MCP6V51

45V, 2 MHz Zero-Drift Op Amp with EMI Filtering

Features

• High DC Precision:
 - V_{OS} Drift: 36 nV/°C (max.)
 - V_{OS}: 15 µV (max.)
 - Open-Loop Gain: 140 dB (min.)
 - PSRR: 134 dB (min.)
 - CMRR: 135 dB (min.)
• Low Noise:
 - 10.2 nV/√Hz at 1 kHz
 - E_{n}: 0.21 µVP-P, $f = 0.1$ Hz to 10 Hz
• Low Power:
 - I_Q: 470 µA/amplifier (typ.)
 - Wide Supply Voltage Range: 4.5V to 45V
• Easy to Use:
 - Input Range incl. Negative Rail
 - Rail-to-Rail Output
 - EMI Filtered Inputs
 - Gain Bandwidth Product: 2 MHz
 - Slew Rate 1.2V/µs
 - Unity Gain Stable
• Small Packages: 5-Lead SOT23, 8-Lead MSOP
• Extended Temperature Range: -40°C to +125°C

Typical Applications

• Industrial Instrumentation, PLC
• Process Control
• Power Control Loops
• Sensor Conditioning
• Electronic Weight Scales
• Medical Instrumentation
• Automotive Monitors
• Low-side Current Sensing

General Description

The Microchip Technology Inc. MCP6V51 operational amplifier employs dynamic offset correction for very low offset and offset drift. The device has a gain bandwidth product of 2 MHz (typical). It is unity-gain stable, has virtually no 1/f noise and excellent Power Supply Rejection Ratio (PSRR) and Common Mode Rejection Ratio (CMRR). The product operates with a single supply voltage that can range from 4.5V to 45V, (-2.25V to ±22.5V), while drawing 470 µA (typical) of quiescent current.

The MCP6V51 op amp is offered as a single-channel amplifier and is designed using an advanced CMOS process.

Design Aids

• Microchip Advanced Part Selector (MAPS)
• Application Notes

Related Parts

• MCP6V71/1U/2/4: Zero-Drift, 2 MHz, 1.8V to 5V
• MCP6V81/1U/2/4: Zero-Drift, 5 MHz, 1.8V to 5V
Figure 1 and Figure 2 show input offset voltage versus ambient temperature for different power supply voltages.

As seen in Figure 1 and Figure 2, the MCP6V51 op amps have excellent performance across temperature. The input offset voltage temperature drift (TC1) shown is well within the specified maximum values of 31 nV/°C at V_{DD} = 4.5V and 36 nV/°C at V_{DD} = 45V.

This performance supports applications with stringent DC precision requirements. In many cases, it will not be necessary to correct for temperature effects (i.e., calibrate) in a design. In the other cases, the correction will be small.
1.0 ELECTRICAL CHARACTERISTICS

1.1 Absolute Maximum Ratings †

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD - VSS</td>
<td>-15</td>
<td>±2.4</td>
<td>+15</td>
<td>µV</td>
<td>TA = +25°C</td>
</tr>
<tr>
<td>Current at Input Pins</td>
<td>±10 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Inputs (VIN+ and VIN-)</td>
<td>VSS - 1.0V to VDD + 1.0V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Other Inputs and Outputs</td>
<td>VSS - 0.3V to VDD + 0.3V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference Input Voltage</td>
<td>±1V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Short Circuit Current</td>
<td>Continuous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current at Output and Supply Pins</td>
<td>±50 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>+150°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD protection on all pins (HBM, CDM, MM)</td>
<td>≥ 2 kV, 750V, 200V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note 1: See Section 4.2.1, Input Protection.

1.2 Electrical Specifications

DC ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>VOS</td>
<td>-15</td>
<td>±2.4</td>
<td>+15</td>
<td>µV</td>
<td>TA = +25°C</td>
</tr>
<tr>
<td>Input Offset Voltage Drift with Temperature (Linear Temp. Co.)</td>
<td>TC1</td>
<td>-31</td>
<td>±5</td>
<td>+31</td>
<td>nV/°C</td>
<td>TA = -40 to +125°C, VDD = 4.5V (Note 1)</td>
</tr>
<tr>
<td></td>
<td>TC1</td>
<td>-36</td>
<td>±7</td>
<td>+36</td>
<td>nV/°C</td>
<td>TA = -40 to +125°C, VDD = 45V (Note 1)</td>
</tr>
<tr>
<td>Input Offset Voltage Quadratic Temp. Co.</td>
<td>TC2</td>
<td>—</td>
<td>±42</td>
<td>—</td>
<td>nV/°C²</td>
<td>TA = -40 to +125°C, VDD = 4.5V</td>
</tr>
<tr>
<td></td>
<td>TC2</td>
<td>—</td>
<td>±38</td>
<td>—</td>
<td>nV/°C²</td>
<td>TA = -40 to +125°C, VDD = 45V</td>
</tr>
<tr>
<td>Input Offset Voltage Aging</td>
<td>∆VOS</td>
<td>—</td>
<td>±2</td>
<td>—</td>
<td>µV</td>
<td>408 hours Life Test at +150°C, measured at +25°C</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>PSRR</td>
<td>134</td>
<td>160</td>
<td>—</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>124</td>
<td>138</td>
<td>—</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

† Notice: Not production tested. Limits set by characterization and/or simulation and provided as design guidance only.

Note 2: Figure 2-17 shows how VCML and VCMH changed across temperature for the first production lot.
DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, \(T_A = +25°C \), \(V_{DD} = +4.5V \) to +45V, \(V_{SS} = GND \), \(V_{CM} = V_{DD}/3 \), \(V_{OUT} = V_{DD}/2 \), \(V_L = V_{DD}/2 \), \(R_L = 10 \text{ kΩ} \) to \(V_L \) and \(C_L = 100 \text{ pF} \) (refer to Figure 1-4 and Figure 1-5).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Bias Current across Temperature</td>
<td>(I_B)</td>
<td>(-)</td>
<td>±80</td>
<td>(-)</td>
<td>pA</td>
<td>(T_A = +85°C) (Note 1)</td>
</tr>
<tr>
<td></td>
<td>(I_B)</td>
<td>-4</td>
<td>±1.4</td>
<td>+4</td>
<td>nA</td>
<td>(T_A = +125°C) (Note 1)</td>
</tr>
<tr>
<td>Input Offset Current (I_{OS})</td>
<td>-1</td>
<td>±0.28</td>
<td>+1</td>
<td>nA</td>
<td>(V_{DD} = 45V)</td>
<td></td>
</tr>
<tr>
<td>Input Offset Current across Temperature (I_{OS})</td>
<td>(-)</td>
<td>±0.32</td>
<td>(-)</td>
<td>nA</td>
<td>(T_A = +85°C) (Note 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8</td>
<td>±0.45</td>
<td>+8</td>
<td>nA</td>
<td>(T_A = +125°C) (Note 1)</td>
<td></td>
</tr>
<tr>
<td>Common Mode Input Impedance (Z_{CM})</td>
<td>(-)</td>
<td>120G</td>
<td></td>
<td>3</td>
<td>(-)</td>
<td>Ω</td>
</tr>
<tr>
<td>Differential Input Impedance (Z_{DIFF})</td>
<td>(-)</td>
<td>2.5M</td>
<td></td>
<td>5.2</td>
<td>(-)</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Common Mode

