. Temperature.

FIGURE 2-18: Enable Threshold vs. Temperature.
FIGURE 2-19: Shutdown Current vs. Temperature.

FIGURE 2-20: Enable Current vs. Temperature.

FIGURE 2-21: Current-Sense Voltage vs. Temperature.

FIGURE 2-22: Switching Frequency vs. Temperature.

FIGURE 2-23: UVLO Threshold vs. Temperature.

FIGURE 2-24: Thermal Shutdown Threshold vs. Input Voltage.
FIGURE 2-25: Steady-State Operation at $V_{IN} = 6V$.

FIGURE 2-26: PWM Dimming at 20 kHz ($V_{IN} = 6V$, 10% Duty Cycle).

FIGURE 2-27: Steady-State Operation at $V_{IN} = 12V$.

FIGURE 2-28: PWM Dimming at 20 kHz ($V_{IN} = 12V$, 90% Duty Cycle).

FIGURE 2-29: Steady-State Operation at $V_{IN} = 24V$.

FIGURE 2-30: PWM Dimming at 20 kHz ($V_{IN} = 24V$, 10% Duty Cycle).
FIGURE 2-31: Steady-State Operation at $V_{IN} = 42V$.

FIGURE 2-32: PWM Dimming at 20 kHz ($V_{IN} = 42V$, 0% Duty Cycle).
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>Voltage Regulator Output. The VCC pin supplies the power to the internal circuitry. The V_{CC} in the output of a linear regulator which is powered from VIN. A 1 μF ceramic capacitor is recommended for bypassing and should be placed as close as possible to the VCC and AGND pins. Do not connect to an external load.</td>
</tr>
<tr>
<td>2</td>
<td>CS</td>
<td>Current-Sense Input. The CS pin provides the high-side current sense to set the LED current with an external sense resistor.</td>
</tr>
<tr>
<td>3</td>
<td>VIN</td>
<td>Input Power Supply. VIN is the input supply pin to the internal circuitry and the positive input to the current sense comparator. Due to the high frequency switching noise, a 10 μF ceramic capacitor is recommended to be placed as close as possible to VIN and the power ground (PGND) pins for bypassing. Please refer to layout recommendations.</td>
</tr>
<tr>
<td>4</td>
<td>AGND</td>
<td>Ground pin for analog circuitry. Internal signal ground for all low power sections.</td>
</tr>
<tr>
<td>5</td>
<td>EN</td>
<td>Enable Input. The EN pin provides a logic level control of the output and the voltage has to be 2.2V or higher to enable the current regulator. The output stage is gated by the DIM pin. When the EN pin is pulled low, the regulator goes to off state and the supply current of the device is greatly reduced (below 1 μA). In the off state, during this period the output drive is placed in a "tri-stated" condition, where MOSFET is in an "off" or non-conducting state. Do not drive the EN pin above the supply voltage.</td>
</tr>
<tr>
<td>6</td>
<td>DIM</td>
<td>PWM Dimming Input. The DIM pin provides the control for brightness of the LED. A PWM input can be used to control the brightness of LED. DIM high enables the output and its voltage has to be at least 2.0V or higher. DIM low disables the output, regardless of EN "high" state.</td>
</tr>
<tr>
<td>7</td>
<td>PGND</td>
<td>Power Ground Pin for Power FET. Power Ground (PGND) is for the high-current switching with hysteretic mode. The current loop for the power ground should be as small as possible and separate from the Analog ground (AGND) loop. Refer to the layout considerations for more details.</td>
</tr>
<tr>
<td>8</td>
<td>DRV</td>
<td>Gate-Drive Output. Connect to the gate of an external N-channel MOSFET. The drain of the external MOSFET connects directly to the inductor and provides the switching current necessary to operate in hysteretic mode. Due to the high frequency switching and high voltage associated with this pin, the switch node should be routed away from sensitive nodes.</td>
</tr>
</tbody>
</table>
4.0 FUNCTIONAL DESCRIPTION

The MIC3203 is a hysteretic step-down driver that regulates the LED current over a wide input voltage range.

