Features

• 10V to 450V Input Voltage Range
• Energy-saving Hold Current Mode
• Adjustable Microcontroller Supply
• Low Supply Current <1 mA
• Constant-current Coil Drive
• Programmable Pull-in Current, Pull-in Time and Hold Current

Applications

• Industrial Controls
• Relay Timers
• Solenoid Drivers
• Home Automation

General Description

The HV9901 universal relay driver provides high-efficiency driving for low-voltage relays with supply voltages as high as 450V. For example, a relay with a 5V coil can be driven directly from the rectified 120 VAC or 230 VAC line.

The IC includes two high-voltage linear regulators. The first one is for providing power to internal control circuitry. The second one has an adjustable output voltage and a 1 mA output current capability to support external circuitry, such as a microcontroller control circuit.

The pull-in current, pull-in time and hold current for the relay are individually programmable through two resistors and a capacitor. PWM switching can be synchronized with an external clock or with another HV9901 operating at a higher frequency.

The relay is operated through the enable input ENI. Logic polarity is under control of the polarity input POL. Audible noise coming from the relay can be suppressed by operating at a PWM frequency exceeding 20 kHz.

Package Type

16-lead SOIC

See Table 2-1 for pin information.

WARNING

The HV9901 is suited for relay driving applications operating at hazardous voltage. Ensure that adequate safeguards are provided to protect the end user from electrical shock.
Typical Application Circuit
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Input Voltage, \(V_{\text{IN}} \) \(^1\) ... \(-0.5V \) to 470V
Input Voltage to any other Pin \(^1\) ... \(-0.3V \) to \(V_{\text{DD}} + 0.3V \)
Operating Junction Temperature Range ... \(-40^\circ\text{C} \) to \(+125^\circ\text{C} \)
Continuous Power Dissipation (\(TA =+25^\circ\text{C} \)) \(^2\) ... 750 mW

† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note 1: All voltages are referenced to GND.
Note 2: For operation above +25°C ambient, derate linearly at 7.5 mW/°C.