Common Mode Input Voltage Range Low \(V_{CML} \)	\(-\)	\(-\)	\(V_{SS} - 0.3 \)	V	(Note 2)
Common Mode Input Voltage Range High \(V_{CMH} \)	\(V_{DD} - 2.1 \)	\(-\)	\(-\)	V	(Note 2)
Common Mode Rejection Ratio \(CMRR \)	110	125	\(-\)	dB	\(V_{DD} = 4.5V, \ V_{CM} = -0.3V \) to \(2.4V \) (Note 2)
	106	116	\(-\)	dB	\(V_{DD} = 4.5V, \ T_A = -40°C \) to \(+125°C \), (Note 1)
	135	150	\(-\)	dB	\(V_{DD} = 45V, \ V_{CM} = -0.3V \) to \(42.9V \) (Note 2)
	128	140	\(-\)	dB	\(V_{DD} = 45V, \ T_A = -40°C \) to \(+125°C \), (Note 1)

Open-Loop Gain

DC Open-Loop Gain \(A_{OL} \)	124	142	\(-\)	dB	\(V_{DD} = 4.5V, \ V_{OUT} = 0.3V \) to \(4.2V \)
	120	139	\(-\)	dB	\(V_{DD} = 4.5V, \ T_A = -40°C \) to \(+125°C \), (Note 1)
	140	164	\(-\)	dB	\(V_{DD} = 45V, \ V_{OUT} = 0.3V \) to \(44.7V \)
	134	160	\(-\)	dB	\(V_{DD} = 45V, \ T_A = -40°C \) to \(+125°C \), (Note 1)

Output

Minimum Output Voltage Swing \(V_{OL} \)	\(V_{SS} + 45 \)	\(V_{SS} + 60 \)	mV	\(R_L = 1 \text{ kΩ} \), \(V_{DD} = 4.5V \)
	\(V_{SS} + 500 \)	\(V_{SS} + 1000 \)	\(-\)	\(R_L = 1 \text{ kΩ} \), \(V_{DD} = 45V \)
	\(V_{SS} + 6 \)	\(V_{SS} + 20 \)	\(-\)	\(R_L = 10 \text{ kΩ} \), \(V_{DD} = 4.5V \)
	\(V_{SS} + 50 \)	\(V_{SS} + 70 \)	\(-\)	\(R_L = 10 \text{ kΩ} \), \(V_{DD} = 45V \)

Note 1: Not production tested. Limits set by characterization and/or simulation and provided as design guidance only.

Note 2: Figure 2-17 shows how \(V_{CML} \) and \(V_{CMH} \) changed across temperature for the first production lot.
DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, $T_A = +25^\circ\text{C}$, $V_{DD} = +4.5\text{V}$ to $+45\text{V}$, $V_{SS} = \text{GND}$, $V_{CM} = V_{DD}/3$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10$ kΩ to V_L and $C_L = 100$ pF (refer to Figure 1-4 and Figure 1-5).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Output Voltage Swing</td>
<td>V_{OH}</td>
<td>$V_{DD} - 150$</td>
<td>$V_{DD} - 100$</td>
<td>—</td>
<td>mV</td>
<td>$R_L = 1$ kΩ, $V_{DD} = 4.5\text{V}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} - 2500$</td>
<td>$V_{DD} - 1500$</td>
<td>—</td>
<td>mV</td>
<td>$R_L = 1$ kΩ, $V_{DD} = 45\text{V}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} - 20$</td>
<td>$V_{DD} - 12$</td>
<td>—</td>
<td>mV</td>
<td>$R_L = 10$ kΩ, $V_{DD} = 4.5\text{V}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} - 200$</td>
<td>$V_{DD} - 100$</td>
<td>—</td>
<td>mV</td>
<td>$R_L = 10$ kΩ, $V_{DD} = 45\text{V}$</td>
</tr>
<tr>
<td>Output Short Circuit Current</td>
<td>I_{SC^+}</td>
<td>—</td>
<td>46</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_{SC^-}</td>
<td>—</td>
<td>36</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Closed-loop Output Resistance</td>
<td>R_{OUT}</td>
<td>—</td>
<td>16</td>
<td>—</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Capacitive Load Drive</td>
<td>C_L</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Power Supply

Supply Voltage	V_{DD}	4.5	—	45	V
Quiescent Current per Amplifier	I_Q	310	460	590	μA
		310	470	590	μA
		—	540	670	μA
Power-on Reset (POR) Trip Voltage	V_{POR}	—	2.3	—	V

Note 1: Not production tested. Limits set by characterization and/or simulation and provided as design guidance only.

Note 2: Figure 2-17 shows how V_{CM} changed across temperature for the first production lot.

AC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, $T_A = +25^\circ\text{C}$, $V_{DD} = +4.5\text{V}$ to $+45\text{V}$, $V_{SS} = \text{GND}$, $V_{CM} = V_{DD}/3$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10$ kΩ to V_L and $C_L = 100$ pF (refer to Figure 1-4 and Figure 1-5).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifier AC Response</td>
<td>GBWP</td>
<td>—</td>
<td>1.8</td>
<td>—</td>
<td>MHz</td>
<td>$V_{DD} = 4.5\text{V}$, $V_{IN} = 10$ mVpp, Gain = 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>MHz</td>
<td>$V_{DD} = 45\text{V}$, $V_{IN} = 10$ mVpp, Gain = 100</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>SR</td>
<td>—</td>
<td>1.2</td>
<td>—</td>
<td>V/μs</td>
<td>(Figure 2-44)</td>
</tr>
<tr>
<td>Phase Margin</td>
<td>PM</td>
<td>—</td>
<td>66</td>
<td>—</td>
<td>deg.</td>
<td>$V_{DD} = 45\text{V}$</td>
</tr>
<tr>
<td>Amplifier Noise Response</td>
<td>E_{ni}</td>
<td>—</td>
<td>0.1</td>
<td>—</td>
<td>μV<sub>P-P</sub></td>
<td>$f = 0.01$ Hz to 1 Hz</td>
</tr>
<tr>
<td></td>
<td>E_{ni}</td>
<td>—</td>
<td>0.21</td>
<td>—</td>
<td>μV<sub>P-P</sub></td>
<td>$f = 0.1$ Hz to 10 Hz</td>
</tr>
<tr>
<td>Input Noise Voltage Density</td>
<td>e_{ni}</td>
<td>—</td>
<td>10.2</td>
<td>—</td>
<td>nV/√Hz</td>
<td>$f = 1$ kHz</td>
</tr>
<tr>
<td>Input Noise Current Density</td>
<td>i_{ni}</td>
<td>—</td>
<td>4</td>
<td>—</td>
<td>fA/√Hz</td>
<td></td>
</tr>
<tr>
<td>Amplifier Step Response</td>
<td>t_{STR}</td>
<td>—</td>
<td>200</td>
<td>—</td>
<td>μs</td>
<td>$G = +1$, 1% V_{OUT} settling (Note 1)</td>
</tr>
<tr>
<td>Offset Correction Settling Time</td>
<td>t_{STL}</td>
<td>—</td>
<td>45</td>
<td>—</td>
<td>μs</td>
<td>$G = +1$, V_{IN} step of 2V, V_{OS} within ±100 μV of its final value</td>
</tr>
</tbody>
</table>

Note 1: Behavior may vary with different gains; see Section 4.3.3 “Offset at Power-Up”.