The device operates from a 4.5V to 42V input supply voltage range and provides up to 0.5A source and 1A sink drive capability. When the input voltage reaches 4.5V, the internal 5V V_{CC} is regulated and the DRV pin is pulled high to turn on an external MOSFET if the EN pin and DIM pin are high. The inductor current builds up linearly. When the CS pin voltage hits $V_{CS(MAX)}$ with respect to V_{IN}, the MOSFET turns off and the Schottky diode takes over and returns the current to V_{IN}. Then the current, through inductor and LEDs, starts decreasing linearly. When the CS pin voltage, with respect to V_{IN} pin voltage, hits $V_{CS(MIN)}$, the MOSFET turns on and the cycle repeats.

The frequency of operation depends upon input voltage, total LEDs voltage drop, LED current, and temperature. The calculation for frequency of operation is given in the Application Information section.

The MIC3203 has an on board 5V regulator that is for internal use only. Connect a $1 \, \mu F$ capacitor on the VCC pin to analog ground.

The MIC3203 has an EN pin that gives the flexibility to enable and disable the IC device with logic high and low signals.

The MIC3203 also has a DIM pin that can turn on and off the LEDs if EN is in “high” state. This DIM pin controls the brightness of the LED by varying the duty cycle of DIM pin from 1% to 99%.
5.0 APPLICATION INFORMATION

The internal Functional Block Diagram of the MIC3203 is shown on Page 2. The MIC3203 is composed of a current-sense comparator, voltage and current reference, 5V regulator, and MOSFET driver. Hysteretic mode control is a topology that does not employ an error amplifier; it uses an error comparator instead.

The inductor current is controlled within a hysteretic window. If the inductor current is too small, the power MOSFET is turned on; if the inductor current is large enough, the power MOSFET is turned off. It is a simple control scheme with no oscillator and no loop compensation. Because the control scheme does not need loop compensation, it makes a design easy and avoids problems of instability.

Transient response to load and line variation is very fast and only depends on propagation delay. This makes the control scheme very popular for certain applications.

5.1 LED Current and \(R_{CS} \)

The main feature in MIC3203 is to control the LED current accurately within ±5% of a set current. Choosing a high-side \(R_{CS} \) resistor helps with setting constant LED current regardless of a wide input voltage range. The following equation gives the \(R_{CS} \) value:

EQUATION 5-1:

\[
R_{CS} = \frac{1}{2} \times \left(\frac{V_{CS(MAX)} + V_{CS(MIN)}}{I_{LED}} \right)
\]

TABLE 5-1: \(R_{CS} \) FOR LED CURRENT

<table>
<thead>
<tr>
<th>(R_{CS})</th>
<th>(I_{LED})</th>
<th>(I^2R)</th>
<th>Size (SMD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33Ω</td>
<td>0.15A</td>
<td>0.03W</td>
<td>0603</td>
</tr>
<tr>
<td>0.56Ω</td>
<td>0.35A</td>
<td>0.07W</td>
<td>0805</td>
</tr>
<tr>
<td>0.4Ω</td>
<td>0.5A</td>
<td>0.1W</td>
<td>0805</td>
</tr>
<tr>
<td>0.28Ω</td>
<td>0.7A</td>
<td>0.137W</td>
<td>1206</td>
</tr>
<tr>
<td>0.2Ω</td>
<td>1.0A</td>
<td>0.2W</td>
<td>1206</td>
</tr>
<tr>
<td>0.13Ω</td>
<td>1.5A</td>
<td>0.3W</td>
<td>1210</td>
</tr>
<tr>
<td>0.1Ω</td>
<td>2.0A</td>
<td>0.4W</td>
<td>2010</td>
</tr>
<tr>
<td>0.08Ω</td>
<td>2.5A</td>
<td>0.5W</td>
<td>2010</td>
</tr>
<tr>
<td>0.068Ω</td>
<td>3.0A</td>
<td>0.6W</td>
<td>2010</td>
</tr>
</tbody>
</table>

For \(V_{CS(MAX)} \) and \(V_{CS(MIN)} \), refer to the Electrical Characteristics table.

