INTRODUCTION

This document contains information about MPLAB® ICD 2 and MPLAB® REAL ICE™ in-circuit emulator header boards, which provide in-circuit debugging and/or emulating capabilities for specific Microchip devices.

A special ICD or ICE device is connected to a header board to be used with the MPLAB ICD 2 in-circuit debugger or MPLAB REAL ICE in-circuit emulator. This device is mounted on the top of a header and its signals are routed to the debugger or emulator connector. On the bottom of the header is a socket that is used to connect to the target board. For an example connection, see Figure 1.

FIGURE 1: MODULE CONNECTION WITH HEADER

Special ICD/ICE versions of selected devices are needed to provide one or more of the following:

• the built-in debug circuitry that a device may lack
• additional pins for the clock, data and MCLR functions required
• dedicated program/data memory for in-circuit debug or emulation

These special device versions are labeled with the appropriate suffix (i.e., either Device-ICD or Device-ICE).

In general, ICD devices are designed for MPLAB ICD 2 debugger use and ICE devices are designed for MPLAB REAL ICE in-circuit emulator use. However, ICD devices may be used with the MPLAB REAL ICE in-circuit emulator and ICE devices may be used with the MPLAB ICD 2 debugger, but will provide only basic ICD functionality.
HEADERS FOR ICD DEVICES

Some devices have no built-in debug circuitry. Therefore, special ICD versions of these devices are required for MPLAB ICD 2 operation.

Other devices have built-in debug circuitry and do not require a header to use MPLAB ICD 2. However, some pins and memory must be used to support the ICD function. Therefore, for some of these devices, special ICD versions offering additional pins (and sometimes memory) are available to provide more transparent debugging capabilities.

Currently available headers and their associated ICD devices/supported devices are shown in Table 1.

TABLE 1: HEADER TYPES – ICD DEVICES

<table>
<thead>
<tr>
<th>Header</th>
<th>Part Number</th>
<th>ICD Device Used</th>
<th>Devices Supported</th>
<th>VDD Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Pin</td>
<td>AC162050</td>
<td>PIC12F675-ICD(^{(f)})</td>
<td>PIC12F629/675</td>
<td>5.5V</td>
</tr>
<tr>
<td></td>
<td>AC162058</td>
<td>PIC12F683-ICD</td>
<td>PIC12F683</td>
<td>5.5V</td>
</tr>
<tr>
<td>14 Pin</td>
<td>AC162059</td>
<td>PIC16F505-ICD</td>
<td>PIC10F200/2/4/6, PIC12F508/509, PIC16F505</td>
<td>5.5V</td>
</tr>
<tr>
<td></td>
<td>AC162070</td>
<td>PIC16F506-ICD</td>
<td>PIC10F220/2, PIC12F510, PIC16F506</td>
<td>5.5V</td>
</tr>
<tr>
<td></td>
<td>AC162057</td>
<td>PIC16F636-ICD</td>
<td>PIC16F635, PIC16F636</td>
<td>5.5V</td>
</tr>
<tr>
<td></td>
<td>AC162052</td>
<td>PIC16F676-ICD(^{(f)})</td>
<td>PIC16F630/676</td>
<td>5.5V</td>
</tr>
<tr>
<td></td>
<td>AC162055</td>
<td>PIC16F684-ICD</td>
<td>PIC16F684</td>
<td>5.5V</td>
</tr>
<tr>
<td></td>
<td>AC162056</td>
<td>PIC16F688-ICD</td>
<td>PIC16F688</td>
<td>5.5V</td>
</tr>
<tr>
<td>18 Pin</td>
<td>AC162053</td>
<td>PIC16F648A-ICD(^{(f)})</td>
<td>PIC16F627A/628A/648A</td>
<td>5.5V</td>
</tr>
<tr>
<td></td>
<td>AC162054</td>
<td>PIC16F716-ICD</td>
<td>PIC16F716</td>
<td>5.5V</td>
</tr>
<tr>
<td>20 Pin</td>
<td>AC162066</td>
<td>PIC16F636-ICD</td>
<td>PIC16F639 (dual die)</td>
<td>5.5V</td>
</tr>
<tr>
<td></td>
<td>AC162061</td>
<td>PIC16F690-ICD</td>
<td>PIC16F631/677, PIC16F685/687/689/690</td>
<td>5.5V</td>
</tr>
<tr>
<td></td>
<td>AC162060</td>
<td>PIC16F785-ICD</td>
<td>PIC16F785/HV785</td>
<td>5.5V</td>
</tr>
</tbody>
</table>

