Features

- Low RMS Phase Jitter: <1 ps (typ.)
- High Stability: ±10 ppm, ±20 ppm, ±25 ppm, ±50 ppm
- Wide Temperature Range:
 - Ext. Industrial –40°C to +105°C
 - Industrial –40°C to +85°C
 - Ext. Commercial –20°C to +70°C
- High Supply Noise Rejection: –50 dBC
- Wide Frequency Range:
 - 2.3 MHz – 460 MHz
- Small Industry Standard Footprints
 - 2.5 mm x 2.0 mm
 - 3.2 mm x 2.5 mm
 - 5.0 mm x 3.2 mm
 - 7.0 mm x 5.0 mm
- Excellent Shock and Vibration Immunity
 - Qualified to MIL-STD-883
- High Reliability
 - 20x better MTF than quartz-based devices
- Low Current Consumption
- Supply Range of 2.25V to 3.63V
- Standby and Output Enable Functions
- Lead Free and RoHS-Compliant

Applications

- Storage Area Networks
 - SATA, SAS, Fibre Channel
- Passive Optical Networks
 - EPON, 10G-EPON, GPON, 10G-PON
- HD/SD/SDI Video and Surveillance
- PCI Express Gen 1/Gen 2/Gen 3
- Display Port

General Description

The DSC1103 and DSC1123 series of high performance oscillators utilizes a proven silicon MEMS technology to provide excellent jitter and stability over a wide range of supply voltages and temperatures. By eliminating the need for quartz or SAW technology, MEMS oscillators significantly enhance reliability and accelerate product development, while meeting stringent clock performance criteria for a variety of communications, storage, and networking applications.

DSC1103 has a standby feature allowing it to completely power-down when EN pin is pulled low. For DSC1123, only the outputs are disabled when EN is low. Both oscillators are available in industry standard packages, including the smallest 2.5 mm x 2.0 mm, and are drop-in replacements for standard 6-pin LVDS crystal oscillators.

Block Diagram

[Diagram showing the block diagram of the oscillator]
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (Note 1)</td>
<td>VDD</td>
<td>2.25</td>
<td>3.63</td>
<td>V</td>
<td>DSC1103, EN pin low; all outputs disabled.</td>
</tr>
<tr>
<td>Supply Current</td>
<td>I DD</td>
<td>—</td>
<td>0.095</td>
<td>mA</td>
<td>DSC1123, EN pin low; all outputs disabled.</td>
</tr>
<tr>
<td>Frequency Stability</td>
<td>Δf</td>
<td>—</td>
<td>±10</td>
<td>ppm</td>
<td>Includes frequency variations due to initial tolerance, temp., and power supply voltage.</td>
</tr>
<tr>
<td>Aging - First Year</td>
<td>ΔfY1</td>
<td>—</td>
<td>±5</td>
<td>ppm</td>
<td>One year at +25°C</td>
</tr>
<tr>
<td>Aging - After First Year</td>
<td>ΔfY2+</td>
<td>—</td>
<td><±1</td>
<td>ppm/yr</td>
<td>Year two and beyond at +25°C</td>
</tr>
<tr>
<td>Start-up Time (Note 2)</td>
<td>tSU</td>
<td>—</td>
<td>5</td>
<td>ms</td>
<td>T = +25°C</td>
</tr>
<tr>
<td>Input Logic Levels</td>
<td>VIL</td>
<td>0.25VDD</td>
<td>—</td>
<td>V</td>
<td>Input logic low</td>
</tr>
<tr>
<td></td>
<td>VIL</td>
<td>0.25VDD</td>
<td>—</td>
<td>V</td>
<td>Input logic high</td>
</tr>
<tr>
<td>Output Disable Time (Note 3)</td>
<td>tDA</td>
<td>—</td>
<td>5</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>Output Enable Time</td>
<td>tEN</td>
<td>—</td>
<td>5</td>
<td>ms</td>
<td>DSC1103</td>
</tr>
<tr>
<td>Enable Pull-Up Resistor (Note 4)</td>
<td>RPU</td>
<td>—</td>
<td>40</td>
<td>kΩ</td>
<td>Pull-up resistor exist.</td>
</tr>
</tbody>
</table>