5.2 Frequency of Operation

To calculate the frequency spread across input supply:

EQUATION 5-2:

\[
V_L = L \times \frac{\Delta I_L}{\Delta t}
\]

\(L \) is the inductance, \(\Delta I_L \) is fixed (the value of the hysteresis):

EQUATION 5-3:

\[
\Delta I_L = \frac{V_{CS(MAX)} - V_{CS(MIN)}}{R_{CS}}
\]

\(V_L \) is the voltage across inductor \(L \), which varies by supply.

For current rising (MOSFET is ON):

EQUATION 5-4:

\[
\tau_r = \frac{L \times \Delta I_L}{V_{L,\text{RISE}}}
\]

Where:

\(V_{L,\text{RISE}} = V_{IN} - I_{LED} \times R_{CS} - V_{LED} \)

For current falling (MOSFET is OFF):

EQUATION 5-5:

\[
\tau_f = \frac{L \times \Delta I_L}{V_{L,\text{FALL}}}
\]

Where:

\(V_{L,\text{FALL}} = V_{D} + I_{LED} \times R_{CS} + V_{LED} \)
EQUATION 5-6:

\[
T = t_r + t_f
\]

\[
f_{SW} = \frac{1}{T}
\]

\[
f_{SW} = \frac{(V_D + I_{LED} \times R_{CS} + V_{LED}) \times (V_{IN} - I_{LED} \times R_{CS} - V_{LED})}{L \times \Delta I_L \times (V_D + V_{IN})}
\]

Where:

- \(V_D\) = Schottky diode forward drop.
- \(V_{LED}\) = Total LEDs voltage drop.
- \(V_{IN}\) = Input voltage.
- \(I_{LED}\) = Average LED current.

5.3 Inductor

According to the above equation, choose the inductor to make the operating frequency no higher than 1.5 MHz. The following tables give a reference inductor value and corresponding frequency for a given LED current. For space-sensitive applications, a smaller inductor with higher switching frequency can be used, but the efficiency of the regulator will be reduced.

TABLE 5-2: INDUCTOR FOR \(V_{IN} = 12V\), 1 LED

<table>
<thead>
<tr>
<th>(R_{CS})</th>
<th>(I_{LED})</th>
<th>(L)</th>
<th>(f_{SW})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33Ω</td>
<td>0.15A</td>
<td>220 μH</td>
<td>474 kHz</td>
</tr>
<tr>
<td>0.56Ω</td>
<td>0.35A</td>
<td>100 μH</td>
<td>439 kHz</td>
</tr>
<tr>
<td>0.4Ω</td>
<td>0.5A</td>
<td>68 μH</td>
<td>461 kHz</td>
</tr>
<tr>
<td>0.28Ω</td>
<td>0.7A</td>
<td>47 μH</td>
<td>467 kHz</td>
</tr>
<tr>
<td>0.2Ω</td>
<td>1.0A</td>
<td>33 μH</td>
<td>475 kHz</td>
</tr>
<tr>
<td>0.13Ω</td>
<td>1.5A</td>
<td>22 μH</td>
<td>463 kHz</td>
</tr>
<tr>
<td>0.1Ω</td>
<td>2.0A</td>
<td>15 μH</td>
<td>522 kHz</td>
</tr>
<tr>
<td>0.08Ω</td>
<td>2.5A</td>
<td>12 μH</td>
<td>522 kHz</td>
</tr>
<tr>
<td>0.068Ω</td>
<td>3.0A</td>
<td>10 μH</td>
<td>533 kHz</td>
</tr>
</tbody>
</table>

