Features

• Automotive AEC-Q100 Qualified
• MEMS-Based Clock Generator Eliminates the Need for External Crystal or Reference Clock
• Three LVCMOS Output Clocks: 2 kHz to 100 MHz
• Low Power Consumption: 5.2 mA (All Outputs Active)
• Wide Supply Voltage Range: 1.71V to 3.63V
• Ultra-Small Package Sizes:
 - 1.6 mm x 1.2 mm
 - 2.0 mm x 1.6 mm
 - 2.5 mm x 2.0 mm
• High Frequency Stability: ±20 ppm, ±25 ppm, ±50 ppm
• Wide Temperature Range:
 - Automotive (Grade 1): –40°C to +125°C
 - Automotive (Grade 2): –40°C to +105°C
 - Automotive (Grade 3): –40°C to +85°C
• Excellent Shock and Vibration Immunity:
 - Shock: Qualified to MIL-STD-883E Method 2002.3, Test Condition G (30,000g)
 - Vibration: Qualified to MIL-STD-883E Method 2007.2, Test Condition C (70g)
• Spread Spectrum Clock Generation for EMI Reduction
• High Reliability
• Lead-Free and RoHS-Compliant

Applications

• Automotive Infotainment
• Automotive ADAS, Surround View Cameras
• In-Vehicle Networking, CAN bus, Ethernet

General Description

The DSA613 is a MEMS low power, ultra-small footprint, crystal-less family of clock generators. The DSA613 family is factory-configurable and generates up to three LVCMOS outputs from two PLLs. Each output can be configured to generate frequencies from 2 kHz to 100 MHz. The three-output DSA613 MEMS oscillators are excellent choices for use as clock references in automotive applications in which small size, low power consumption, and long-term reliability are paramount. The family of devices is AEC-Q100 qualified.

The DSA613 implements Microchip’s proven PureSilicon™ MEMS technology to provide low jitter and high stability across a wide range of supply voltages and temperatures. By eliminating the external quartz crystal, Microchip’s crystal-less™ clock generators significantly enhance reliability and accelerate product development.

The DSA613 has one control input that can be configured to function as output enable/disable, standby, sleep, spread spectrum enable, and frequency select. The DSA613 is available in space saving 6-pin, 1.6 mm x 1.2 mm, 2.0 mm x 1.6 mm, and 2.5 mm x 2.0 mm VFLGA plastic packages.

The DSA613 spread spectrum function includes both center and down spreading for EMI reduction, and is explained further in the Spread Spectrum section.

The DSA613 is a highly configurable device and is factory programmed to meet the customer’s needs. Microchip’s ClockWorks Configurator must be used to choose the necessary options, create the final part number, data sheet, and order samples.
Functional Block Diagram

[Diagram showing the functional blocks and connections]

- Digital Control
- Supply Regulation
- PLL1
- PLL2
- MEMS Resonator
- Temp. Sensor + Control & Compensation

Connections:
- OE/STDBY/FS/SLEEP/SSEN/NC (Pin 1)
- GND (Pin 3)
- VDD (Pin 6)
- CLK1
- CLK2
- CLK3
- Out Dev1
- Out Dev2
- Out Dev3
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage .. –0.3V to +4.0V
Input Voltage .. –0.3V to \(V_{DD} + 0.3V\)
ESD Protection (HBM) ... 4 kV
ESD Protection (MM) .. 400V
ESD Protection (CDM) ... 2 kV