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Specifications: VDD = 3.3V; TA = +25°C unless otherwise specified.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (Note 1)</td>
<td>VDD</td>
<td>2.25</td>
<td>3.63</td>
<td>—</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td>Supply Current</td>
<td>I DD</td>
<td>—</td>
<td>0.095</td>
<td>mA</td>
<td>DSC1103, EN pin low; all outputs disabled.</td>
<td></td>
</tr>
<tr>
<td>Frequency Stability</td>
<td>Δf</td>
<td>—</td>
<td>±10</td>
<td>ppm</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Aging - First Year</td>
<td>ΔfY1</td>
<td>—</td>
<td>±5</td>
<td>ppm</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Aging - After First Year</td>
<td>ΔfY2+</td>
<td>—</td>
<td><±1</td>
<td>ppm/yr</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Start-up Time (Note 2)</td>
<td>tSU</td>
<td>—</td>
<td>5</td>
<td>ms</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Input Logic Levels</td>
<td>VIL</td>
<td>0.75VDD</td>
<td>—</td>
<td>V</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Output Disable Time (Note 3)</td>
<td>tDA</td>
<td>—</td>
<td>5</td>
<td>ns</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Output Enable Time</td>
<td>tEN</td>
<td>—</td>
<td>5</td>
<td>ms</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Enable Pull-Up Resistor (Note 4)</td>
<td>RPU</td>
<td>—</td>
<td>40</td>
<td>kΩ</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: VDD pin should be filtered with a 0.1 µF capacitor.

2: tSU is time to 100 ppm stable output frequency after VDD is applied and outputs are enabled.

3: See the Output Waveform section and the Test Circuit for more information.

4: Output is enabled if pad is floated or not connected.
ELECTRICAL CHARACTERISTICS (CONTINUED)

Specifications: \(V_{DD} = 3.3 \text{V}; T_A = +25^\circ \text{C} \) unless otherwise specified.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Transition Rise/Fall Time (Note 3)</td>
<td>(t_R/t_F)</td>
<td>—</td>
<td>200</td>
<td>—</td>
<td>ps</td>
<td>20% to 80% (R_L = 50 \Omega, C_L = 2 \text{pF})</td>
</tr>
<tr>
<td>Frequency</td>
<td>(f_0)</td>
<td>2.3</td>
<td>—</td>
<td>460</td>
<td>MHz</td>
<td>–20°C to +70°C & –40°C to +85°C</td>
</tr>
<tr>
<td>Output Duty Cycle</td>
<td>SYM</td>
<td>48</td>
<td>—</td>
<td>52</td>
<td>%</td>
<td>Differential</td>
</tr>
<tr>
<td>Period Jitter</td>
<td>(J_{PER})</td>
<td>—</td>
<td>2.5</td>
<td>—</td>
<td>psRMS</td>
<td></td>
</tr>
<tr>
<td>Integrated Phase Noise</td>
<td>(J_{PH})</td>
<td>—</td>
<td>0.28</td>
<td>—</td>
<td>psRMS</td>
<td>200 kHz to 20 MHz @156.25 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>0.4</td>
<td>—</td>
<td>psRMS</td>
<td>100 kHz to 20 MHz @156.25 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>1.7</td>
<td>2</td>
<td>—</td>
<td>12 kHz to 20 MHz @156.25 MHz</td>
</tr>
</tbody>
</table>

Note 1: \(V_{DD} \) pin should be filtered with a 0.1 \(\mu \text{F} \) capacitor.

Note 2: \(t_{SU} \) is time to 100 ppm stable output frequency after \(V_{DD} \) is applied and outputs are enabled.

Note 3: See the Output Waveform section and the Test Circuit for more information.

Note 4: Output is enabled if pad is floated or not connected.
TEMPERATURE SPECIFICATIONS (Note 1)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_A</td>
<td>-20</td>
<td>—</td>
<td>+70</td>
<td>°C</td>
<td>Ordering Option E</td>
</tr>
<tr>
<td></td>
<td>T_A</td>
<td>-40</td>
<td>—</td>
<td>+85</td>
<td>°C</td>
<td>Ordering Option I</td>
</tr>
<tr>
<td></td>
<td>T_A</td>
<td>-40</td>
<td>—</td>
<td>+105</td>
<td>°C</td>
<td>Ordering Option L</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_J</td>
<td>—</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td>—</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_S</td>
<td>-55</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td>—</td>
</tr>
<tr>
<td>Soldering Temperature</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>+260</td>
<td>°C</td>
<td>40 sec. max.</td>
</tr>
</tbody>
</table>