TABLE 5-3: INDUCTOR FOR \(V_{IN} = 24V\), 4 LEDS

<table>
<thead>
<tr>
<th>(R_{CS})</th>
<th>(I_{LED})</th>
<th>(L)</th>
<th>(f_{SW})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33Ω</td>
<td>0.15A</td>
<td>470 μH</td>
<td>474 kHz</td>
</tr>
<tr>
<td>0.56Ω</td>
<td>0.35A</td>
<td>220 μH</td>
<td>426 kHz</td>
</tr>
<tr>
<td>0.4Ω</td>
<td>0.5A</td>
<td>150 μH</td>
<td>447 kHz</td>
</tr>
<tr>
<td>0.28Ω</td>
<td>0.7A</td>
<td>100 μH</td>
<td>470 kHz</td>
</tr>
<tr>
<td>0.2Ω</td>
<td>1.0A</td>
<td>68 μH</td>
<td>493 kHz</td>
</tr>
<tr>
<td>0.13Ω</td>
<td>1.5A</td>
<td>47 μH</td>
<td>463 kHz</td>
</tr>
<tr>
<td>0.1Ω</td>
<td>2.0A</td>
<td>33 μH</td>
<td>507 kHz</td>
</tr>
<tr>
<td>0.08Ω</td>
<td>2.5A</td>
<td>27 μH</td>
<td>496 kHz</td>
</tr>
<tr>
<td>0.068Ω</td>
<td>3.0A</td>
<td>22 μH</td>
<td>517 kHz</td>
</tr>
</tbody>
</table>

TABLE 5-4: INDUCTOR FOR \(V_{IN} = 36V\) 8 LEDS

<table>
<thead>
<tr>
<th>(R_{CS})</th>
<th>(I_{LED})</th>
<th>(L)</th>
<th>(f_{SW})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33Ω</td>
<td>0.15A</td>
<td>470 μH</td>
<td>495 kHz</td>
</tr>
<tr>
<td>0.56Ω</td>
<td>0.35A</td>
<td>220 μH</td>
<td>446 kHz</td>
</tr>
<tr>
<td>0.4Ω</td>
<td>0.5A</td>
<td>150 μH</td>
<td>467 kHz</td>
</tr>
<tr>
<td>0.28Ω</td>
<td>0.7A</td>
<td>100 μH</td>
<td>490 kHz</td>
</tr>
<tr>
<td>0.2Ω</td>
<td>1.0A</td>
<td>68 μH</td>
<td>515 kHz</td>
</tr>
<tr>
<td>0.13Ω</td>
<td>1.5A</td>
<td>47 μH</td>
<td>485 kHz</td>
</tr>
<tr>
<td>0.1Ω</td>
<td>2.0A</td>
<td>33 μH</td>
<td>530 kHz</td>
</tr>
<tr>
<td>0.08Ω</td>
<td>2.5A</td>
<td>27 μH</td>
<td>519 kHz</td>
</tr>
<tr>
<td>0.068Ω</td>
<td>3.0A</td>
<td>22 μH</td>
<td>541 kHz</td>
</tr>
</tbody>
</table>

Given an inductor value, the size of the inductor can be determined by its RMS and peak current rating.

EQUATION 5-7:

\[
\frac{\Delta I_L}{I_L} = 2 \times \frac{V_{CS(MAX)}}{V_{CS(MAX)} + V_{CS(MIN)}} = 0.18
\]

\[
I_{L(RMS)} = \sqrt{I_L^2 + \frac{1}{12} \times \Delta I_L^2} \approx I_L
\]

\[
I_{L(PK)} = I_L + \frac{1}{2} \Delta I_L = 1.09 I_L
\]

Where:

- \(I_L\) = Average inductor current.

Select an inductor with saturation current rating at least 30% higher than the peak current.
5.4 MOSFET

MOSFET selection depends upon the maximum input voltage, output LED current, and switching frequency. The selected MOSFET should have a 30% margin on the maximum voltage rating for high reliability requirements.

The MOSFET channel resistance \(R_{DS(ON)} \) is selected such that it helps to get the required efficiency at the required LED currents as well as meets the cost requirement.

Logic level MOSFETs are preferred because the drive voltage is limited to 5V.