ELECTRICAL CHARACTERISTICS

Electrical Specifications: \(TA =+25^\circ\text{C} \) unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Voltage Regulator</td>
<td>(V_{\text{IN}})</td>
<td>10</td>
<td>—</td>
<td>450</td>
<td>V</td>
<td>(I_{\text{CC}} = 0) mA to 1 mA load</td>
</tr>
<tr>
<td>Supply Current</td>
<td>(I_{\text{IN}})</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>mA</td>
<td>No load at (V_{\text{DD}}) (Note 1) (C_{\text{GT}} = 500) pF, (f_{\text{OSC}} = 25) kHz</td>
</tr>
<tr>
<td>Internal Supply Voltage</td>
<td>(V_{\text{DD}})</td>
<td>8.5</td>
<td>9</td>
<td>9.5</td>
<td>V</td>
<td>No load at (V_{\text{DD}}) (Note 1) (C_{\text{GT}} = 500) pF, (f_{\text{OSC}} = 25) kHz</td>
</tr>
<tr>
<td>(V_{\text{DD}}) UVLO, On</td>
<td>(V_{\text{UVLO(ON)}})</td>
<td>7.8</td>
<td>8.2</td>
<td>8.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{DD}}) UVLO, Hysteresis</td>
<td>(V_{\text{UVLO(HYST)}})</td>
<td>—</td>
<td>0.5</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Adjustable Regulator</td>
<td>(V_{\text{CC}})</td>
<td>2</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td>(I_{\text{CC}} = 1) mA load</td>
</tr>
<tr>
<td>Regulator Output Voltage Range</td>
<td>(I_{\text{CC}})</td>
<td>0</td>
<td>—</td>
<td>1</td>
<td>mA</td>
<td>No load at (V_{\text{DD}}) (Note 1)</td>
</tr>
<tr>
<td>Feedback Voltage</td>
<td>(V_{\text{FB}})</td>
<td>0</td>
<td>(V_{\text{REF}})</td>
<td>(V_{\text{DD}} - 1V)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>(I_{\text{FB}})</td>
<td>—</td>
<td>25</td>
<td>100</td>
<td>nA</td>
<td>(V_{\text{FB}} = V_{\text{REF}})</td>
</tr>
<tr>
<td>Reference</td>
<td>(V_{\text{REF}})</td>
<td>1.2</td>
<td>1.25</td>
<td>1.3</td>
<td>V</td>
<td>(TA = -40^\circ\text{C}) to (+85^\circ\text{C})</td>
</tr>
<tr>
<td>Bandgap Reference Voltage</td>
<td>—</td>
<td>—</td>
<td>7</td>
<td>mV</td>
<td>0 mA < (I_{\text{REF}}) < 0.3 mA</td>
<td></td>
</tr>
<tr>
<td>Load Regulation</td>
<td>—</td>
<td>10</td>
<td>15</td>
<td>mV</td>
<td>8.5V < (V_{\text{DD}}) < 9.5V</td>
<td></td>
</tr>
<tr>
<td>Line Regulation</td>
<td>(I_{\text{REF(SHORT)}})</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Reference Voltage Sink Current</td>
<td>(I_{\text{REF(SINK)}})</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>µA</td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: $T_A = +25^\circ \text{C}$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscillator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWM Oscillator Frequency</td>
<td>f_{OSC}</td>
<td>20</td>
<td>25</td>
<td>35</td>
<td>kHz</td>
<td>$R_T = 1 \text{ M}\Omega$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>100</td>
<td>140</td>
<td>kHz</td>
<td>$R_T = 226 \text{ k}\Omega$</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>—</td>
<td>—</td>
<td>170</td>
<td>—</td>
<td>ppm/°C</td>
<td>$T_A = -40^\circ \text{C}$ to $+85^\circ \text{C}$</td>
</tr>
<tr>
<td>Oscillator SYNC Frequency</td>
<td>f_{SYNC}</td>
<td>—</td>
<td>—</td>
<td>150</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>SYNC Sourcing Current</td>
<td>I_{SYNC}</td>
<td>20</td>
<td>—</td>
<td>55</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>SYNC Sinking Current</td>
<td>I_{SYNC}</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>$V_{SYNC} = 0.1V$</td>
</tr>
<tr>
<td>SYNC Input Logic Low Voltage</td>
<td>V_{SYNC}</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>PWM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Duty Cycle</td>
<td>D_{MAX}</td>
<td>96.5</td>
<td>—</td>
<td>99.5</td>
<td>%</td>
<td>$R_T = 1 \text{ M}\Omega$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>86.5</td>
<td>—</td>
<td>97.5</td>
<td>%</td>
<td>$R_T = 226 \text{ k}\Omega$</td>
</tr>
<tr>
<td>Blanking Time</td>
<td>t_{BLNK}</td>
<td>150</td>
<td>215</td>
<td>280</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>MOSFET Driver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Drive Output High</td>
<td>V_{GTH}</td>
<td>$V_{DD}-0.3$</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$I_{OUT} = 10 \text{ mA}$</td>
</tr>
<tr>
<td>Gate Drive Output Low</td>
<td>V_{GTL}</td>
<td>—</td>
<td>—</td>
<td>0.3</td>
<td>V</td>
<td>$I_{OUT} = -10 \text{ mA}$</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_R</td>
<td>—</td>
<td>30</td>
<td>50</td>
<td>ns</td>
<td>$C_{GT} = 500 \text{ pF}$</td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_F</td>
<td>—</td>
<td>30</td>
<td>50</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Current Sense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Sense Voltage, High Limit</td>
<td>$V_{CS(HL)}$</td>
<td>0.775</td>
<td>0.833</td>
<td>0.891</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Current Limit Delay to GT, High Limit</td>
<td>$t_{DELAY(HL)}$</td>
<td>—</td>
<td>200</td>
<td>250</td>
<td>ns</td>
<td>50 mV overdrive</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I_{CS}</td>
<td>—</td>
<td>25</td>
<td>1000</td>
<td>nA</td>
<td>$POL = \text{Low}, ENI = \text{Low}$</td>
</tr>
<tr>
<td>Low-Limit Comparator Input Offset Voltage</td>
<td>V_{OS}</td>
<td>—</td>
<td>—</td>
<td>±60</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Current Limit Delay to GT, Low Limit</td>
<td>$t_{DELAY(LL)}$</td>
<td>—</td>
<td>200</td>
<td>250</td>
<td>ns</td>
<td>50 mV overdrive</td>
</tr>
<tr>
<td>Hold/Delay Output Voltage</td>
<td>$V_{HOLD/DEL}$</td>
<td>$V_{DD}-0.4$</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$I_{HOLD/DEL}(sourcing) = -100 \mu\text{A}$</td>
</tr>
<tr>
<td>Hold/Delay Input Bias Current</td>
<td>$I_{HOLD/DEL}$</td>
<td>—</td>
<td>25</td>
<td>500</td>
<td>nA</td>
<td>$POL = \text{Low}, ENI = \text{Low}$</td>
</tr>
<tr>
<td>Shutdown Delay</td>
<td>t_{ENI}</td>
<td>—</td>
<td>50</td>
<td>100</td>
<td>ns</td>
<td>$2V < V_{CC} < 5.5V$</td>
</tr>
<tr>
<td>Enable Input Voltage - High</td>
<td>V_{ENI}</td>
<td>0.7 V_{CC}</td>
<td>—</td>
<td>V_{CC}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Enable Input Voltage - Low</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>0.3 V_{CC}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Enable Input Current - High</td>
<td>I_{ENI}</td>
<td>—</td>
<td>1</td>
<td>5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Enable Input Current - Low</td>
<td>—</td>
<td>−5</td>
<td>−1</td>
<td>—</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Polarity Voltage - High</td>
<td>V_{POL}</td>
<td>0.7 V_{CC}</td>
<td>—</td>
<td>V_{CC}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Polarity Voltage - Low</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>0.3 V_{CC}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Polarity Current - High</td>
<td>I_{POL}</td>
<td>—</td>
<td>1</td>
<td>5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Polarity Current - Low</td>
<td>—</td>
<td>−5</td>
<td>−1</td>
<td>—</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Enable Output Voltage - High</td>
<td>V_{ENO}</td>
<td>0.9 V_{CC}</td>
<td>—</td>
<td>V_{CC}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Enable Output Voltage - Low</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>0.1 V_{CC}</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Maximum allowable load current limited by power dissipation and operating ambient temperature.
TEMPERATURE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Junction Temperature</td>
<td>T_J</td>
<td>–40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Package Thermal Resistance</td>
<td>θ_JA</td>
<td>—</td>
<td>83</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>