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature, and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above +150°C can impact the device reliability.
2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin Number 7x5 with Pad</th>
<th>Pin Number 7x5 w/o Pad</th>
<th>Pin Number 5x3.2</th>
<th>Pin Number 3.2x2.5</th>
<th>Pin Number 2x2.5</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>EN</td>
<td>Enable</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>NC</td>
<td>Do not connect</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>OUT</td>
<td>LVDS clock output +</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>OUT–</td>
<td>LVDS clock output –</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>VDD</td>
<td>Supply voltage</td>
</tr>
<tr>
<td>PAD</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>PAD</td>
<td>Tie to Ground</td>
</tr>
</tbody>
</table>

TABLE 2-2: OUTPUT ENABLE MODES

<table>
<thead>
<tr>
<th>EN Pin</th>
<th>DSC1103</th>
<th>DSC1123</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Outputs Active</td>
<td>Outputs Active</td>
</tr>
<tr>
<td>NC</td>
<td>Outputs Active</td>
<td>Outputs Active</td>
</tr>
<tr>
<td>Low</td>
<td>Standby</td>
<td>Outputs Disabled</td>
</tr>
</tbody>
</table>
3.0 NOMINAL PERFORMANCE PARAMETERS

Unless otherwise specified, $T = +25^\circ C$, $V_{DD} = 3.3V$.

FIGURE 3-1: Power Supply Rejection Ratio.

FIGURE 3-2: Phase Jitter (Integrated Phase Noise).
4.0 TERMINATION SCHEME

FIGURE 4-1: Typical Termination Scheme.

5.0 OUTPUT WAVEFORM

FIGURE 5-1: Output Waveform.
6.0 TEST CIRCUIT

![Test Circuit Diagram]

FIGURE 6-1: Test Circuit.

7.0 RECOMMENDED BOARD LAYOUT

![Recommended Board Layout Diagram]

FIGURE 7-1: DSC1103/23 Recommended Board Layout.
8.0 SOLDER REFLOW PROFILE

<table>
<thead>
<tr>
<th>MSL 1 @ 260°C refer to JSTD-020C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp-Up Rate (200°C to Peak Temp)</td>
</tr>
<tr>
<td>Preheat Time 150°C to 200°C</td>
</tr>
<tr>
<td>Time Maintained above 217°C</td>
</tr>
<tr>
<td>Peak Temperature</td>
</tr>
<tr>
<td>Time within 5°C of Actual Peak</td>
</tr>
<tr>
<td>Ramp-Down Rate</td>
</tr>
<tr>
<td>Time 25°C to Peak Temperature</td>
</tr>
</tbody>
</table>

Ramp-Up Rate (200°C to Peak Temp) 3°C/sec. max.
Preheat Time 150°C to 200°C 60-180 sec.
Time Maintained above 217°C 60-150 sec.
Peak Temperature 255°C to 260°C
Time within 5°C of Actual Peak 20-40 sec.
Ramp-Down Rate 6°C/sec. max.
Time 25°C to Peak Temperature 8 minutes max.

MSL 1 @ 260°C refer to JSTD-020C

© 2017-2018 Microchip Technology Inc.
9.0 PACKAGE MARKING INFORMATION

6-Lead VDFN 2.5 mm x 2.0 mm Package Outline and Recommended Land Pattern

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Pad Width (X4)</td>
<td>E</td>
<td>0.825 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Width (X2)</td>
<td>X2</td>
<td>0.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Length (X6)</td>
<td>Y</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Between Contacts (X4)</td>
<td>G1</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Between Contacts (X3)</td>
<td>G2</td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3005A

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
6-Lead Very Thin Dual Flatpack No-Leads (J7A) - 2.5x2.0 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
6-Lead Very Thin Dual Flatpack No-Leads (J7A) - 2.5x2.0 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Terminals</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b1</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b2</td>
</tr>
<tr>
<td>Terminal Length</td>
<td>L1</td>
</tr>
<tr>
<td>Terminal Length</td>
<td>L2</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
6-Lead VDFN 3.2 mm x 2.5 mm Package Outline and Recommended Land Pattern

6-Lead Very Thin Plastic Dual Flatpack No-Lead (H5A) - 3.2x2.5 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width (X4)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Width (X2)</td>
<td>X2</td>
</tr>
<tr>
<td>Contact Pad Length (X6)</td>
<td>Y</td>
</tr>
<tr>
<td>Space Between Contacts (X4)</td>
<td>G1</td>
</tr>
</tbody>
</table>