Note 1: These devices cannot be programmed or read using MPLAB\(^{®}\) ICD 2 while GP1/RA1 is high (V\(_{IH}\)). Move circuitry that makes GP1/RA1 high to another I/O pin during development. See device programming specifications for more information.
HEADERS FOR ICE DEVICES

Devices that have built-in emulator circuitry do not require a header to use the MPLAB REAL ICE in-circuit emulator. However, some pins and memory must be used to support the ICE function. Special ICE versions offering additional pins, memory and emulator functions can be used to provide superior debugging/emulating capabilities.

Currently available headers and their associated ICE devices/supported devices are shown in Table 2.

TABLE 2: HEADER TYPES – ICE DEVICES

<table>
<thead>
<tr>
<th>Header</th>
<th>Part Number</th>
<th>ICE Device Used</th>
<th>Devices Supported</th>
<th>VDD Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/40-Pin</td>
<td>AC162067</td>
<td>PIC18F45J10-ICE</td>
<td>PIC18LF24J10/44J10</td>
<td>3.6V*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PIC18LF25J10/45J10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PIC18F24J10/44J10</td>
<td>3.6V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PIC18F25J10/45J10</td>
<td></td>
</tr>
<tr>
<td>44-Pin</td>
<td>AC162074</td>
<td>PIC18F45J10-ICE</td>
<td>PIC18LF44J10</td>
<td>3.6V*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PIC18LF45J10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PIC18F44J10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PIC18F45J10</td>
<td>3.6V</td>
</tr>
<tr>
<td>64/80-Pin</td>
<td>AC162062</td>
<td>PIC18F87J10-ICE</td>
<td>PIC18F65J10/85J10</td>
<td>3.6V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PIC18F65J15/85J15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PIC18F66J10/86J10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PIC18F66J15/86J15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PIC18F67J10/87J10</td>
<td></td>
</tr>
</tbody>
</table>

* LF devices require two voltages, where VDD Max = 3.6V and VDDcore Max = 2.75V.
HEADER BOARD SETUP

To set up a header board:

1. If the ICD/ICE device is not soldered onto the header, plug the device into the socket on the top of the header.
2. Set any jumpers or switches to determine device functionality/selection as specified in the following sections.

8/14-Pin Headers

For some headers, device peripherals need to be selected by setting jumper J1 to the appropriate position. This will have the effect of selecting the device.

<table>
<thead>
<tr>
<th>Device</th>
<th>Jumper Setting</th>
<th>Peripheral Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC12F629</td>
<td>2-3</td>
<td>A/D Disabled</td>
</tr>
<tr>
<td>PIC12F675</td>
<td>1-2</td>
<td>A/D Enabled</td>
</tr>
<tr>
<td>PIC12F683</td>
<td>1-2</td>
<td>A/D Enabled</td>
</tr>
<tr>
<td>PIC16F630</td>
<td>2-3</td>
<td>A/D Disabled</td>
</tr>
<tr>
<td>PIC16F676</td>
<td>1-2</td>
<td>A/D Enabled</td>
</tr>
<tr>
<td>PIC12F635</td>
<td>2-3</td>
<td>PORTC, Comparator 2 Disabled</td>
</tr>
<tr>
<td>PIC16F636</td>
<td>1-2</td>
<td>PORTC, Comparator 2 Enabled</td>
</tr>
</tbody>
</table>

18-Pin Headers

For these headers, there are no jumpers/switches. The device with the most program memory is always selected.