The MOSFET power loss has to be calculated for proper operation. The power loss consists of conduction loss and switching loss. The conduction loss can be found by:

\[
P_{\text{LOSS (CON)}} = I_{\text{FET (RMS)}}^2 \times R_{DS(ON)}
\]

\[
I_{\text{FET (RMS)}} = I_{\text{LED}} \times \sqrt{D}
\]

\[
D = \frac{V_{\text{TOTAL led}}}{V_{\text{IN}}}
\]

The switching loss occurs during the MOSFET turn-on and turn-off transition and can be found by:

\[
P_{\text{LOSS (TRAN)}} = \frac{V_{\text{IN}} \times I_{\text{LED}} \times f_{\text{SW}}}{I_{\text{DRV}}} \times (Q_{gs2} + Q_{gd})
\]

\[
I_{\text{DRV}} = \frac{V_{\text{DRV}}}{R_{\text{GATE}}}
\]

Where:

\(R_{\text{GATE}} \) = Total MOSFET gate resistance and gate driver resistance. \(Q_{gs2} \) and \(Q_{gd} \) can be found in a MOSFET manufacturer’s data sheet.

The total power loss is:

\[
P_{\text{LOSS (TOT)}} = P_{\text{LOSS (CON)}} + P_{\text{LOSS (TRAN)}}
\]

The MOSFET junction temperature is given by:

\[
T_J = P_{\text{LOSS (TOT)}} \times \theta_{JA} + T_A
\]

The \(T_J \) must not exceed maximum junction temperature under any conditions.

5.5 Freewheeling Diode

The freewheeling diode should have the reverse voltage rating to accommodate the maximum input voltage. The forward voltage drop should be small in order to get the lowest conduction dissipation for high efficiency. The forward current rating has to be at least equal to the LED current. A Schottky diode is recommended for highest efficiency.

5.6 Input Capacitor

The ceramic input capacitor is selected by voltage rating and ripple current rating. To determine the input capacitor ripple current rating, the RMS value of the input capacitor current can be found by:

\[
I_{\text{CIN (RMS)}} = I_{\text{LED}} \times \sqrt{D} \times (1 - D)
\]

The input capacitor ripple current rating can be considered as \(I_{\text{LED}}/2 \) under the worst condition, \(D = 50\% \).

The power loss in the input capacitor is:

\[
P_{\text{LOSS (CIN)}} = I_{\text{CIN (RMS)}}^2 \times ESR_{\text{CIN}}
\]

5.7 LED Ripple Current

The LED current is the same as inductor current. If the LED ripple current needs to be reduced, then place a 4.7 \(\mu F/50V \) ceramic capacitor across the LED.
5.8 Frequency Dithering

The MIC3203 is designed to reduce EMI by dithering the switching frequency ±12% in order to spread the frequency spectrum over a wider range. This lowers the EMI noise peaks generated by the switching regulator.

Switching regulators generate noise by their nature and they are the main EMI source to interference with nearby circuits. If the switching frequency of a regulator is modulated via frequency dithering, the energy of the EMI is spread among many frequencies instead of concentrated at fundamental switching frequency and its harmonics. The MIC3203 modulates the \(V_{CS(MAX)} \) with amplitude ±6mV by a pseudo random generator to generate the ±12% of the switching frequency dithering to reduce the EMI noise peaks.
6.0 PCB LAYOUT GUIDELINES

PCB layout is critical to achieve reliable, stable, and efficient performance. A ground plane is required to control EMI and minimize the inductance in power and signal return paths.

To minimize EMI and output noise, and to ensure proper operation of the MIC3203 regulator, follow these guidelines.

6.1 IC
- Use thick traces to route the input and output power lines.
- Signal and power grounds should be kept separate and connected at only one location.