Note 2: t_{STL} and t_{ODR} include some uncertainty due to clock edge timing.
AC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = +4.5V$ to +45V, $V_{SS} = GND$, $V_{CM} = V_{DD}/3$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \, k\Omega$ to V_L, and $C_L = 100 \, pF$ (refer to Figure 1-4 and Figure 1-5).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Overdrive Recovery Time</td>
<td>t_{ODR}</td>
<td>— 65</td>
<td>—</td>
<td>—</td>
<td>μs</td>
<td>$G = -10$, ±0.5V input overdrive to $V_{DD}/2$, V_{IN} 50% point to V_{OUT} 90% point (Note 2)</td>
</tr>
<tr>
<td>EMI Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMI Rejection Ratio</td>
<td>EMIRR</td>
<td>— 80</td>
<td>—</td>
<td>—</td>
<td>dB</td>
<td>$V_{IN} = 0.1 , V_{PK}$, $f = 400 , MHz$, $V_{DD} = 45V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— 95</td>
<td>—</td>
<td>—</td>
<td></td>
<td>$V_{IN} = 0.1 , V_{PK}$, $f = 900 , MHz$, $V_{DD} = 45V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— 108</td>
<td>—</td>
<td>—</td>
<td></td>
<td>$V_{IN} = 0.1 , V_{PK}$, $f = 1800 , MHz$, $V_{DD} = 45V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— 109</td>
<td>—</td>
<td>—</td>
<td></td>
<td>$V_{IN} = 0.1 , V_{PK}$, $f = 2400 , MHz$, $V_{DD} = 45V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— 109</td>
<td>—</td>
<td>—</td>
<td></td>
<td>$V_{IN} = 0.1 , V_{PK}$, $f = 5600 , MHz$, $V_{DD} = 45V$</td>
</tr>
</tbody>
</table>

Note 1: Behavior may vary with different gains; see Section 4.3.3 “Offset at Power-Up”.

Note 2: t_{STL} and t_{ODR} include some uncertainty due to clock edge timing.

TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, all limits are specified for: $V_{DD} = +4.5V$ to +45V, $V_{SS} = GND$.

Temperature Ranges

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specified Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_A</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Thermal Package Resistances

<table>
<thead>
<tr>
<th>Parameters</th>
<th>θ_{JA}</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, 8LD-MSOP</td>
<td>θ_{JA}</td>
<td>—</td>
<td>206</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, SLD-SOT-23</td>
<td>θ_{JA}</td>
<td>—</td>
<td>115</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Operation must not cause T_J to exceed Maximum Junction Temperature specification (+150°C).
1.3 Timing Diagrams

The Timing Diagrams provide a depiction of the Amplifier Step Response specifications listed under the AC Electrical Specifications table.

![Figure 1-1: Amplifier Start-Up.](image)

FIGURE 1-1: Amplifier Start-Up.

![Figure 1-2: Offset Correction Settling Time.](image)

FIGURE 1-2: Offset Correction Settling Time.

![Figure 1-3: Output Overdrive Recovery.](image)

FIGURE 1-3: Output Overdrive Recovery.

1.4 Test Circuits

The circuits used for most DC and AC tests are shown in Figure 1-4 and Figure 1-5. Lay the bypass capacitors out as discussed in Section 4.3.10 “Supply Bypassing and Filtering”. R_N is equal to the parallel combination of R_F and R_G to minimize bias current effects.

![Figure 1-4: AC and DC Test Circuit for Most Noninverting Gain Conditions.](image)

FIGURE 1-4: AC and DC Test Circuit for Most Noninverting Gain Conditions.

![Figure 1-5: AC and DC Test Circuit for Most Inverting Gain Conditions.](image)

FIGURE 1-5: AC and DC Test Circuit for Most Inverting Gain Conditions.

The circuit in Figure 1-6 tests the input’s dynamic behavior (i.e., t_{STR}, t_{STL}, and t_{ODR}). The potentiometer balances the resistor network (V_{OUT} should equal V_{REF} at DC). The op amp’s Common Mode Input Voltage is $V_{CM} = V_{IN}/3$. The error at the input (V_{ERR}) appears at V_{OUT} with a noise gain of approx. 10 V/V.

![Figure 1-6: Test Circuit for Dynamic Input Behavior.](image)

FIGURE 1-6: Test Circuit for Dynamic Input Behavior.
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = +4.5$V to +45V, $V_{SS} = $ GND, $V_{CM} = V_{DD}/3$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \, k\Omega$ to V_L and $C_L = 100 \, pF$.

2.1 DC Input Precision

FIGURE 2-1: Input Offset Voltage.

FIGURE 2-2: Input Offset Voltage Drift.

FIGURE 2-3: Input Offset Voltage vs. Power Supply Voltage.

FIGURE 2-4: Input Offset Voltage vs. Output Voltage with $V_{DD} = 4.5$V.

FIGURE 2-5: Input Offset Voltage vs. Output Voltage with $V_{DD} = 45$V.

FIGURE 2-6: Input Offset Voltage vs. Common Mode Voltage with $V_{DD} = 4.5$V.
FIGURE 2-7: Input Offset Voltage vs. Common Mode Voltage with $V_{DD} = 45V$.

FIGURE 2-8: CMRR.

FIGURE 2-9: PSRR.

FIGURE 2-10: DC Open-Loop Gain.

FIGURE 2-11: CMRR and PSRR vs. Ambient Temperature.

FIGURE 2-12: DC Open-Loop Gain vs. Ambient Temperature.
FIGURE 2-13: Input Bias and Offset Currents vs. Common Mode Input Voltage with \(T_A = +85^\circ C \).

FIGURE 2-14: Input Bias and Offset Currents vs. Common Mode Input Voltage with \(T_A = +125^\circ C \).

FIGURE 2-15: Input Bias and Offset Currents vs. Ambient Temperature with \(V_{DD} = 45V \).

FIGURE 2-16: Input Bias Current vs. Input Voltage (Below \(V_{SS} \)).
Note: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = +4.5V$ to $+45V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/3$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \, k\Omega$ to V_L and $C_L = 100 \, pF$.

2.2 Other DC Voltages and Currents

FIGURE 2-17: Input Common Mode Voltage Headroom (Range) vs. Ambient Temperature.

FIGURE 2-18: Output Voltage Headroom vs. Output Current.

FIGURE 2-19: Output Voltage Headroom vs. Ambient Temperature.

FIGURE 2-20: Output Voltage Headroom vs Temperature $R_L = 10 \, k\Omega$.