If PIC16F627A or PIC16F628A devices are selected for MPLAB ICD 2 development in MPLAB IDE, the warning “ICDWarn0020: Invalid target device id” may be received in the build window and as a dialog. The reason is the PIC16F648A-ICD device supports PIC16F648A, PIC16F627A and PIC16F628A, but only reports the device ID for the PIC16F648A.

Ignore this warning or disable it under the **Warnings** tab on the ICD Programming dialog.

20-Pin Header – PIC16F639

For the PIC16F639 20-pin header, you will need to connect the jumper J3 as specified below.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Jumper Setting</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLAB® ICE 2000</td>
<td>1-2</td>
<td>Run/program as regular device</td>
</tr>
<tr>
<td>MPLAB ICD 2</td>
<td>2-3</td>
<td>Run/program as ICD device</td>
</tr>
</tbody>
</table>

In addition to being used with MPLAB ICD 2, this header is used with the PCM16YM0 processor module to emulate a PIC16F639 on the MPLAB ICE 2000 in-circuit emulator. Plug the end of the processor module into the header, and then plug the header into the transition socket or directly onto the target board.
20-Pin Header – PIC16F690

For the PIC16F690 20-pin header, you will need to set the S1 switches (Figure 2) to enable peripherals and choose devices (Table 3).

FIGURE 2: S1 SWITCH HARDWARE

Switch configuration at left shows all peripherals enabled, which is the setting to select the PIC16F690 device.

TABLE 3: S1 SWITCH DEVICE SELECTION

<table>
<thead>
<tr>
<th>Device</th>
<th>Switches</th>
<th>ADC</th>
<th>4k PFM</th>
<th>USART</th>
<th>SSP</th>
<th>ECCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC16F631</td>
<td></td>
<td>0</td>
<td>0*</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PIC16F677</td>
<td></td>
<td>1</td>
<td>0**</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PIC16F685</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PIC16F687</td>
<td></td>
<td>1</td>
<td>0**</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PIC16F689</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PIC16F690</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: 1 = Enabled 0 = Disabled * = 1k PFM ** = 2k PFM

20-Pin Header – PIC16F785

For the PIC16F785 20-pin header, you will need to connect the jumper J2 to enable the shunt regulator.

<table>
<thead>
<tr>
<th>Device</th>
<th>Device Type</th>
<th>Jumper Setting</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC16F785</td>
<td>F</td>
<td>1-2</td>
<td>Disable shunt regulator</td>
</tr>
<tr>
<td>PIC16HV785</td>
<td>HV</td>
<td>2-3</td>
<td>Enable shunt regulator</td>
</tr>
</tbody>
</table>

28/40/44-Pin Header – PIC18F45J10

For the PIC18F45J10 header, you will need to connect jumpers J2 and J3 to select between the LF and F versions of devices.

<table>
<thead>
<tr>
<th>Device</th>
<th>Device Type</th>
<th>Jumper J2</th>
<th>Jumper J3</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC18LFXXJ10</td>
<td>LF</td>
<td>1-2</td>
<td>1-2</td>
<td>Disable voltage regulator*</td>
</tr>
<tr>
<td>PIC18FXXJ10</td>
<td>F</td>
<td>2-3</td>
<td>2-3</td>
<td>Enable voltage regulator</td>
</tr>
</tbody>
</table>

* VDDcore must be supplied externally.
64/80-Pin Header – PIC18F87J10

For this header, there are no jumpers-switches. MPLAB IDE will use its selected device to choose the correct device to emulate.

Test points are available on this header to check the following: VDD, VDDcore and ground.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>This header cannot be plugged directly into the PICDEM™ HPC Explorer Board or device damage will result.</td>
</tr>
</tbody>
</table>

The PICDEM™ HPC Explorer Board is 5V, whereas the ICD device on the header is 3.6V max. Therefore, modification to the demo board is necessary before the header can be used.

1. Switch S3 should be set to ICE.
2. Jumper J2 must be connected as shown to modify the operating voltage. See demo board documentation for more information.