6.2 Input Capacitor
- Place the input capacitors on the same side of the board and as close to the IC as possible.
- Keep both the VIN and PGND traces as short as possible.
- Place several vias to the ground plane close to the input capacitor ground terminal, but not between the input capacitors and IC pins.
- Use either X7R or X5R dielectric ceramic input capacitors. Do not use Y5V or Z5U type capacitors.
- Do not replace the ceramic input capacitor with any other type of capacitor. Any type of capacitor can be placed in parallel with the ceramic input capacitor.
- If a Tantalum input capacitor is placed in parallel with the input capacitor, it must be recommended for switching regulator applications and the operating voltage must be derated by 50%.
- In “Hot-Plug” applications, a Tantalum or Electrolytic bypass capacitor must be placed in parallel to ceramic capacitor to limit the overvoltage spike seen on the input supply with power is suddenly applied. In this case, an additional Tantalum or Electrolytic bypass input capacitor of 22 μF or higher is required at the input power connection if necessary.

6.3 Inductor
- Keep the inductor connection to the switch node (MOSFET drain) short.
- Do not route any digital lines underneath or close to the inductor.
- To minimize noise, place a ground plane underneath the inductor.

6.4 Output Capacitor
- If LED ripple current needs to be reduced, then place a 4.7 μF/50V capacitor across the LED. The capacitor must be placed as close to the LED as possible.

6.5 MOSFET
- Place the MOSFET as close as possible to the MIC3203 to avoid trace inductance. Provide sufficient copper area on the MOSFET ground to dissipate the heat.

6.6 Diode
- Place the Schottky diode on the same side of the board as the IC and input capacitor.
- The connection from the Schottky diode’s anode to the switching node must be as short as possible.
- The diode’s cathode connection to the R_CS must be keep as short as possible.

6.7 RC Snubber
- If an RC snubber is needed, place the RC snubber on the same side of the board and as close to the Schottky diode as possible.

6.8 Current Sense Resistor (R_CS)
- The VIN pin and CS pin must be as close as possible to R_CS. Make a Kelvin connection to the VIN and CS pins respectively for current sensing.

6.9 Trace Routing Recommendation
- Keep the power traces as short and wide as possible. One current flowing loop is during the MOSFET ON-time, the traces connecting the input capacitor C_IN, R_CS, LEDs, inductor, the MOSFET, and back to C_IN. The other current flowing loop is during the MOSFET OFF-time, the traces connecting R_CS, LED, inductor, freewheeling diode, and back to R_CS. These two loop areas should be kept as small as possible to minimize the noise interference.
- Keep all analog signal traces away from the switching node and its connecting traces.
7.0 RIPPLE MEASUREMENTS

To properly measure ripple on either input or output of a switching regulator, a proper ring in tip measurement is required. Standard oscilloscope probes come with a grounding clip or a long wire with an alligator clip. Unfortunately, for high-frequency measurements, this ground clip can pick-up high-frequency noise and erroneously inject it into the measured output ripple.

The standard evaluation board accommodates a homemade version by providing probe points for both the input and output supplies and their respective grounds. This requires the removing of the oscilloscope probe sheath and ground clip from a standard oscilloscope probe and wrapping a non-shielded bus wire around the oscilloscope probe. If there does not happen to be any non-shielded bus wire immediately available, the leads from axial resistors will work. By maintaining the shortest possible ground lengths on the oscilloscope probe, true ripple measurements can be obtained.

FIGURE 7-1: Low Noise Measurement.
8.0 PACKAGING INFORMATION

8.1 Package Marking Information

8-Lead SOIC* Dither Enabled

Example

- XXX
- XXXXXX
- WNNN

- MIC
- 3203YM
- 4560

8-Lead SOIC* Dither Disabled

Example

- XXX
- XXXX-XXX
- WNNN

- MIC
- 3203-1YM
- 4560

Legend:

- XX...X Product code or customer-specific information
- Y Year code (last digit of calendar year)
- YY Year code (last 2 digits of calendar year)
- WW Week code (week of January 1 is week ‘01’)
- NNN Alphanumeric traceability code
- e3 Pb-free JEDEC® designator for Matte Tin (Sn)
- * This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
- ●, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar (_) and/or Overbar (‾) symbol may not be to scale.
8-Lead SOIC Package Outline and Recommended Land Pattern

TITLE

8 LEAD SOICN PACKAGE OUTLINE & RECOMMENDED LAND PATTERN

NOTES:

1. DIMENSIONS ARE IN INCHES (MILLIMETERS).
2. CONTROLLING DIMENSION INCHES.
3. DIMENSION DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS, EITHER OF WHICH SHALL NOT EXCEED 0.005 (0.13) PER SIDE.