FIGURE 2-21: Output Short Circuit Current vs. Power Supply Voltage.

FIGURE 2-22: Supply Current vs. Power Supply Voltage.
Note: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = +4.5V$ to $+45V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/3$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \, k\Omega$ to V_L and $C_L = 100 \, pF$.

2.3 Frequency Response

FIGURE 2-23: CMRR and PSRR vs. Frequency.

FIGURE 2-24: Open-Loop Gain vs. Frequency with $V_{DD} = 4.5V$.

FIGURE 2-25: Open-Loop Gain vs. Frequency with $V_{DD} = 45V$.

FIGURE 2-26: Gain Bandwidth Product and Phase Margin vs. Ambient Temperature.

FIGURE 2-27: Gain Bandwidth Product and Phase Margin vs. Common Mode Input Voltage.

FIGURE 2-28: Closed-Loop Output Impedance vs. Frequency with $V_{DD} = 4.5V$.
FIGURE 2-29: Closed-Loop Output Impedance vs. Frequency with \(V_{DD} = 4.5 \text{V} \).

FIGURE 2-30: Maximum Output Voltage Swing vs. Frequency.

FIGURE 2-31: EMIRR vs. Frequency.
Note: Unless otherwise indicated, \(T_A = +25°C, \ V_{DD} = +4.5V \) to +45V, \(V_{SS} = \text{GND}, \ V_{CM} = V_{DD}/3, \ V_{OUT} = V_{DD}/2, \ V_L = V_{DD}/2, \ R_L = 10 \Omega \) to \(V_L \) and \(C_L = 100 \text{ pF} \).

2.4 Input Noise

FIGURE 2-32: Input Noise Voltage Density and Integrated Input Noise Voltage vs. Frequency.

FIGURE 2-33: Input Noise vs. Time with 1 Hz and 10 Hz Filters and \(V_{DD} = 4.5V \).

FIGURE 2-34: Input Noise vs. Time with 1 Hz and 10 Hz Filters and \(V_{DD} = 45V \).
Note: Unless otherwise indicated, $T_A = +25^\circ C$, $V_{DD} = +4.5V$ to $+45V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/3$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \, k\Omega$ to V_L and $C_L = 100 \, pF$.

2.5 Time Response

FIGURE 2-35: Input Offset Voltage vs. Time with Temperature Change.

FIGURE 2-36: Input Offset Voltage vs. Time at Power-Up.

FIGURE 2-37: The MCP6V51 Shows No Input Phase Reversal with Overdrive.

FIGURE 2-38: Noninverting Small Signal Step Response.

FIGURE 2-39: Noninverting Large Signal Step Response.

FIGURE 2-40: Noninverting $40 \, V_{PP}$ Step Response.
FIGURE 2-41: Inverting Small Signal Step Response.

FIGURE 2-42: Inverting Large Signal Step Response.

FIGURE 2-43: Inverting 40 VPP Step Response.

FIGURE 2-44: Slew Rate vs. Ambient Temperature.

FIGURE 2-45: Output Overdrive Recovery vs. Time with G = -10 V/V.

3.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>MCP6V51</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT23-5</td>
<td>MSOP-8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>V_{OUT}</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>V_{IN^-}</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>V_{IN^+}</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>V_{SS}</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>V_{DD}</td>
</tr>
<tr>
<td>—</td>
<td>1, 5, 8</td>
<td>NC</td>
</tr>
</tbody>
</table>

3.1 Analog Output

The analog output pins (V_{OUT}) are low-impedance voltage sources.

3.2 Analog Inputs

The noninverting and inverting inputs (V_{IN^+}, V_{IN^-}, ...) are high-impedance CMOS inputs with low bias currents.

3.3 Power Supply Pins

The positive power supply (V_{DD}) is 4.5V to 45V higher than the negative power supply (V_{SS}). For normal operation, the other pins are between V_{SS} and V_{DD}.

Typically, these parts are used in a single (positive) supply configuration. In this case, V_{SS} is connected to ground and V_{DD} is connected to the supply. V_{DD} will need bypass capacitors.
4.0 APPLICATIONS

The MCP6V51 is designed for precision applications with requirements for small packages and low power. Its wide supply voltage range and low quiescent current make the MCP6V51 devices ideal for industrial applications.

4.1 Overview of Zero-Drift Operation

Figure 4-1 shows a simplified diagram of the MCP6V51 zero-drift op amp. This diagram will be used to explain how slow voltage errors are reduced in this architecture (much better V_{OS}, $\Delta V_{OS}/\Delta T_{A}$ (TC_1), CMRR, PSRR, A_{OL} and 1/f noise).

FIGURE 4-1: Simplified Zero-Drift Op Amp Functional Diagram.

4.1.1 BUILDING BLOCKS

The Main Amplifier is designed for high gain and bandwidth, with a differential topology. Its main input pair (+ and - pins at the top left) is used for the higher frequency portion of the input signal. Its auxiliary input pair (+ and - pins at the bottom left) is used for the low-frequency portion of the input signal and corrects the op amp’s input offset voltage. Both inputs are added together internally.

The Auxiliary Amplifier, Chopper Input Switches and Chopper Output Switches provide a high DC gain to the input signal. DC errors are modulated to higher frequencies, while white noise is modulated to low frequency.

The Low-Pass Filter reduces high-frequency content, including harmonics of the chopping clock.

The Output Buffer drives external loads at the V_{OUT} pin (V_{REF} is an internal reference voltage).

The Oscillator runs at $f_{OSC1} = 200$ kHz. Its output is divided by two, to produce the chopping clock rate of $f_{CHOP} = 100$ kHz.

The internal Power-on Reset (POR) starts the part in a known good state, protecting against power supply brown-outs.

The Digital Control block controls switching and POR events.

4.1.2 CHOPPING ACTION

Figure 4-2 shows the amplifier connections for the first phase of the chopping clock and Figure 4-3 shows the connections for the second phase. Its slow voltage errors alternate in polarity, making the average error small.

FIGURE 4-2: First Chopping Clock Phase; Equivalent Amplifier Diagram.

FIGURE 4-3: Second Chopping Clock Phase; Equivalent Amplifier Diagram.
4.2 Other Functional Blocks

4.2.1 INPUT PROTECTION

The MCP6V51 can be operated on a single supply voltage ranging from 4.5V to 45V, or in a split-supply application (+/-2.25V to +/- 22.5V). The input common-mode range extends below the negative rail, \(V_{CM} = V_{SS} - 0.3V \) at 25°C, while maintaining high CMRR (135 dB min. at 45VDD). The upper range of the input common-mode is limited to \(V_{CM} = V_{DD} - 2.1V \).

To ensure proper operation, these \(V_{CM} \) limits, along with any potential overvoltage/current conditions as described in the following paragraphs, should be taken into consideration.

4.2.1.1 Phase Reversal

The input devices are designed to not exhibit phase inversion when the input pins exceed the supply voltages. Figure 2-37 shows an input voltage exceeding both supplies with no phase inversion.