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-3007A
6-Lead Very Thin Plastic Dual Flatpack No-Lead (H5A) - 3.2x2.5 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-1007A Sheet 1 of 2
6-Lead Very Thin Plastic Dual Flatpack No-Lead (H5A) - 3.2x2.5 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com-packaging

- **Number of Terminals**: 6
- **Pitch**: 1.05 BSC
- **Overall Height**: 0.80 to 0.85 to 0.90
- **Standoff**: 0.00 to 0.02 to 0.05
- **Overall Length**: 3.20 BSC
- **Overall Width**: 2.50 BSC
- **Terminal Width**: 0.85 to 0.90 to 0.95
- **Terminal Width**: 0.45 to 0.50 to 0.55
- **Terminal Length**: 0.65 to 0.70 to 0.75
- **Terminal Pullback**: 0.10 REF

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.
6-Lead CDFN 5.0 mm x 3.2 mm Package Outline and Recommended Land Pattern

Title
6 LEAD CDFN 5.0x3.2mm COL PACKAGE OUTLINE & RECOMMENDED LAND PATTERN

Drawing # CDFN5032-6LD-PL-1
Unit MM

Top View

Bottom View

Side View

Recommended Land Pattern

NOTE:
1. * Power Supply Decoupling Capacitor is required in Recommended Land Pattern.
2. Green shaded rectangles in Recommended Land Pattern are solder stencil opening.
3. Red circles in Recommended Land Pattern are thermal VIA.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.
6-Lead VDFN 7.0 mm x 5.0 mm Package Outline and Recommended Land Pattern

6-Lead Very Thin Plastic Quad Flat, No Lead Package (H8A) - 7x5 mm Body [VDFN] With 2.8x1.8 mm Exposed Pad

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3010A
6-Lead Very Thin Plastic Quad Flat, No Lead Package (H8A) - 7x5 mm Body [VDFN] With 2.8x1.8 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
6-Lead Very Thin Plastic Quad Flat, No Lead Package (H8A) - 7x5 mm Body [VDFN] With 2.8x1.8 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td></td>
<td>MIN</td>
<td>NOM</td>
<td>MAX</td>
</tr>
<tr>
<td>Number of Terminals</td>
<td>N</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td>2.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>0.80</td>
<td>0.85</td>
<td>0.90</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>0.00</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td></td>
<td>7.00 BSC</td>
<td></td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
<td>2.70</td>
<td>2.80</td>
<td>2.90</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td></td>
<td>5.00 BSC</td>
<td></td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
<td>1.70</td>
<td>1.80</td>
<td>1.90</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b</td>
<td>1.35</td>
<td>1.40</td>
<td>1.45</td>
</tr>
<tr>
<td>Terminal Length</td>
<td>L</td>
<td>1.00</td>
<td>1.10</td>
<td>1.20</td>
</tr>
<tr>
<td>Terminal-to-Exposed-Pad</td>
<td>K</td>
<td></td>
<td>0.20 REF</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.
6-Lead CDFN 7.0 mm x 5.0 mm Package Outline and Recommended Land Pattern

Title
6 LEAD CDFN 7.0x5.0mm COL PACKAGE OUTLINE & RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>DRAWING #</th>
<th>CDFN75-6LD-PL-1</th>
<th>UNIT</th>
<th>MM</th>
</tr>
</thead>
</table>

Top View

Bottom View

Side View

Recommended Land Pattern

NOTE:
1. * Power Supply Decoupling Capacitor is required in Recommended Land Pattern.
2. Green shaded rectangles in Recommended Land Pattern are solder stencil opening.
3. Red circles in Recommended Land Pattern are thermal VIA.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.
APPENDIX A: REVISION HISTORY

Revision A (March 2017)
- Converted Micrel data sheet DSC1103/23 to Microchip DS20005745A.
- Minor text changes throughout.
- Updated Package Marking Information to MCHP-standard drawings where available.