RECOMMENDED LAND PATTERN

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.
APPENDIX A: REVISION HISTORY

Revision A (November 2019)

- Converted Micrel document MIC3203/MIC3203-1 to Microchip data sheet template DS20006250A.
- Minor grammatical text changes throughout.
- Updated minimum value for EN Logic Level High in Electrical Characteristics table.
- Evaluation Board Schematic and BOM sections from original data sheet moved to the part’s Evaluation Board User’s Guide.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

<table>
<thead>
<tr>
<th>Device</th>
<th>Part No.</th>
<th>Dither</th>
<th>Junction Temp. Range</th>
<th>Package</th>
<th>Media Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC3203:</td>
<td><blank></td>
<td>Enabled</td>
<td>–40°C to +125°C, RoHS-Compliant</td>
<td>8-Lead SOIC</td>
<td>95/Tube</td>
</tr>
<tr>
<td>Dither:</td>
<td>1</td>
<td>Disabled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction Temperature Range:</td>
<td>Y</td>
<td>–40°C to +125°C, RoHS-Compliant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package:</td>
<td>M</td>
<td>8-Lead SOIC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media Type:</td>
<td><blank></td>
<td>95/Tube</td>
<td>TR</td>
<td>2,500/Reel</td>
<td></td>
</tr>
</tbody>
</table>

Examples:

a) MIC3203YM: MIC3203, Dither Enabled, –40°C to +125°C Temperature Range, 8-Lead SOIC, 95/Tube
b) MIC3203YM-TR: MIC3203, Dither Enabled, –40°C to +125°C Temperature Range, 8-Lead SOIC, 2,500/Reel
c) MIC3203-1YM: MIC3203, Dither Disabled, –40°C to +125°C Temperature Range, 8-Lead SOIC, 95/Tube
d) MIC3203-1YM-TR: MIC3203, Dither Disabled, –40°C to +125°C Temperature Range, 8-Lead SOIC, 2,500/Reel

Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntellIMOS, Libero, motorBench, mTouch, Powermate 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, Smart Fusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BiCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANcheck, LinkMD, maxXtyle, maxTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, Sensory, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntellIMOS, Libero, motorBench, mTouch, Powermate 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, Smart Fusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved.
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

- **Atlanta**
 Duluth, GA
 Tel: 678-957-9614
 Fax: 678-957-1455
- **Austin, TX**
 Tel: 512-257-3370
- **Boston**
 Westborough, MA
 Tel: 774-760-0087
 Fax: 774-760-0088
- **Chicago**
 Itasca, IL
 Tel: 630-285-0071
 Fax: 630-285-0075
- **Dallas**
 Addison, TX
 Tel: 972-818-7423
 Fax: 972-818-2924
- **Detroit**
 Novi, MI
 Tel: 248-848-4000
- **Houston, TX**
 Tel: 281-894-5983
- **Indianapolis**
 Noblesville, IN
 Tel: 317-773-8323
 Fax: 317-773-5453
 Tel: 317-536-2380
- **Los Angeles**
 Mission Viejo, CA
 Tel: 949-462-9523
 Fax: 949-462-9608
 Tel: 951-273-7800
- **Raleigh, NC**
 Tel: 919-844-7510
- **New York, NY**
 Tel: 631-435-6000
- **San Jose, CA**
 Tel: 408-735-9110
 Tel: 408-436-4270
- **Canada - Toronto**
 Tel: 905-695-1980
 Fax: 905-695-2078

