Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Revision Summary</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>01A</td>
<td>21 07 14</td>
<td>Initial Version</td>
<td></td>
</tr>
<tr>
<td>02A</td>
<td>05 08 14</td>
<td>Review Comments updated</td>
<td>Manikandan.TB</td>
</tr>
<tr>
<td>A</td>
<td>14 08 14</td>
<td>Released for FAB</td>
<td>Manikandan.TB</td>
</tr>
<tr>
<td>B</td>
<td>19 09 14</td>
<td>Released for FAB(Refer : /depot_hw_jutland/Validation/Post-Silicon/ EVB Design/EVB patch work details/Jutland EVB patch work details.xlsx)</td>
<td>Manikandan.TB</td>
</tr>
<tr>
<td>01C</td>
<td>13 11 15</td>
<td>Refer : /depot_hw_jutland/Validation/Post-Silicon/EVB Design/SCH+PCB+GBR+BOM files/EVB2-9252-HB&SPI+GPIO/REV-C/EVB-LAN9252-HBI-REV-C_Requirement_list.xlsx</td>
<td>Senthil M</td>
</tr>
<tr>
<td>C</td>
<td>28 DEC 15</td>
<td>Released for FAB</td>
<td>Manikandan.TB</td>
</tr>
<tr>
<td>D</td>
<td>12 FEB 15</td>
<td>U10 pin 4 & 5 changed, U9 footprint updated</td>
<td>Manikandan.TB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIM SPI changed to SPI2, PIM TX,RX changed to Pin 51 &52, RES R147,R148,R150 & R151 deleted and RN1,RN2,RN3 & RN4 added</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Released for FAB</td>
<td></td>
</tr>
</tbody>
</table>

### Page No.	Schematic Page
1 | Title
2 | Block Diagram
3 | Power Supply & RST
4 | LAN9252(Part1)
5 | Copper Mode Interface
6 | SFP Interface
7 | STRAP,GPIO,I2C & FXLOS
8 | LAN9252(Part2)
9 | ON-Board-PIC32MX
10 | GPIO
11 | UART, ADC & DAC
12 | PIM
POWER SUPPLY

3 V REGULATOR, 3A
(3V fixed when Rb=50kΩ)

RESET Options

Note:
1. POR -> Reset to ASIC & SOC (Default)
2. RESET O/P from ASIC -> Reset to EX-PHY (PORT2) & SOC : Only Ethercat sku
3. RESET from SOC (GPIO/RST-O/P) -> Reset to ASIC
4. RESET from Push Button -> Reset to ASIC & SOC

Reset Generator

TPS3125
SS03-5
Threshold = 2.64V
Delay = 180ms

SW2
sw_pb_2P

U1
3_Amp

U2
TPS3125

U3
74LVC1G14

D1
GRN

R1
0R

C1
4.7uF
DNP

R2
1K

R4
470R
1%

R5
4.75K
1%

R6
10k
1%

R7
100Ω
1%

R8
1K

C2
10uF
25V

C3
0.1uF

C4
2.2uF

C5
0.1uF

C6
0.1uF

SW1
Switch SPDT, Slide
PN: 160160325082

TP1
RED

TP2
ORANGE

TP3
BLACK

TP4
BLACK
Note:
OSCVSS need to connect to Chip gnd.
Note: Capacitors C10 through C13 are optional for EMI purposes and are not populated on the LAN8740/41 evaluation board. These capacitors are required for operation in an EMI constrained environment.
GPIO [0-2] & LED_POL_Strap

The diagram illustrates the connections for GPIOs [0-2] and LED_POL_Strap. The GPIOs are connected to LED conditions as follows:

- **GPIO0 = LED0, LEDPOL0, MNGT0**
- **GPIO1 = LED1, LEDPOL1, MNGT1**
- **GPIO2 = LED2, LEDPOL2, E2PSIZE**

Management/LED Polarity Strap

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Logic</th>
<th>Connector</th>
<th>LED Polarity Strap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNGT0</td>
<td>0</td>
<td>J48,J51 (1&2)</td>
<td>The LED is set as active high.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>J48,J51 (1&2)</td>
<td>The LED is set as active low.</td>
</tr>
<tr>
<td>MNGT1</td>
<td>0</td>
<td>J50,J53 (1&2)</td>
<td>The LED is set as active high.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>J50,J53 (1&2)</td>
<td>The LED is set as active low.</td>
</tr>
<tr>
<td>E2PSIZE</td>
<td>0</td>
<td>J49,J52 (1&2)</td>
<td>The LED is set as active high. LEDPOL Strap: (9K-8) through 18K (2KX8)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>J49,J52 (1&2)</td>
<td>The LED is set as active low. LEDPOL Strap: (9K-8) through 18K (2KX8) or 48K (512KX8) (LAN9052 only)</td>
</tr>
</tbody>
</table>