1.1 Truth Table

ENABLE OUTPUT LOGIC TRUTH TABLE

<table>
<thead>
<tr>
<th>POL</th>
<th>ENI</th>
<th>ENO</th>
<th>Gate Drive Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>(V_{GT} = \text{Oscillating output, duty cycle depends on inductive load})</td>
</tr>
<tr>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>(V_{GT} = \text{Low, SYNC = High, oscillator shutdown})</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>(V_{GT} = \text{Oscillating output, duty cycle depends on inductive load})</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>(V_{GT} = \text{Low, SYNC = High, oscillator shutdown})</td>
</tr>
</tbody>
</table>
2.0 PIN DESCRIPTIONS

The pin details of HV9901 are listed on Table 2-1. See Section “Package Type” for the location of the pins.

TABLE 2-1: PIN TABLE

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V\textsubscript{IN}</td>
<td>Input Supply</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>Pin not present</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>Pin not present</td>
</tr>
<tr>
<td>4</td>
<td>GT</td>
<td>Gate Driver Output for driving the external switching MOSFET</td>
</tr>
<tr>
<td>5</td>
<td>CS</td>
<td>Current Sense Input</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td>SYNC</td>
<td>Open-Drain Input/Output for synchronizing the internal PWM oscillator to other HV9901s or to an external clock</td>
</tr>
<tr>
<td>8</td>
<td>RT</td>
<td>A resistor from this pin to ground sets the PWM switching frequency.</td>
</tr>
<tr>
<td>9</td>
<td>POL</td>
<td>Input that determines the polarity of the ENI input. See Section 1.1 “Truth Table”.</td>
</tr>
<tr>
<td>10</td>
<td>ENO</td>
<td>Enable Output. It is the logical inversion of the ENI signal.</td>
</tr>
<tr>
<td>11</td>
<td>ENI</td>
<td>Enable Input. Whether ENI is active-low or active-high is determined by the POL input.</td>
</tr>
<tr>
<td>12</td>
<td>V\textsubscript{CC}</td>
<td>Output of the auxiliary regulator. The output voltage is determined by the resistive divider connected to the FB pin.</td>
</tr>
<tr>
<td>13</td>
<td>FB</td>
<td>Feedback input for the auxiliary regulator.</td>
</tr>
<tr>
<td>14</td>
<td>H/D</td>
<td>HOLD/DELAY input. An RC network connected to this pin controls the pull-in time and the holding current. See Equation 3-8.</td>
</tr>
<tr>
<td>15</td>
<td>V\textsubscript{REF}</td>
<td>Reference Voltage. Bypass locally with a 10 nF capacitor.</td>
</tr>
<tr>
<td>16</td>
<td>V\textsubscript{DD}</td>
<td>Output of the internal supply regulator. Bypass locally with a 10 nF capacitor.</td>
</tr>
</tbody>
</table>
3.0 APPLICATION INFORMATION

To calculate external component values, use the equations shown in Equation 3-1 to Equation 3-8 as well as Figure 3-1 and Figure 3-2.