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: \(V_{DD} = 1.8V \pm5\%\) to 3.3V \pm10\%; \(T_A = –40°C\) to +125°C, unless noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>(V_{DD})</td>
<td>1.71</td>
<td>—</td>
<td>3.63</td>
<td>V</td>
<td>Note 1</td>
</tr>
<tr>
<td>Active Supply Current</td>
<td>(I_{DD})</td>
<td>—</td>
<td>5.2</td>
<td>6.5</td>
<td>mA</td>
<td>(f_{CLK1} = 24) MHz, (f_{CLK2} = 27) MHz, (f_{CLK3} = 12) MHz, (V_{DD} = 1.8V, No) Load</td>
</tr>
<tr>
<td>Active Supply Current (Sleep Mode, 1 PLL Off)</td>
<td>(I_{DDSL})</td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>mA</td>
<td>(CLK2 = SLEEP, f_{CLK1} = 25) MHz, (V_{DD} = 1.8V, No) Load</td>
</tr>
<tr>
<td>Active Supply Current (32.768 kHz Output Only)</td>
<td>(I_{DD32k})</td>
<td>—</td>
<td>1.4</td>
<td>—</td>
<td>mA</td>
<td>(f_{CLK3} = 32.768) kHz, (V_{DD} = 1.8V, No) Load</td>
</tr>
<tr>
<td>Standby Supply Current, Note 2</td>
<td>(I_{STDBY})</td>
<td>—</td>
<td>1.0</td>
<td>—</td>
<td>μA</td>
<td>(V_{DD} = 1.8V/2.5V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(V_{DD} = 3.3V)</td>
</tr>
<tr>
<td>Frequency Stability, Note 3</td>
<td>(\Delta f)</td>
<td>—</td>
<td>—</td>
<td>±20</td>
<td>ppm</td>
<td>All temperature ranges</td>
</tr>
<tr>
<td>Aging</td>
<td>(\Delta f)</td>
<td>—</td>
<td>—</td>
<td>±5</td>
<td>ppm</td>
<td>1st year @ +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Per year after the first year</td>
</tr>
<tr>
<td>Startup Time</td>
<td>(t_{SU})</td>
<td>—</td>
<td>—</td>
<td>1.5</td>
<td>ms</td>
<td>From 90% (V_{DD}) to valid clock output, (T = +25°C)</td>
</tr>
<tr>
<td>Input Logic Levels, Note 4</td>
<td>(V_{IH})</td>
<td>0.7 x (V_{DD})</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>Input logic high</td>
</tr>
<tr>
<td></td>
<td>(V_{IL})</td>
<td>—</td>
<td>—</td>
<td>0.3 x (V_{DD})</td>
<td></td>
<td>Input logic low</td>
</tr>
<tr>
<td>Output Disable Time</td>
<td>(t_{DA})</td>
<td>—</td>
<td>—</td>
<td>200 + 2 Periods</td>
<td>ns</td>
<td>Note 5</td>
</tr>
<tr>
<td>Output Enable Time</td>
<td>(t_{EN})</td>
<td>—</td>
<td>1.0</td>
<td>—</td>
<td>μs</td>
<td>Note 6</td>
</tr>
<tr>
<td>Enable Pull-Up Resistor</td>
<td>—</td>
<td>—</td>
<td>300</td>
<td>—</td>
<td>kΩ</td>
<td>If configured. Note 7</td>
</tr>
<tr>
<td>Output Logic Levels</td>
<td>(V_{OHY})</td>
<td>0.8 x (V_{DD})</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>(I = 6) mA (high drive) or (I = 3) mA (standard drive)</td>
</tr>
<tr>
<td></td>
<td>(V_{OLY})</td>
<td>—</td>
<td>—</td>
<td>0.2 x (V_{DD})</td>
<td></td>
<td>(I = –6) mA (high drive) or (I = –3) mA (standard drive)</td>
</tr>
<tr>
<td></td>
<td>(V_{OHX})</td>
<td>0.8 x (V_{DD})</td>
<td>—</td>
<td>—</td>
<td></td>
<td>(I = 1) mA (low drive)</td>
</tr>
<tr>
<td></td>
<td>(V_{OLX})</td>
<td>—</td>
<td>—</td>
<td>0.2 x (V_{DD})</td>
<td></td>
<td>(I = –1) mA (low drive)</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: $V_{DD} = 1.8\,V \pm 5\%$ to $3.3\,V \pm 10\%$; $T_A = -40^\circ C$ to $+125^\circ C$, unless noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Transition Time,</td>
<td>$t_{RY1/FY1}$</td>
<td></td>
<td>1.2</td>
<td>2.0</td>
<td>ns</td>
<td>$V_{DD} = 1.8,V$, Standard drive 20% - 80% $C_L = 10,pF$ (CLK1/CLK2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td>1.2</td>
<td></td>
<td>$V_{DD} = 2.5,V/3.3,V$, Standard drive 20% - 80% $C_L = 10,pF$ (CLK1/CLK2)</td>
</tr>
<tr>
<td>Rise Time/Fall Time</td>
<td>$t_{RY2/FY2}$</td>
<td></td>
<td>1.0</td>
<td>1.5</td>
<td></td>
<td>$V_{DD} = 1.8,V$, High drive 20% - 80% $C_L = 15,pF$ (CLK1/CLK2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>1.0</td>
<td></td>
<td>$V_{DD} = 2.5,V/3.3,V$, High drive 20% - 80% $C_L = 15,pF$ (CLK1/CLK2)</td>
</tr>
<tr>
<td></td>
<td>$t_{RX/FX}$</td>
<td></td>
<td>2.5</td>
<td>3.5</td>
<td></td>
<td>$V_{DD} = 1.8,V$, Low drive 20% - 80% $C_L = 5,pF$ (CLK3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>2.2</td>
<td></td>
<td>$V_{DD} = 2.5,V/3.3,V$, Low drive 20% - 80% $C_L = 5,pF$ (CLK3)</td>
</tr>
<tr>
<td>Frequency</td>
<td>f_0</td>
<td></td>
<td>0.002</td>
<td></td>
<td>100</td>
<td>MHz</td>
</tr>
<tr>
<td>Output Duty Cycle</td>
<td>SYM</td>
<td>45</td>
<td></td>
<td>55</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Period Jitter, RMS</td>
<td>J_{PER}</td>
<td></td>
<td></td>
<td></td>
<td>ps</td>
<td>$f_{CLK1} = 24,MHz$, $f_{CLK2} = 27,MHz$, $f_{CLK3} = 12,MHz$, $V_{DD} = 1.8,V$</td>
</tr>
<tr>
<td>CLK1/CLK2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$f_{CLK1} = 24,MHz$, $f_{CLK2} = 27,MHz$, $f_{CLK3} = 12,MHz$, $V_{DD} = 3.3,V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$f_{CLK1} = 24,MHz$, $f_{CLK2} = 12,MHz$, $f_{CLK3} = 32.768,kHz$, $V_{DD} = 3.3,V$</td>
</tr>
<tr>
<td>Period Jitter, Peak-to-Peak</td>
<td>J_{PER}</td>
<td></td>
<td></td>
<td></td>
<td>ps</td>
<td>$f_{CLK1} = 24,MHz$, $f_{CLK2} = 27,MHz$, $f_{CLK3} = 12,MHz$, $V_{DD} = 1.8,V$</td>
</tr>
<tr>
<td>CLK1/CLK2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$f_{CLK1} = 24,MHz$, $f_{CLK2} = 27,MHz$, $f_{CLK3} = 12,MHz$, $V_{DD} = 3.3,V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$f_{CLK1} = 24,MHz$, $f_{CLK2} = 12,MHz$, $f_{CLK3} = 32.768,kHz$, $V_{DD} = 3.3,V$</td>
</tr>
<tr>
<td>Cycle-to-Cycle Jitter, Peak</td>
<td>J_{CY-CY}</td>
<td></td>
<td></td>
<td></td>
<td>ps</td>
<td>$f_{CLK1} = 24,MHz$, $f_{CLK2} = 27,MHz$, $f_{CLK3} = 12,MHz$, $V_{DD} = 1.8,V$</td>
</tr>
<tr>
<td>CLK1/CLK2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$f_{CLK1} = 24,MHz$, $f_{CLK2} = 27,MHz$, $f_{CLK3} = 12,MHz$, $V_{DD} = 3.3,V$</td>
</tr>
</tbody>
</table>