4.2.1.2 Input Voltage Limits

In order to prevent damage and/or improper operation of these amplifiers, the circuit must limit the voltages at the input pins (see Section 1.1, Absolute Maximum Ratings †). This requirement is independent of the current limits discussed later on.

The ESD protection on the inputs can be depicted as shown in Figure 4-4. This structure was chosen to protect the input transistors against many (but not all) overvoltage conditions and to minimize input bias current (\(I_B \)).

The input ESD diodes clamp the inputs when they try to go more than one diode drop below \(V_{SS} \). They also clamp any voltages well above \(V_{DD} \); their breakdown voltage is high enough to allow normal operation but not low enough to protect against slow overvoltage (beyond \(V_{DD} \)) events. Very fast ESD events (that meet the specification) are limited so that damage can largely be prevented.

In addition, the input is protected by a pair of back-to-back diodes across the amplifier's inputs, which will limit the voltage that can develop across the inputs to about +/-1V.

In some applications, it may be necessary to prevent excessive voltages from reaching the op amp inputs; Figure 4-5 shows one approach of protecting these inputs. \(D_1 \) and \(D_2 \) may be small-signal silicon diodes, Schottky diodes for lower clamping voltages or diode-connected FETs for low leakage.

![Figure 4-5: Protecting the Analog Inputs against High Voltages.](image)

4.2.1.3 Input Current Limits

In order to prevent damage and/or improper operation of these amplifiers, the circuit must limit the currents into the input pins (see Section 1.1, Absolute Maximum Ratings †). This requirement is independent of the voltage limits discussed previously.

Figure 4-6 shows one approach to protecting these inputs. The \(R_1 \) and \(R_2 \) resistors limit the possible current in or out of the input pins (and into \(D_1 \) and \(D_2 \)). Once the diode is forward biased, any current will flow into the \(V_{DD} \) supply line.

![Figure 4-6: Protecting the Analog Inputs Against High Currents.](image)
It is also possible to connect the diodes to the left of the R₁ and R₂ resistors. In this case, the currents through the D₁ and D₂ diodes need to be limited by some other mechanism. The resistors then serve as in-rush current limiters; the DC current into the input pins (Vin⁺ and Vin⁻) should be very small.

A significant amount of current can flow out of the inputs (through the ESD diodes) when the Common Mode Voltage (VCM) is below ground (VSS); see Figure 2-16.

4.2.2 INTEGRATED EMI FILTER
The MCP6V51 has an integrated low-pass filter in its inputs for the dedicated purpose of reducing any electromagnetic or RF interference (EMI, RFI). The on-chip filter is designed as a 2nd-order RC low-pass, which sets a bandwidth limit of approximately 115 MHz and attenuates the high-frequency interference. Performance results of the MCP6V51’s EMI rejection ratio (EMIRR) under various conditions can be seen in Figure 2-31 and Figure 2-33.

4.2.3 RAIL-TO-RAIL OUTPUT
The Output Voltage Range of the MCP6V51 zero-drift op amps is typically VDD - 100 mV, and VSS + 50 mV when Rᵢ = 10 kΩ is connected to VDD/2 and VDD = 45V. Refer to Figure 2-18, Figure 2-19 and Figure 2-20 for more information.

4.2.4 THERMAL SHUTDOWN
Under certain operating conditions, the MCP6V51 amplifier can be subjected to a rise of its die temperature above the specified maximum junction temperature of 150°C. To control possible overheating and damage, the MCP6V51 amplifier has internal thermal shutdown circuitry. Especially when operating with the maximum supply voltage of 45V, observe that the ambient temperature and/or the amplifier’s output current are such that the junction temperature remains below the specified limit. To estimate the junction temperature (TJ) consider these factors: the total power dissipation of the device (PD) and the ambient temperature at the device package (TA), and use Equation 4-1 below.

EQUATION 4-1:

\[
T_J = P_D \times \theta_{JA} + T_A
\]

Where:

\[\theta_{JA}\] = the thermal resistance between the die and the ambient environment, as shown in Temperature Specifications

To derive the Power dissipation of the device, add the terms for the devices’ quiescent power and the load power as shown in **Equation 4-2:**

EQUATION 4-2:

\[
P_D = (V_{DD} - V_{SS}) \times I_Q + I_{OUT} \times (V_{DD} - V_{OUT})
\]

This assumes that the device is sourcing the load current, i.e. current flowing from the VDD supply into the load. Use the term \((I_{OUT} \times (V_{OUT} - V_{SS}))\) when the device is sinking current. Note that this simple example assumes a constant (DC) signal current flow.

The thermal shutdown circuitry activates as soon as the junction temperature reaches approximately +175°C causing the amplifier’s output stage to be tri-stated (high-impedance) effectively disabling any output current flow. The amplifier will remain in this disabled state until the junction temperature has cooled down to approximately +160°C. At this point the thermal shutdown circuitry will enable the output stage of the MCP6V51 amplifier and the device will resume normal operation.

If a fault condition persists, for example the amplifier’s output (VOUT) is shorted causing excessive output current, the thermal shutdown circuitry may be triggered again and the previously described cycle repeats. This may continue until the fault condition is removed.

It should be noted that the thermal shutdown feature of the MCP6V51 does not guarantee that the device will remain undamaged when operated under stress conditions during which the device is placed into the shutdown mode.

4.3 Application Tips

4.3.1 INPUT OFFSET VOLTAGE OVER TEMPERATURE

Table **DC Electrical Specifications** gives both the linear and quadratic temperature coefficients (TC₁ and TC₂) of input offset voltage. The input offset voltage, at any temperature in the specified range, can be calculated as follows:

EQUATION 4-3:

\[
V_{OS}(TA) = V_{OS} + TC_1 \Delta T + TC_2 \Delta T^2
\]

Where:

\[\Delta T\] = TA - 25°C

V_{OS}(TA) = Input offset voltage at TA

V_{OS} = Input offset voltage at +25°C

TC₁ = Linear temperature coefficient

TC₂ = Quadratic temperature coefficient
4.3.2 DC GAIN PLOTS

Figure 2-8, Figure 2-9 and Figure 2-10 are histograms of the reciprocals (in units of \(\mu V/V \)) of CMRR, PSRR and \(A_{OL} \), respectively. They represent the change in Input Offset Voltage (\(V_{OS} \)) with a change in Common Mode Input Voltage (\(V_{CM} \)), Power Supply Voltage (\(V_{DD} \)) and Output Voltage (\(V_{OUT} \)).

The \(1/A_{OL} \) histogram is centered near 0 \(\mu V/V \) because the measurements are dominated by the op amp’s input noise. The negative values shown represent noise and tester limitations, not unstable behavior. Production tests make multiple \(V_{OS} \) measurements, which validates an op amp’s stability; an unstable part would show greater \(V_{OS} \) variability or the output would stick at one of the supply rails.

4.3.3 OFFSET AT POWER-UP

When these parts power up, the input offset (\(V_{OS} \)) starts at its uncorrected value (usually less than \(\pm 5 \) mV). Circuits with high DC gain may cause the output to reach one of the two rails. In this case, the time to a valid output is delayed by an output overdrive time (\(t_{ODR} \)), in addition to the start-up time (\(t_{STR} \)).