Revision B (October 2018)
- Added ±20 ppm stability references throughout document.
- Added Section 7.0, Recommended Board Layout.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device (First 2 Digits)</th>
<th>Enable Modes (Last Digit)</th>
<th>Package</th>
<th>Temp. Range</th>
<th>Frequency (xxx.xxxx)</th>
<th>Stability (ppm)</th>
<th>Packing</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSC11x3:</td>
<td>X</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>xxx.xxxx</td>
<td>1 = ±50</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 = ±25</td>
<td>(blank)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 = ±20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 = ±10</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Device: DSC11x3: Low-Jitter Precision LVDS Oscillator
- Enable Modes:
 - 0 = Enable/Standby
 - 2 = Enable/Disable
- Package:
 - A = 7.0 mm x 5.0 mm VDFN
 - B = 5.0 mm x 3.2 mm CDFN
 - C = 3.2 mm x 2.5 mm VDFN
 - D = 2.5 mm x 2.0 mm VDFN
 - N = 7.0 mm x 5.0 mm CDFN (no center pad)
- Temperature Range:
 - E = –20°C to +70°C
 - I = –40°C to +85°C
 - L = –40°C to +105°C
- Stability:
 - 1 = ±50 ppm
 - 2 = ±25 ppm
 - 3 = ±20 ppm
 - 4 = ±10 ppm
- Frequency Code: xxx.xxxx = 2.3 MHz to 460 MHz (user-defined)
- Packing:
 - T = 1,000/Reel
 - (blank) = 100/Tube

Examples:

a) DSC1103AE1-125.0000: Low-Jitter Precision LVDS Oscillator, Enable/Standby, 7x5 VDFN, –20°C to +70°C, ±50 ppm, 125 MHz, 100/Tube

b) DSC1123BI2-400.0000T: Low-Jitter Precision LVDS Oscillator, Enable/Disable, 5x3.2 CDFN, –40°C to +85°C, ±25 ppm, 400 MHz, 1,000/Reel

c) DSC1103CL5-074.2500: Low-Jitter Precision LVDS Oscillator, Enable/Standby, 3.2x2.5 VDFN, –40°C to +105°C, ±10 ppm, 74.25 MHz, 100/Tube

d) DSC1123DE1-082.5000T: Low-Jitter Precision LVDS Oscillator, Enable/Disable, 2.5x2.0 VDFN, –20°C to +70°C, ±50 ppm, 82.5 MHz, 1,000/Reel

e) DSC1103NI2-056.0000: Low-Jitter Precision LVDS Oscillator, Enable/Standby, 7x5 CDFN (no center pad), –40°C to +85°C, ±25 ppm, 56 MHz, 100/Tube

Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Frits, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maxXStylus, maxXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-The-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omnicent Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
Siocom Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.
GestiC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.

© 2017-2018 Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-3790-1
Worldwide Sales and Service

AMERICAS
- **Corporate Office**
 - Address: 2355 West Chandler Blvd, Chandler, AZ 85224-6199
 - Telephone: 480-792-7200
 - Fax: 480-792-7277
 - Technical Support: http://www.microchip.com/support
 - Web Address: www.microchip.com

- **Atlanta**
 - Address: Duluth, GA
 - Telephone: 678-957-9614
 - Fax: 678-957-1455

- **Austin, TX**
 - Telephone: 512-257-3370

- **Boston**
 - Address: Westborough, MA
 - Telephone: 774-760-0087
 - Fax: 774-760-0088

- **Chicago**
 - Address: Itasca, IL
 - Telephone: 630-285-0071
 - Fax: 630-285-0075

- **Dallas**
 - Address: Addison, TX
 - Telephone: 972-818-7423
 - Fax: 972-818-2924

- **Detroit**
 - Address: Novi, MI
 - Telephone: 248-848-4000

- **Houston, TX**
 - Telephone: 281-894-5983

- **Indianapolis**
 - Address: Noblesville, IN
 - Telephone: 317-773-8323
 - Fax: 317-773-5453
 - Telephone: 317-536-2380

- **Los Angeles**
 - Address: Mission Viejo, CA
 - Telephone: 949-462-9523
 - Fax: 949-462-9608
 - Telephone: 951-273-7800