Note: 8
ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: $V_{DD} = 1.8V \pm 5\%$ to $3.3V \pm 10\%$; $T_A = -40^\circ C$ to $+125^\circ C$, unless noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period Jitter, RMS CLK3</td>
<td>J_{PER}</td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>ps</td>
<td>$f_{CLK1} = 24$ MHz, $f_{CLK2} = 27$ MHz, $f_{CLK3} = 12$ MHz, $V_{DD} = 1.8V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>35</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period Jitter, Peak-to-Peak CLK3</td>
<td>J_{PER}</td>
<td>—</td>
<td>270</td>
<td>—</td>
<td>ps</td>
<td>$f_{CLK1} = 24$ MHz, $f_{CLK2} = 27$ MHz, $f_{CLK3} = 12$ MHz, $V_{DD} = 1.8V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>220</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle-to-Cycle Jitter, Peak CLK3</td>
<td>J_{CY-CY}</td>
<td>—</td>
<td>235</td>
<td>—</td>
<td>ps</td>
<td>$f_{CLK1} = 24$ MHz, $f_{CLK2} = 27$ MHz, $f_{CLK3} = 12$ MHz, $V_{DD} = 1.8V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>190</td>
<td>—</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note
1: V_{DD} pin should be filtered with a 0.1 μF capacitor.
2: Excludes pull-up current.
3: Includes frequency variations due to initial tolerance, temperature, and power supply voltage.
4: Input waveform must be monotonic with rise/fall time < 10 ms.
5: Output disable time takes up to two Periods of the output waveform, plus 200 ns.
6: For parts configured with OE, not Standby.
7: Output is enabled if pad is floated or not connected.
8: CLK3 maximum frequency is 80 MHz.
TEMPERATURE SPECIFICATIONS *(Note 1)*

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction Operating Temperature</td>
<td>T_J</td>
<td>—</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td>—</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_S</td>
<td>—55</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td>—</td>
</tr>
<tr>
<td>Lead Temperature</td>
<td>—</td>
<td>—</td>
<td>+260</td>
<td>—</td>
<td>°C</td>
<td>Soldering, 40s</td>
</tr>
</tbody>
</table>

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above +150°C can impact the device reliability.
2.0 PIN DESCRIPTIONS

The DSA613 is a highly configurable device and can be factory programmed in many different ways to meet the customer’s needs. Microchip’s ClockWorks Configurator http://clockworks.microchip.com/Timing/ must be used to choose the necessary options, create the final part number, data sheet, and order samples. The descriptions of the pins are listed in Table 2-1.