To avoid this extended start-up time, reducing the gain is one method. Adding a capacitor across the feedback resistor (\(R_F \)) is another method.

4.3.4 SOURCE RESISTANCES

The input bias currents have two significant components: switching glitches that dominate at room temperature and below, and input ESD diode leakage currents that dominate at +85°C and above.

Make the resistances seen by the inputs small and equal. This minimizes the output offset voltage caused by the input bias currents.

The inputs should see a resistance on the order of 10\(\Omega \) to 1 k\(\Omega \) at high frequencies (i.e., above 1 MHz). This helps minimize the impact of switching glitches, which are very fast, on overall performance. In some cases, it may be necessary to add resistors in series with the inputs to achieve this improvement in performance.

Small input resistances may be needed for high gains. Without them, parasitic capacitances might cause positive feedback and instability.

4.3.5 SOURCE CAPACITANCE

The capacitances seen by the two inputs should be small. Large input capacitances and source resistances, together with high gain, can lead to instability.

4.3.6 CAPACITIVE LOADS

Driving large capacitive loads can cause stability problems for voltage feedback op amps. As the load capacitance increases, the feedback loop’s phase margin decreases and the closed-loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in the step response. These zero-drift op amps have a different output impedance compared to standard linear op amps, due to their unique topology.

When driving a capacitive load with these op amps, a series resistor at the output (\(R_{ISO} \) in Figure 4-8) improves the feedback loop’s phase margin (stability) by making the output load resistive at higher frequencies. The bandwidth will be generally lower than the bandwidth with no capacitive load.

Figure 4-7 gives recommended \(R_{ISO} \) values for different capacitive loads and gains. The x-axis is the load capacitance (\(C_L \)). The y-axis is the resistance (\(R_{ISO} \)).

\(G_N \) is the circuit’s noise gain. For non-inverting gains, \(G_N \) and the Signal Gain are equal. For inverting gains, \(G_N \) is \(1+|\text{Signal Gain}| \) (e.g., -1 V/V gives \(G_N = +2 \) V/V).

FIGURE 4-7: Recommended \(R_{ISO} \) Values for Capacitive Loads.

After selecting \(R_{ISO} \) for your circuit, double check the resulting frequency response peaking and step response overshoot. Modify the \(R_{ISO} \) value until the response is reasonable. Bench evaluation is helpful.
4.3.7 STABILIZING OUTPUT LOADS

This family of zero-drift op amps has an output impedance (Figure 2-28 and Figure 2-29) that has a double zero when the gain is low. This can cause a large phase shift in feedback networks that have low-impedance near the part’s cross-over frequency. This phase shift can cause stability problems.

Figure 4-8 shows that the load on the output is \((R_L + R_{ISO})||(R_F + R_G)\), where \(R_{ISO}\) is before the load. This load needs to be large enough to maintain stability; it is recommended to design for a total load of 10 k\(\Omega\), or higher.

\[\text{FIGURE 4-8: Output Resistor, } R_{ISO}, \text{ Stabilizes Capacitive Loads} \]

4.3.8 GAIN PEAKING

Figure 4-9 shows an op amp circuit that represents noninverting amplifiers (\(V_M\) is a DC voltage and \(V_P\) is the input) or inverting amplifiers (\(V_P\) is a DC voltage and \(V_M\) is the input). The \(C_N\) and \(C_G\) capacitances represent the total capacitance at the input pins; they include the op amp’s Common Mode Input Capacitance (\(C_{CM}\)), board parasitic capacitance and any capacitor placed in parallel. The \(C_{FP}\) capacitance represents the parasitic capacitance coupling between the output and the non-inverting input pins.

\[\text{FIGURE 4-9: Amplifier with Parasitic Capacitance.} \]

\(C_N\) and \(R_N\) form a low-pass filter that affects the signal at \(V_P\). This filter has a single real pole at \(1/(2\pi R_N C_N)\).

The largest value of \(R_F\) that should be used depends on the noise gain (see \(G_N\) in Section 4.3.6 “Capacitive Loads”), \(C_G\) and the open-loop gain’s phase shift. An approximate limit for \(R_F\) is shown in Equation 4-4.

\[R_F \leq 10 \, k\Omega \times \frac{3.5 \, pF}{C_G} \times G_N^2 \]

Some applications may modify these values to reduce either output loading or gain peaking (step-response overshoot).

At high gains, \(R_N\) needs to be small, in order to prevent positive feedback and oscillations. Large \(C_N\) values can also help.
4.3.9 REDUCING UNDESIRED NOISE AND SIGNALS

Reduce undesired noise and signals with:
- Low bandwidth signal filters:
 - Minimize random analog noise
 - Reduce interfering signals
- Good PCB layout techniques:
 - Minimize crosstalk
 - Minimize parasitic capacitances and inductances that interact with fast switching edges
- Good power supply design:
 - Isolation from other parts
 - Filtering of interference on supply line(s)

4.3.10 SUPPLY BYPASSING AND FILTERING

With this operational amplifier, the power supply pins (only VDD for single supply) should have a low-ESR ceramic bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm of the pins for good high-frequency decoupling.

It is recommended to place a bulk capacitor (i.e., 1 µF or larger) within 100 mm of the device to provide large, slow currents. This bulk capacitor can be shared with other low-noise analog parts.

In some cases, high-frequency power supply noise (e.g., switched-mode power supplies) may cause undue intermodulation distortion, with a DC offset shift: this noise needs to be filtered. Adding a small resistor or ferrite bead into the supply connection can be helpful.

4.3.11 PCB DESIGN FOR DC PRECISION

In order to achieve DC precision on the order of ±1 µV, many physical errors need to be minimized. The design of the Printed Circuit Board (PCB), the wiring and the thermal environment have a strong impact on the precision achieved. A poor PCB design can easily be more than 100 times worse than the MCP6V51 op amps' specifications.

4.3.11.1 PCB Layout

Any time two dissimilar metals are joined together, a temperature-dependent voltage appears across the junction (the Seebeck or thermojunction effect). This effect is used in thermocouples to measure temperature. The following are examples of thermojunctions on a PCB:
- Components (resistors, op amps, ...) soldered to a copper pad
- Wires mechanically attached to the PCB
- Jumpers
- Solder joints
- PCB vias

Typical thermojunctions have temperature-to-voltage conversion coefficients of 1 to 100 µV/°C (sometimes higher).

Microchip’s AN1258 Application Note – “Op Amp Precision Design: PCB Layout Techniques” (DS01258) contains in-depth information on PCB layout techniques that minimize thermojunction effects. It also discusses other effects, such as crosstalk, impedances, mechanical stresses and humidity.

4.3.11.2 Crosstalk

DC crosstalk causes offsets that appear as a larger input offset voltage. Common causes include:
- Common mode noise (remote sensors)
- Ground loops (current return paths)
- Power supply coupling

Interference from the mains (usually 50 Hz or 60 Hz) and other AC sources can also affect the DC performance. Nonlinear distortion can convert these signals to multiple tones, including a DC shift in voltage. When the signal is sampled by an ADC, these AC signals can also be aliased to DC, causing an apparent shift in offset.