EQUATION 3-1:

\[V_{CS(HL)} = 833 \text{ mV}_{NOM} \]

EQUATION 3-2:

\[V_{DD} = 9V_{NOM} \]

EQUATION 3-3:

\[I_{PULL-IN} = \frac{V_{CS(HL)}}{R_{SENSE}} \]

EQUATION 3-4:

\[V_{CS(LL)} = \frac{V_{DD}}{1 + \frac{R_{HDA}}{R_{HDB}}} \]

EQUATION 3-5:

\[I_{HOLD} = \frac{V_{CS(LL)}}{R_{SENSE}} \]

EQUATION 3-6:

\[f_{PWM} = 3.23kHz + \frac{21.8GHz \cdot \Omega}{R_{OSC}} \]

Valid for \(f_{PWM} > 23 \text{ kHz} \)

EQUATION 3-7:

\[V_{CC} = 1.25V \cdot \left(1 + \frac{R_{FBA}}{R_{FBB}}\right) \]

FIGURE 3-1: Current vs. Time.
FIGURE 3-2: Typical Application Circuit.
4.0 PACKAGING INFORMATION

4.1 Package Marking Information

Legend:
- XX...X: Product Code or Customer-specific information
- Y: Year code (last digit of calendar year)
- YY: Year code (last 2 digits of calendar year)
- WW: Week code (week of January 1 is week ‘01’)
- NNN: Alphanumeric traceability code
- Pb-free JEDEC® designator for Matte Tin (Sn)
- *: This package is Pb-free. The Pb-free JEDEC designator (e³) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.
16-Lead SOIC (Narrow Body) Package Outline (NG)
Pins #2 and #3 Trimmed
9.90x3.90mm body, 1.75mm height (max), 1.27mm pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Note:
1. This chamfer feature is optional. If it is not present, then a Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier, an embedded metal marker, or a printed indicator.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>A</th>
<th>A1</th>
<th>A2</th>
<th>b</th>
<th>D</th>
<th>E</th>
<th>E1</th>
<th>e</th>
<th>h</th>
<th>L</th>
<th>L1</th>
<th>L2</th>
<th>θ</th>
<th>θ1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>1.35*</td>
<td>0.10</td>
<td>1.25</td>
<td>0.31</td>
<td>9.80*</td>
<td>5.80*</td>
<td>3.80*</td>
<td>1.27 BSC</td>
<td>0.25</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOM</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9.90</td>
<td>6.00</td>
<td>3.90</td>
<td>-</td>
<td>1.04 REF</td>
<td>0.25</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX</td>
<td>1.75</td>
<td>0.25</td>
<td>1.65*</td>
<td>0.51</td>
<td>10.00*</td>
<td>6.20*</td>
<td>4.00*</td>
<td>0.50</td>
<td>1.27 BSC</td>
<td>8°</td>
<td>15°</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This dimension is not specified in the JEDEC drawing.
Drawings are not to scale.
APPENDIX A: REVISION HISTORY

Revision B (September 2019)

• Updated the Absolute Maximum Ratings†.
• Updated the Temperature Specifications.
• Corrected equations in Section 3.0, Application Information.
• Various typographical edits.

Revision A (August 2016)

• Updated file to Microchip format.
• Converted Supertex Doc # DSFP-HV9901 to Microchip DS20005550B.
• Minor text changes throughout.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>Package Options</th>
<th>Environmental</th>
<th>Media Type</th>
</tr>
</thead>
</table>

Device:	HV9901 = Universal Relay Driver
Package:	NG = 16-lead SOIC
Environmental:	G = Lead (Pb)-free/RoHS-compliant Package
Media Type:	(blank) = 45/Tube for an NG Package
	M901 = 2600/Reel for an NG Package
	M934 = 2600/Reel for an NG Package
Note:	For media types M901 and M934, the base quantity for tape and reel was standardized to 2600/reel. Both options will result in delivery of the same number of parts/reel.