Table 2-1: DSA613 Pin Function Table

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OE</td>
<td>Output Enable: H = Active, L = Disabled (High Impedance).</td>
</tr>
<tr>
<td></td>
<td>STDBY</td>
<td>Standby: H = Device is active, L = Device is in standby (Low Power Mode).</td>
</tr>
<tr>
<td></td>
<td>FS</td>
<td>Frequency Select: H = Output Frequency 1, L = Output Frequency 2.</td>
</tr>
<tr>
<td></td>
<td>SLEEP</td>
<td>Sleep: H= Output Enabled, L= Output and associated PLL Disabled.</td>
</tr>
<tr>
<td>2</td>
<td>CLK3</td>
<td>Factory configurable LVCMOS clock output 3: 2 kHz to 80 MHz, low drive.</td>
</tr>
<tr>
<td>3</td>
<td>VSS</td>
<td>Ground.</td>
</tr>
<tr>
<td>4</td>
<td>CLK1</td>
<td>Factory configurable LVCMOS clock output 1: 1 MHz to 100 MHz, standard drive or high drive.</td>
</tr>
<tr>
<td>5</td>
<td>CLK2</td>
<td>Factory configurable LVCMOS clock output 2: 1 MHz to 100 MHz, standard drive or high drive.</td>
</tr>
<tr>
<td>6</td>
<td>VDD</td>
<td>Power Supply: 1.71V to 3.63V.</td>
</tr>
</tbody>
</table>

An explanation of the different options listed in Table 2-1 follows.

2.1 Pin 1

This is a control pin and may be configured to fulfill one of six different functions. If not actively driven, a 10 kΩ pull-up resistor is recommended.

2.1.1 OUTPUT ENABLE (OE)

Pin 1 may be configured as OE. Any combination of outputs may be turned on and off according to the state of this pin (one, two, or all three outputs).

2.1.2 STANDBY

Pin 1 may be configured as Standby. When the pin is low, all outputs will be off and the device will enter a low power mode.

2.1.3 SLEEP

Pin 1 may be configured as Sleep. When the pin is low, one phase locked loop (PLL) will shut down, enabling power saving. Any outputs driven by that PLL will be turned off.

2.1.4 SPREAD SPECTRUM ENABLE (SSEN)

Pin 1 may be configured as Spread Spectrum Enable. When the pin is high, the associated output will be spread in frequency. When low, no spreading will occur.

2.1.5 FREQUENCY SELECT (FS)

Pin 1 may be configured as FS. Each output may be set to one of two pre-programmed frequencies (six pre-programmed frequencies in all).

2.1.6 NC

Pin 1 may be configured as NC. In this case, the pin is non-functional, and the device is programmed and fixed according to the choices in ClockWorks Configurator.

2.2 Pins 2 through 6

Pins 3 and 6 are the supply terminals, VSS and VDD respectively. Pins 2, 4, and 5 are the three clock outputs, CLK3, CLK1, and CLK2, respectively. CLK1 and CLK2 outputs are programmable to Standard and High Drive strengths settings. CLK3 is a fixed strength, low drive output. Visit [ClockWorks Configurator](http://clockworks.microchip.com) to customize your device.
3.0 SPREAD SPECTRUM

Spread spectrum is a slow modulation of the clock frequency over time. The PLL inside the MEMS oscillator is modulated with a triangular wave at 33 kHz. With such a slow modulation, the peak spectral energy of both the fundamental and all the harmonics is spread over a wider frequency range. This significantly reduces peak energy density, thus providing an EMI reduction. The triangular wave is chosen because of its flat spectral density.

The DSA613 MEMS oscillator family offers several modulation options: the spreading is either center spread or down spread with respect to the clock frequency. Center spreading ranges from ±0.25% to ±2.5%, while down spreading ranges from –0.25% to –3%.

If the clock frequency is 100 MHz and center spreading with ±1% is chosen, the output clock will range from 99 MHz to 101 MHz. If down spreading with –2% is chosen, the output clock will range from 98 MHz to 100 MHz.