To reduce interference:
- Keep traces and wires as short as possible
- Use shielding
- Use ground plane (at least a star ground)
- Place the input signal source near the DUT
- Use good PCB layout techniques
- Use a separate power supply filter (bypass capacitors) for these zero-drift op amps

4.3.11.3 Miscellaneous Effects

Keep the resistances seen by the input pins as small and as near to equal as possible, to minimize bias current-related offsets.

Make the (trace) capacitances seen by the input pins small and equal. This is helpful in minimizing switching glitch-induced offset voltages.

Bending a coax cable with a radius that is too small causes a small voltage drop to appear on the center conductor (the triboelectric effect). Make sure the bending radius is large enough to keep the conductors and insulation in full contact.

Mechanical stresses can make some capacitor types (such as some ceramics) output small voltages. Use more appropriate capacitor types in the signal path and minimize mechanical stresses and vibration.

Humidity can cause electrochemical potential voltages to appear in a circuit. Proper PCB cleaning helps, as does the use of encapsulants.
4.4 Typical Applications

4.4.1 LOW-SIDE CURRENT SENSE

The common-mode input range of the MCP6V51 typically extend 0.3V below ground (VSS), which makes this amplifier a good choice for Low-side current sense application especially where operation on higher supply voltages is required. One such example is shown in Figure 4-10. Here, the load current (I_L) ranges from 0A to 1.5A, which results in an voltage drop across the shunt resistor of 0 to 75 mV. The gain on the MCP6V51 is set to 201 V/V, which gives an output voltage range of about 0V to +15V.

![Figure 4-10: Low-Side Current Sense for 1.5A Max Load Current.](image)

This circuit example can be adapted to a wide range of similar applications:
- for V_DD voltages from 4.5V up to 45V
- adjusting the shunt resistor and/or gain for higher or lower load currents.

Because the MCP6V51 has a very low offset drift and virtually no 1/f noise, very small shunt resistor values can be selected, which helps in mediating the heating and size problems that may arise in such applications.

4.4.2 WHEATSTONE BRIDGE

Many sensors are configured as Wheatstone bridges. Strain gages and pressure sensors are two common examples. These signals can be small and the common mode noise large. Amplifier designs with high differential gain are desirable.

Figure 4-11 shows how to interface to a Wheatstone bridge with a minimum of components. Because the circuit is not symmetric, the ADC input is single-ended and there is a minimum of filtering; the CMRR is good enough for moderate common mode noise.

![Figure 4-11: Simple Design.](image)

Figure 4-13 shows a higher performance circuit for a Wheatstone bridge signal conditioning design. This example offers a symmetric, high impedance load to the bridge with superior CMRR performance. It maintains this high CMRR by driving the signal differentially into the ADC.

![Figure 4-12: Higher Performance Design.](image)
4.4.3 RTD SENSOR

The ratiometric circuit in Figure 4-13 conditions a two-wire RTD for applications with a limited temperature range. U1 acts as a difference amplifier, with a low-frequency pole. The sensor's wiring resistance (RW) is corrected in firmware. Failure (open) of the RTD is detected by an out-of-range voltage.

FIGURE 4-13: RTD Sensor.
5.0 DESIGN AIDS

Microchip provides the basic design aids needed for the MCP6V51 op amp.

5.1 Microchip Advanced Part Selector (MAPS)

MAPS is a software tool that helps efficiently identify Microchip devices that fit a particular design requirement. Available at no cost from the Microchip web site at www.microchip.com/maps, MAPS is an overall selection tool for Microchip’s product portfolio that includes Analog, Memory, MCUs and DSCs. Using this tool, a customer can define a filter to sort features for a parametric search of devices and export side-by-side technical comparison reports. Helpful links are also provided for data sheets, purchase and sampling of Microchip parts.

5.2 Analog Demonstration and Evaluation Boards

Microchip offers a broad spectrum of Analog Demonstration and Evaluation Boards that are designed to help customers achieve faster time to market. For a complete listing of these boards and their corresponding user’s guides and technical information, visit the Microchip web site at www.microchip.com/analogguides.

Some boards that are especially useful are:

- MCP6V01 Thermocouple Auto-Zeroed Reference Design (P/N MCP6V01RD-TCPL)
- MCP6XXX Amplifier Evaluation Board 1 (P/N DS51667)
- MCP6XXX Amplifier Evaluation Board 2 (P/N DS51668)
- MCP6XXX Amplifier Evaluation Board 3 (P/N DS51673)
- MCP6XXX Amplifier Evaluation Board 4 (P/N DS51681)
- Active Filter Demo Board Kit (P/N DS51614)
- 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board (P/N SOIC8EV)
- 14-Pin SOIC/TSSOP/DIP Evaluation Board (P/N SOIC14EV)

5.3 Application Notes

The following Microchip Application Notes are available on the Microchip web site at www.microchip.com/appnotes and are recommended as supplemental reference resources.

- ADN003 Application Note – “Select the Right Operational Amplifier for your Filtering Circuits” (DS21821)
- AN722 Application Note – “Operational Amplifier Topologies and DC Specifications” (DS00722)
- AN723 Application Note – “Operational Amplifier AC Specifications and Applications” (DS00723)
- AN884 Application Note – “Driving Capacitive Loads With Op Amps” (DS00884)
- AN990 Application Note – “Analog Sensor Conditioning Circuits - An Overview” (DS00990)
- AN1177 Application Note – “Op Amp Precision Design: DC Errors” (DS01177)
- AN1228 Application Note – “Op Amp Precision Design: Random Noise” (DS01228)
- AN1258 Application Note – “Op Amp Precision Design: PCB Layout Techniques” (DS01258)
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Legend:

- **XX...X**: Customer-specific information
- **Y**: Year code (last digit of calendar year)
- **YY**: Year code (last 2 digits of calendar year)
- **WW**: Week code (week of January 1 is week ‘01’)
- **NNN**: Alphanumeric traceability code
- **e³**: Pb-free JEDEC® designator for Matte Tin (Sn)
- *****: This package is Pb-free. The Pb-free JEDEC designator (e³) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
5-Lead Plastic Small Outline Transistor (OT) [SOT23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

- **D**
- **A**
- **2X**
- **0.15 C**
- **0.20 C**
- **A-B**
- **DATUM D**
- **DATUM A-B**

SIDE VIEW

- **A**
- **A2**
- **A1**

SEATING PLANE

- **0.20 C**

Microchip Technology Drawing C04-091-OT Rev E Sheet 1 of 2
5-Lead Plastic Small Outline Transistor (OT) [SOT23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com(packaging)