For V = 3.3V:
R = 1.18 kΩ (1%)
HEADER CONNECTION TO THE DEBUGGER/EMULATOR AND TARGET

Connect the modular interface cable between the MPLAB ICD 2 debugger and the header board. For MPLAB REAL ICE in-circuit emulator connections, consult the emulator documentation.

The header may be connected to the target board as follows:

• PDIP header socket to PDIP target socket with a stand-off (male-to-male connector)
• Header socket to plug on the target board
• Header socket to target socket with a transition socket (see the “Transition Socket Specification”, DS51194)

PROGRAMMING NON-ICD/ICE DEVICES

The header board can only program the ICD/ICE device, not the regular device. To program non-ICD/ICE devices, use the Universal Programming Module (AC162049) or design a modular interface connector on the target. See the appropriate specification for connections. For the most up-to-date device programming specifications, see the Microchip website (www.microchip.com).

CALIBRATION BITS

The calibration bits for the band gap and internal oscillator are always preserved to their factory settings.

PERFORMANCE ISSUES

The PICmicro® MCU devices do not support partial program memory erase; therefore, users may experience slower performance than with other devices.

ADDITIONAL INFORMATION

Please consult the following resources, as needed:

MPLAB ICD 2

• “MPLAB® ICD 2 In-Circuit Debugger User’s Guide” (DS51331)
• MPLAB ICD 2 Help
• Readme for MPLAB ICD 2

MPLAB REAL ICE In-Circuit Emulator

• “MPLAB REAL ICE In-Circuit Emulator User’s Guide” (DS51616)
• MPLAB REAL ICE Help
• Readme for MPLAB REAL ICE

MPLAB IDE

• “MPLAB® IDE User’s Guide” (DS51519)
• MPLAB IDE Help
• Readme for MPLAB IDE

SCHEMATICS

The following schematics show header electrical connections.
FIGURE 3: 8/14/18-PIN HEADERS

Vdd: Red, Vss: Blue, ICDCLK: Yellow, ICDDATA: Green, ICDMCLR: Purple
FIGURE 4: 20-PIN HEADERS

Vdd: Red, Vss: Blue, ICDCLK: Yellow, ICDDATA: Green, ICDMCLR: Purple

To Tool Connector
FIGURE 5: 28/40/44-PIN HEADER – PIC18F45J10

VDD/AVDD: Red, VSS/AVSS: Blue, ICCK: Yellow, ICDT: Green, ICRST: Purple

FIGURE 6: 64/80-PIN HEADER – PIC18F87J10

VDD/VDDcore: Red, VSS: Blue, ICCK: Yellow, ICDT: Green, ICRST: Purple
FIGURE 7: 64/80-PIN HEADER – PIC18F97J60

Vdd/Vddcore: Red, Vss: Blue, ICCK: Yellow, ICDT: Green, ICRST: Purple

FIGURE 8: 64/80/100-PIN HEADER – dsPIC33F MC

Vdd: Red, Vss: Blue, ICCK: Yellow, ICDT: Green, ICRST: Purple
FIGURE 9: 64/80/100-PIN HEADER – dsPIC33F GP

VDD: Red, Vss: Blue, ICCK: Yellow, ICDT: Green, ICRST: Purple
APPENDIX A: REVISION HISTORY

A.1 Revision M (September 2006)

• Added Appendix A: Revision History
• Updated document to reflect support of additional tools
• Additional minor corrections throughout document text
Index

Numerics

18-Pin Headers .. 4
20-Pin Header - PIC16F639 ... 4
20-Pin Header - PIC16F690 ... 5
20-Pin Header - PIC16F785 ... 5
28/40/44-Pin Header - PIC18F45J10 5
64/80/100-Pin Header - dsPIC33F 6
64/80-Pin Header - PIC18F87J10 6
64/80-Pin Header - PIC18F97J60 6
8/14-Pin Headers ... 4