- **Raleigh, NC**
 - Telephone: 919-844-7510

- **New York, NY**
 - Telephone: 631-435-6000

- **San Jose, CA**
 - Telephone: 408-735-9110
 - Telephone: 408-436-4270

- **Canada - Toronto**
 - Telephone: 905-695-1980
 - Fax: 905-695-2078

ASIA/PACIFIC
- **Australia - Sydney**
 - Telephone: 61-2-9886-6733

- **China - Beijing**
 - Telephone: 86-10-8569-7000

- **China - Chengdu**
 - Telephone: 86-28-8665-5511

- **China - Chongqing**
 - Telephone: 86-23-8980-9588

- **China - Dongguan**
 - Telephone: 86-769-8702-9880

- **China - Guangzhou**
 - Telephone: 86-20-8755-8029

- **China - Hangzhou**
 - Telephone: 86-571-8792-8115

- **China - Hong Kong SAR**
 - Telephone: 852-2943-5100

- **China - Nanjing**
 - Telephone: 86-25-8755-8029

- **China - Qingdao**
 - Telephone: 86-532-8502-7355

- **China - Shanghai**
 - Telephone: 86-21-3326-8000

- **China - Shenyang**
 - Telephone: 86-24-2334-2829

- **China - Shenzhen**
 - Telephone: 86-755-8864-2200

- **China - Suzhou**
 - Telephone: 86-186-6233-1526

- **China - Wuhan**
 - Telephone: 86-27-5980-5300

- **China - Xian**
 - Telephone: 86-29-8833-7252

- **China - Xiamen**
 - Telephone: 86-592-2388138

- **China - Zhuhai**
 - Telephone: 86-756-3210040

- **India - Bangalore**
 - Telephone: 91-80-3090-4444

- **India - New Delhi**
 - Telephone: 91-11-4160-8631

- **India - Pune**
 - Telephone: 91-20-1791-0114

- **Japan - Osaka**
 - Telephone: 81-6-6152-7160

- **Japan - Tokyo**
 - Telephone: 81-3-6880-3770

- **Korea - Daegu**
 - Telephone: 82-53-744-4301

- **Korea - Seoul**
 - Telephone: 82-2-554-7200

- **Malaysia - Kuala Lumpur**
 - Telephone: 60-3-7651-7906

- **Malaysia - Penang**
 - Telephone: 60-4-227-8870

- **Philippines - Manila**
 - Telephone: 63-2-634-9065

- **Singapore**
 - Telephone: 65-6334-8870

- **Taiwan - Hsin Chu**
 - Telephone: 886-3-577-8366

- **Taiwan - Kaohsiung**
 - Telephone: 886-7-213-7830

- **Taiwan - Taipei**
 - Telephone: 886-2-2508-8600

- **Thailand - Bangkok**
 - Telephone: 66-2-694-1351

- **Vietnam - Ho Chi Minh**
 - Telephone: 84-8-2544-2100

EUROPE
- **Austria - Wels**
 - Telephone: 43-7242-2244-39
 - Fax: 43-7242-2244-393

- **Denmark - Copenhagen**
 - Telephone: 45-4450-2828
 - Fax: 45-4485-2829

- **Finland - Espoo**
 - Telephone: 358-9-4520-820

- **France - Paris**
 - Telephone: 33-1-69-53-63-20
 - Fax: 33-1-69-30-90-79

- **Germany - Garching**
 - Telephone: 49-8931-9700

- **Germany - Haan**
 - Telephone: 49-2129-3766400

- **Germany - Heilbronn**
 - Telephone: 49-7131-67-3636

- **Germany - Karlsruhe**
 - Telephone: 49-721-625370

- **Germany - Munich**
 - Telephone: 49-89-627-144-0
 - Fax: 49-89-627-144-44

- **Germany - Rosenheim**
 - Telephone: 49-8031-354-560

- **Israel - Ra’anana**
 - Telephone: 972-9-744-7705

- **Italy - Milan**
 - Telephone: 39-0331-742611
 - Fax: 39-0331-466781

- **Italy - Padova**
 - Telephone: 39-049-7625286

- **Netherlands - Drunen**
 - Telephone: 31-416-690399
 - Fax: 31-416-690340

- **Norway - Trondheim**
 - Telephone: 47-7288-4388

- **Poland - Warsaw**
 - Telephone: 48-22-3325737

- **Romania - Bucharest**
 - Telephone: 40-21-407-87-50

- **Spain - Madrid**
 - Telephone: 34-91-708-08-90
 - Fax: 34-91-708-08-91

- **Sweden - Gothenberg**
 - Telephone: 46-31-708-60-40

- **Sweden - Stockholm**
 - Telephone: 46-8-5090-4654

- **UK - Wokingham**
 - Telephone: 44-118-921-5800
 - Fax: 44-118-921-5820