Examples:

a) HV9901NG-G: Universal Relay Driver, 16-lead SOIC Package, 45/Tube

b) HV9901NG-G-M901: Universal Relay Driver, 16-lead SOIC Package, 2600/Reel

c) HV9901NG-G-M934: Universal Relay Driver, 16-lead SOIC Package, 2600/Reel
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BeraTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANcheck, LinkMD, maxStylus, maxTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetriloc, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vector, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLightLoad, IntellIMOS, Libero, motorBench, mTouch, Powermate 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016-2019, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-5022-1
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

- **Atlanta**
 Duluth, GA
 Tel: 678-957-9614
 Fax: 678-957-1455
- **Austin, TX**
 Tel: 512-257-3370
- **Boston**
 Westborough, MA
 Tel: 774-760-0087
 Fax: 774-760-0088
- **Chicago**
 Itasca, IL
 Tel: 630-285-0071
 Fax: 630-285-0075
- **Dallas**
 Addison, TX
 Tel: 972-818-7423
 Fax: 972-818-2924
- **Detroit**
 Novi, MI
 Tel: 248-848-4000
- **Houston, TX**
 Tel: 281-894-5983
- **Indianapolis**
 Noblesville, IN
 Tel: 317-773-8323
 Fax: 317-773-5453
 Tel: 317-536-2380
- **Los Angeles**
 Mission Viejo, CA
 Tel: 949-462-9523
 Fax: 949-462-9608
 Tel: 951-273-7800
- **Raleigh, NC**
 Tel: 919-844-7510
- **New York, NY**
 Tel: 631-435-6000
- **San Jose, CA**
 Tel: 408-735-9110
 Tel: 408-436-4270
- **Canada - Toronto**
 Tel: 905-695-1980
 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
 Tel: 61-2-9886-6733

China - Beijing
 Tel: 86-10-8569-7000

China - Chengdu
 Tel: 86-28-8665-5511

China - Chongqing
 Tel: 86-23-8890-9588

China - Dongguan
 Tel: 86-769-8702-9880

China - Guangzhou
 Tel: 86-20-8755-8029

China - Hangzhou
 Tel: 86-571-8792-8115

China - Hong Kong SAR
 Tel: 852-2943-5100

China - Nanjing
 Tel: 86-25-8473-2460

China - Qingdao
 Tel: 86-532-8502-7355

China - Shanghai
 Tel: 86-21-3326-8000

India - Bangalore
 Tel: 91-80-3090-4444

India - New Delhi
 Tel: 91-11-4160-8631

India - Pune
 Tel: 91-20-4121-0141

Japan - Osaka
 Tel: 81-3-6880-3770

Japan - Tokyo
 Tel: 81-6-6152-7160

Korea - Daegu
 Tel: 82-53-744-4301

Korea - Seoul
 Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
 Tel: 60-3-7651-7906

Malaysia - Penang
 Tel: 60-4-227-8870

Philippines - Manila
 Tel: 63-2-634-9065

Singapore
 Tel: 65-6334-8870

Taiwan - Hsin Chu
 Tel: 886-3-577-8366

Taiwan - Kaohsiung
 Tel: 886-7-213-7830

Taiwan - Taipei
 Tel: 886-2-2508-8600

Thailand - Bangkok
 Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
 Tel: 84-28-5448-2100

EUROPE

Austria - Wels
 Tel: 43-7242-2244-39
 Fax: 43-7242-2244-393

Denmark - Copenhagen
 Tel: 45-4450-2828
 Fax: 45-4485-2829

Finland - Espoo
 Tel: 358-9-4520-820

France - Paris
 Tel: 33-1-69-53-63-20
 Fax: 33-1-69-30-90-79

Germany - Garching
 Tel: 49-8931-9700

Germany - Haan
 Tel: 49-2129-3766400

Germany - Heilbronn
 Tel: 49-7131-72400

Germany - Karlsruhe
 Tel: 49-721-625370

Germany - Munich
 Tel: 49-89-627-144-0
 Fax: 49-89-627-144-44

Germany - Rosenheim
 Tel: 49-8031-354-560

Israel - Ra'anana
 Tel: 972-9-744-7705

Italy - Milan
 Tel: 39-0331-742611
 Fax: 39-0331-466781

Italy - Padova
 Tel: 39-049-7625286

Netherlands - Drunen
 Tel: 31-416-690399
 Fax: 31-416-690340

Norway - Trondheim
 Tel: 47-7288-4388

Poland - Warsaw
 Tel: 48-22-3325737

Romania - Bucharest
 Tel: 40-21-407-87-50

Spain - Madrid
 Tel: 34-91-708-08-90
 Fax: 34-91-708-08-91

Sweden - Gothenberg
 Tel: 46-31-704-60-40

Sweden - Stockholm
 Tel: 46-8-5090-4654

UK - Wokingham
 Tel: 44-118-921-5800
 Fax: 44-118-921-5820