A
AC162050 ... 2
AC162052 ... 2
AC162053 ... 2
AC162054 ... 2
AC162055 ... 2
AC162056 ... 2
AC162057 ... 2
AC162058 ... 2
AC162059 ... 2
AC162060 ... 2
AC162061 ... 2
AC162062 ... 3
AC162066 ... 3
AC162067 ... 3
AC162070 ... 2
AC162071 ... 3
AC162072 ... 3
AC162074 ... 3
Additional Information 7

C
Calibration Bits .. 7
Connect the Header and MPLAB ICD 2 7
Connection, Module to Header 1

D
dsPIC33FJ128GP206 ... 3
dsPIC33FJ128GP306 ... 3
dsPIC33FJ128GP310 ... 3
dsPIC33FJ128GP706 ... 3
dsPIC33FJ128GP708 ... 3
dsPIC33FJ128GP710 ... 3
dsPIC33FJ128MC506 ... 3
dsPIC33FJ128MC510 ... 3
dsPIC33FJ128MC706 ... 3
dsPIC33FJ128MC708 ... 3
dsPIC33FJ256GP506 ... 3
dsPIC33FJ256GP510 ... 3
dsPIC33FJ256GP710 ... 3
dsPIC33FJ256MC510 ... 3
dsPIC33FJ256MC710 ... 3
dsPIC33FJ64GP206 .. 3

dsPIC33FJ64GP306 .. 3
dsPIC33FJ64GP310 .. 3

dsPIC33FJ64GP706 .. 3
dsPIC33FJ64GP708 .. 3

dsPIC33FJ64GP710 .. 3

dsPIC33FJ64MC506 .. 3

dsPIC33FJ64MC508 .. 3

dsPIC33FJ64MC510 .. 3

dsPIC33FJ64MC706 .. 3

dsPIC33FJ64MC710 .. 3

H
Headers for ICD Devices 2
Headers for ICE Devices 3

J
Jumper Settings ... 4, 5, 6

M
MPLAB ICE 2000 .. 4
Header Board Specification

P
PCM16YM0... 4
Performance.. 7
PIC10F200... 2
PIC10F202... 2
PIC10F204... 2
PIC10F206... 2
PIC10F220... 2
PIC10F222... 2
PIC12F508... 2
PIC12F509... 2
PIC12F510... 2
PIC12F629... 2, 4
PIC12F635... 2, 4
PIC12F675... 2, 4
PIC12F683... 2, 4
PIC16F505... 2
PIC16F506... 2
PIC16F627A... 2, 4
PIC16F628A... 2, 4
PIC16F629... 2, 4
PIC16F630... 2, 4
PIC16F631... 2, 5
PIC16F636... 2, 4
PIC16F639... 2, 4, 9
PIC16F648A... 2, 4
PIC16F676... 2, 4
PIC16F677... 2, 5
PIC16F684... 2
PIC16F685... 2, 5
PIC16F687... 2, 5
PIC16F688... 2
PIC16F689... 2, 5
PIC16F690... 2, 5, 9
PIC16F716... 2
PIC16F785... 2, 5, 9
PIC16HV785... 2, 5
PIC18F24J10... 3
PIC18F25J10... 3, 5
PIC18F44J10... 3
PIC18F45J10... 3, 5
PIC18F65J10... 3
PIC18F65J15... 3
PIC18F66J10... 3
PIC18F66J15... 3
PIC18F67J10... 3
PIC18F85J10... 3
PIC18F85J15... 3
PIC18F86J10... 3
PIC18F86J15... 3
PIC18F87J10... 3
PIC18LF24J10... 3
PIC18LF25J10... 3, 5
PIC18LF44J10... 3
PIC18LF45J10... 3, 5
PICDEM HPC Explorer Board...................................... 6
Programming Non-ICD Devices................................... 7

S
Schematics
20-Pin Headers... 9
64/80-Pin Headers... 10, 11, 12
8/14/18-Pin Headers... 8
Set Up the Header Board.. 4
Switch Settings.. 5

T
Transition Socket.. 7

V
Vdd Max
2.75V.. 3
3.6V.. 3
5.5V.. 2
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company’s quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
WorldWide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: http://support.microchip.com
Web Address: www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-3910
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

08/29/06