ASIA/PACIFIC

- **Australia - Sydney**
 Tel: 61-2-9868-6733
- **China - Beijing**
 Tel: 86-10-8569-7000
- **China - Chengdu**
 Tel: 86-28-8665-5511
- **China - Chongqing**
 Tel: 86-23-8980-9588
- **China - Dongguan**
 Tel: 86-769-8702-9880
- **China - Guangzhou**
 Tel: 86-20-8755-8029
- **China - Hangzhou**
 Tel: 86-571-8792-8115
- **China - Hong Kong SAR**
 Tel: 852-2943-5100
- **China - Nanjing**
 Tel: 86-25-8473-2460
- **China - Qingdao**
 Tel: 86-532-8502-7355
- **China - Shanghai**
 Tel: 86-21-3326-8000
- **China - Shenyang**
 Tel: 86-24-2334-2829
- **China - Shenzhen**
 Tel: 86-755-8864-2200
- **China - Suzhou**
 Tel: 86-186-6233-1526
- **China - Wuhan**
 Tel: 86-27-5980-5300
- **China - Xiamen**
 Tel: 86-20-9383-7252
- **China - Xiamen**
 Tel: 86-592-2386138
- **China - Zhuhai**
 Tel: 86-756-3210040
- **India - Bangalore**
 Tel: 91-80-3090-4444
- **India - New Delhi**
 Tel: 91-11-4160-8631
- **India - Pune**
 Tel: 91-20-4121-0141
- **Japan - Osaka**
 Tel: 81-6-6152-7160
- **Japan - Tokyo**
 Tel: 81-3-6880-3770
- **Korea - Daegu**
 Tel: 82-53-744-4301
- **Korea - Seoul**
 Tel: 82-2-554-7200
- **Malaysia - Kuala Lumpur**
 Tel: 60-3-7651-7906
- **Malaysia - Penang**
 Tel: 60-4-227-8870
- **Philippines - Manila**
 Tel: 63-2-634-9065
- **Singapore**
 Tel: 65-6334-8870
- **Taiwan - Hsin Chu**
 Tel: 886-3-577-8366
- **Taiwan - Kaohsiung**
 Tel: 886-7-213-7830
- **Taiwan - Taipei**
 Tel: 886-2-2508-8600
- **Thailand - Bangkok**
 Tel: 66-2-694-1351
- **Vietnam - Ho Chi Minh**
 Tel: 84-28-5446-2100

EUROPE

- **Austria - Wels**
 Tel: 43-7242-2244-39
 Fax: 43-7242-2244-393
- **Denmark - Copenhagen**
 Tel: 45-4450-2828
 Fax: 45-4485-2829
- **Finland - Espoo**
 Tel: 358-9-4520-820
- **France - Paris**
 Tel: 33-1-69-53-63-20
 Fax: 33-1-69-30-90-79
- **Germany - Garching**
 Tel: 49-8931-9700
- **Germany - Haan**
 Tel: 49-2129-3766400
- **Germany - Heilbronn**
 Tel: 49-7131-72400
- **Germany - Karlsruhe**
 Tel: 49-721-625370
- **Germany - Munich**
 Tel: 49-89-627-144-0
 Fax: 49-89-627-144-44
- **Germany - Rosenheim**
 Tel: 49-8031-354-560
- **Israel - Ra’anana**
 Tel: 972-9-744-7705
- **Italy - Milan**
 Tel: 39-0331-742611
 Fax: 39-0331-466781
- **Italy - Padova**
 Tel: 39-049-7625286
- **Netherlands - Drunen**
 Tel: 31-416-690399
 Fax: 31-416-690340
- **Norway - Trondheim**
 Tel: 47-7288-4388
- **Poland - Warsaw**
 Tel: 48-22-3325737
- **Romania - Bucharest**
 Tel: 40-21-407-87-50
- **Spain - Madrid**
 Tel: 34-91-708-08-90
 Fax: 34-91-708-08-91
- **Sweden - Gothenburg**
 Tel: 46-31-704-60-40
- **Sweden - Stockholm**
 Tel: 46-8-5090-4654
- **UK - Wokingham**
 Tel: 44-118-921-5800
 Fax: 44-118-921-5820

© 2019 Microchip Technology Inc.