Note: To use GPIOs as LED

* Short 2-3 of both jumpers (ex. for GPIO0 short 2-3 of J48 & J51)

I2C EEPROM

- **I2C EEPROM Lower size:** Below 16K(2K x 8)
- **I2C EEPROM Higher size:** Above 16K(2K x 8)

Signal Name | **Connector** | **Logic** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I2C2_SDA</td>
<td>J49,J52 (1&2)</td>
<td>1</td>
</tr>
<tr>
<td>I2C2_SCL</td>
<td>J49,J52 (2&3)</td>
<td>1</td>
</tr>
<tr>
<td>J50,J53 (1&2)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>J50,J53 (2&3)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Default:
- **Copper mode:**
 - R77=1.2K & R78=1K
 - Level of 1.5 V selects FX-LOS for port A and FX-SD/Copper twisted pair for port B further determined by FXSDENB

FX_Log_Strap_1 & 2

- **Default:**
 - Copper mode:
 - R77-12K & R78=Assemble
 - I2C EEPROM
 - Below 16K(2K x 8): R77=1.2K & R78=1K
 - Above 16K(2K x 8): R77=Assemble & R78=DNP

FX_Log_Strap_1 & 2

- **Default:**
 - Copper mode:
 - R77=1.2K & R78=1K
 - FX-LOS for port A and FX-SD/Copper twisted pair for port B further determined by FXSDENB

FX_Mode_Strap_1 & 2

- **Default:**
 - Copper mode:
 - R77=1.2K & R78=1K
 - Fiber Mode
 - R77=Assemble & R78=DNP

Microchip

Microchip Technology Inc.
Digital INPUTS

Input = one (Default); Input = Zero (change the Switch position)

<table>
<thead>
<tr>
<th>GPIO</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP0</td>
<td>GP00</td>
</tr>
<tr>
<td>GP1</td>
<td>GP01</td>
</tr>
<tr>
<td>GP2</td>
<td>GP02</td>
</tr>
<tr>
<td>GP3</td>
<td>GP03</td>
</tr>
<tr>
<td>GP4</td>
<td>GP04</td>
</tr>
<tr>
<td>GP5</td>
<td>GP05</td>
</tr>
<tr>
<td>GP6</td>
<td>GP06</td>
</tr>
<tr>
<td>GP7</td>
<td>GP07</td>
</tr>
<tr>
<td>GP8</td>
<td>GP08</td>
</tr>
<tr>
<td>GP9</td>
<td>GP09</td>
</tr>
<tr>
<td>GP10</td>
<td>GP10</td>
</tr>
<tr>
<td>GP11</td>
<td>GP11</td>
</tr>
<tr>
<td>GP12</td>
<td>GP12</td>
</tr>
<tr>
<td>GP13</td>
<td>GP13</td>
</tr>
<tr>
<td>GP14</td>
<td>GP14</td>
</tr>
<tr>
<td>GP15</td>
<td>GP15</td>
</tr>
</tbody>
</table>

Digital OUTPUTS

<table>
<thead>
<tr>
<th>GPIO</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP0</td>
<td>GP00</td>
</tr>
<tr>
<td>GP1</td>
<td>GP01</td>
</tr>
<tr>
<td>GP2</td>
<td>GP02</td>
</tr>
<tr>
<td>GP3</td>
<td>GP03</td>
</tr>
<tr>
<td>GP4</td>
<td>GP04</td>
</tr>
<tr>
<td>GP5</td>
<td>GP05</td>
</tr>
<tr>
<td>GP6</td>
<td>GP06</td>
</tr>
<tr>
<td>GP7</td>
<td>GP07</td>
</tr>
<tr>
<td>GP8</td>
<td>GP08</td>
</tr>
<tr>
<td>GP9</td>
<td>GP09</td>
</tr>
<tr>
<td>GP10</td>
<td>GP10</td>
</tr>
<tr>
<td>GP11</td>
<td>GP11</td>
</tr>
<tr>
<td>GP12</td>
<td>GP12</td>
</tr>
<tr>
<td>GP13</td>
<td>GP13</td>
</tr>
<tr>
<td>GP14</td>
<td>GP14</td>
</tr>
<tr>
<td>GP15</td>
<td>GP15</td>
</tr>
</tbody>
</table>

Note:
- **Digital INPUTS**
- **Digital OUTPUTS**
- Switche positions can be adjusted to change the input state.
POT (Analog Input)

Default Short

Temp sensor

DAC (Analog output)

Default Open

J26 Pin 2 = External Vref

Short J26 1-2 for Vref = 3V3

C87 & C88 = Default DNP

Assemble only when Vref is used

RS-232 I/F

Default Open

Short only when DAC need to be connect to onboard MX.
PIM unused GPIOs with GND probing option
PIM TXD & RXD can't be used in HBI mode.
In other modes, TXD & RXD can be externally connected to UART.