VIEW A-A
SHEET 1

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>Limits</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Outside lead pitch</td>
<td>e1</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
5-Lead Plastic Small Outline Transistor (OT) [SOT23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>Contact Pitch</th>
<th>Contact Pad Spacing</th>
<th>Contact Pad Width (X5)</th>
<th>Contact Pad Length (X5)</th>
<th>Distance Between Pads</th>
<th>Distance Between Pads</th>
<th>Overall Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>E</td>
<td>C</td>
<td>X</td>
<td>Y</td>
<td>G</td>
<td>GX</td>
<td>Z</td>
</tr>
<tr>
<td>Limits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN</td>
<td>0.95 BSC</td>
<td>2.80</td>
<td>0.60</td>
<td>1.10</td>
<td>1.70</td>
<td>0.35</td>
<td>3.90</td>
</tr>
<tr>
<td>NOM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2091B [OT]
8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-111C Sheet 1 of 2
8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Table: 8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimension Limits</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Microchip Technology Drawing C04-111C Sheet 2 of 2
8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Overall Width</td>
<td>Z</td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G1</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>GX</td>
</tr>
</tbody>
</table>

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2111A
APPENDIX A: REVISION HISTORY

Revision A (December 2018)

• Initial release of this document
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>Tape and Reel Option</th>
<th>Temperature Range</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCP6V51: 45V, 2 MHz Zero-Drift Op Amp with EMI Filtering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blank = Standard packaging (tube or tray)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T = Tape and Reel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E = -40°C to +125°C (Extended)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OT = 5-Lead Plastic Small Outline Transistor (SOT-23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS = 8-Lead Plastic Micro Small Outline Package (MSOP)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- a) MCP6V51T-E/OT: 5-Lead SOT-23 package, Tape and Reel
- b) MCP6V51-E/MS: 8-Lead MSOP package
- c) MCP6V51T-E/MS: 8-Lead MSOP package, Tape and Reel

Note 1: Tape and Reel Identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBox, KeeLoq, Kleer, LANCheck, LINK MD, maxSylus, maxTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-3968-4
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

- **Atlanta**
 Duluth, GA
 Tel: 678-957-9614
 Fax: 678-957-1455
- **Austin, TX**
 Tel: 512-257-3370
- **Boston**
 Westborough, MA
 Tel: 512-257-3370
 Fax: 774-760-0084
- **Chicago**
 Itasca, IL
 Tel: 630-285-0071
 Fax: 630-285-0075
- **Dallas**
 Addison, TX
 Tel: 972-818-4923
 Fax: 972-818-2924
- **Detroit**
 Novi, MI
 Tel: 248-848-4000
- **Houston, TX**
 Tel: 281-894-5983
- **Indianapolis**
 Noblesville, IN
 Tel: 317-773-8323
 Fax: 317-773-5453
 Tel: 317-536-2380
- **Los Angeles**
 Mission Viejo, CA
 Tel: 949-462-9523
 Fax: 949-462-9608
 Tel: 951-273-7800
- **Raleigh, NC**
 Tel: 919-844-7510
- **New York, NY**
 Tel: 631-435-6000
- **San Jose, CA**
 Tel: 408-735-9110
 Tel: 408-436-4270
- **Canada - Toronto**
 Tel: 905-695-1980
 Fax: 905-695-2078

ASIA/PACIFIC

- **Australia - Sydney**
 Tel: 61-2-9888-6733
- **China - Beijing**
 Tel: 86-10-8569-7000
- **China - Chengdu**
 Tel: 86-28-8665-5511
- **China - Chongqing**
 Tel: 86-23-8890-9577
- **China - Dongguan**
 Tel: 86-769-8702-9880
- **China - Guangzhou**
 Tel: 86-20-8735-0290
- **China - Hangzhou**
 Tel: 86-571-8792-8115
- **China - Hong Kong SAR**
 Tel: 852-2943-5100
- **China - Nanjing**
 Tel: 88-6-3765-1261
- **China - Qingdao**
 Tel: 86-632-8050-7355
- **China - Shanghai**
 Tel: 86-21-3326-8000
- **China - Shenyang**
 Tel: 88-6-3765-1261
- **China - Shenzhen**
 Tel: 86-755-8864-2200
- **China - Suzhou**
 Tel: 86-186-6233-1526
- **China - Wuhan**
 Tel: 86-27-8980-5300
- **China - Xian**
 Tel: 86-29-8833-7252
- **China - Xiamen**
 Tel: 86-592-23864318
- **China - Zhuhai**
 Tel: 86-756-3210040
- **India - Bangalore**
 Tel: 91-80-3090-4444
- **India - New Delhi**
 Tel: 91-11-4160-8631
- **India - Pune**
 Tel: 91-20-4121-0141
- **Japan - Osaka**
 Tel: 81-3-6880-3770
- **Japan - Tokyo**
 Tel: 81-6-6152-7160
- **Korea - Daegu**
 Tel: 82-53-744-4301
- **Korea - Seoul**
 Tel: 82-2-554-7200
- **Malaysia - Kuala Lumpur**
 Tel: 60-3-7651-7906
- **Malaysia - Penang**
 Tel: 60-4-227-8870
- **Philippines - Manila**
 Tel: 63-2-634-9065
- **Singapore**
 Tel: 65-9334-8870
- **Taiwan - Hsin Chu**
 Tel: 866-3-577-9366
- **Taiwan - Kaohsiung**
 Tel: 886-7-213-7830
- **Taiwan - Taipei**
 Tel: 886-2-2508-8600
- **Thailand - Bangkok**
 Tel: 66-2-694-1351
- **Vietnam - Ho Chi Minh**
 Tel: 84-28-5446-2100

EUROPE

- **Austria - Wels**
 Tel: 43-7242-2244-39
 Fax: 43-7242-2244-393
- **Denmark - Copenhagen**
 Tel: 45-4450-2828
 Fax: 45-4485-2829
- **Finland - Espoo**
 Tel: 358-9-4520-820
- **France - Paris**
 Tel: 33-1-69-53-63-20
 Fax: 33-1-69-30-90-79
- **Germany - Garching**
 Tel: 49-8931-9700
- **Germany - Haan**
 Tel: 49-2129-3766400
- **Germany - Heilbronn**
 Tel: 49-7131-67-3636
- **Germany - Karlsruhe**
 Tel: 49-721-625370
- **Germany - Munich**
 Tel: 49-89-627-144-0
 Fax: 49-89-627-144-44
- **Germany - Rosenheim**
 Tel: 49-8031-354-560
- **Israel - Ra'anana**
 Tel: 972-9-744-7705
- **Italy - Milan**
 Tel: 39-0331-742611
 Fax: 39-0331-466781
- **Italy - Padova**
 Tel: 39-049-7625286
- **Netherlands - Drunen**
 Tel: 31-416-690399
 Fax: 31-416-690340
- **Norway - Trondheim**
 Tel: 47-7288-4388
- **Poland - Warsaw**
 Tel: 48-22-3325737
- **Romania - Bucharest**
 Tel: 40-21-407-87-50
- **Spain - Madrid**
 Tel: 34-91-708-08-90
 Fax: 34-91-708-08-91
- **Sweden - Gothenberg**
 Tel: 46-31-704-60-40
- **Sweden - Stockholm**
 Tel: 46-8-5090-4654
- **UK - Wokingham**
 Tel: 44-118-921-5800
 Fax: 44-118-921-5820