Figure 3-1 and Figure 3-2 show a spectrum example of the DSA613 with a 33.333 MHz clock, modulated with central spread of ±1%.

It is noticeable that the spread spectrum provides a reduction of about 10 dB from the peak power. Such a reduction may also be estimated by the following equation:

\[
EMI \text{ Reduction} = 10 \times \log_{10}(|S| \times f_c \times RBW)
\]

Where:
- \(S\) Peak-to-peak spread percentage (0.01, this example).
- \(f_c\) Carrier frequency (33.333 MHz, this example).
- \(RBW\) Resolution bandwidth of the spectrum analyzer (30 kHz, this example).

The theoretical calculation for this example provides 10.45 dB, which is consistent with the measurement.

Similarly to the fundamental frequency, all the harmonics are spread and attenuated in similar fashion. Figure 3-3 shows how the DSA613 fundamental at 33.333 MHz and its odd harmonics are attenuated when various types of modulations are selected. For picture clarity, only the center spread options are shown. However, down spread with corresponding percentage provides the same level of harmonic attenuation (e.g. central spread of ±1% provides the same harmonics attenuation of down spread with –2%).
FIGURE 3-3: DSA613 Harmonic Levels with Various Spread Spectrum Options.

Visit Microchip’s ClockWorks Configurator to select Spread Spectrum options.
4.0 OUTPUT WAVEFORM

FIGURE 4-1: DSA613 Output Waveform.
FIGURE 5-1: DSA613 Board Layout.
6.0 SOLDER REFLOW PROFILE

FIGURE 6-1: Solder Reflow Profile.

TABLE 6-1: SOLDER REFLOW

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp-Up Rate (200°C to Peak Temp.)</td>
<td>3°C/sec. max.</td>
</tr>
<tr>
<td>Preheat Time 150°C to 200°C</td>
<td>60 to 180 sec.</td>
</tr>
<tr>
<td>Time Maintained above 217°C</td>
<td>60 to 150 sec.</td>
</tr>
<tr>
<td>Peak Temperature</td>
<td>255°C to 260°C</td>
</tr>
<tr>
<td>Time within 5°C of Actual Peak</td>
<td>20 to 40 sec.</td>
</tr>
<tr>
<td>Ramp-Down Rate</td>
<td>6°C/sec. max.</td>
</tr>
<tr>
<td>Time 25°C to Peak Temperature</td>
<td>8 minutes max.</td>
</tr>
</tbody>
</table>

MSL 1 @ 260°C Refer to JSTD-020C
7.0 PACKAGING INFORMATION

7.1 Package Marking Information

Legend:

XX...X Product code or customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
e3 Pb-free JEDEC® designator for Matte Tin (Sn)
* This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
●, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar (_) and/or Overbar (‾) symbol may not be to scale.
6-Lead Very Thin Fine Pitch Land Grid Array (AVA) - 1.6x1.2 mm Body [VFLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
6-Lead Very Thin Fine Pitch Land Grid Array (AVA) - 1.6x1.2 mm Body [VFLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com-packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Terminals</td>
<td>N 6</td>
</tr>
<tr>
<td>Terminal Pitch</td>
<td>e 0.60 BSC</td>
</tr>
<tr>
<td>Terminal Pitch</td>
<td>e1 0.75 BSC</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A 0.79 0.84 0.89</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1 0.00 0.02 0.05</td>
</tr>
<tr>
<td>Substrate Thickness (with Terminals)</td>
<td>A3 0.20 REF</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D 1.60 BSC</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E 1.20 BSC</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b1 0.25 0.30 0.35</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b2 0.325 0.375 0.425</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b3 0.20 0.25 0.30</td>
</tr>
<tr>
<td>Terminal Length</td>
<td>L 0.30 0.35 0.40</td>
</tr>
<tr>
<td>Terminal 1 Index Chamfer</td>
<td>CH - 0.125 -</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1203A Sheet 2 of 2
6-Lead Very Thin Fine Pitch Land Grid Array (AVA) - 1.6x1.2 mm Body [VFLGA]

Recommended Land Pattern

Notes:
For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>Dimension Limits</th>
<th>MIN (BSC)</th>
<th>NOM (BSC)</th>
<th>MAX (BSC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Pitch (X3)</td>
<td>E1</td>
<td>0.60</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E2</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>Contact Spacing</td>
<td>C</td>
<td>0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Width (X3)</td>
<td>X1</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Width</td>
<td>X2</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Width (X2)</td>
<td>X3</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Length (X6)</td>
<td>Y</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Between Contacts (X4)</td>
<td>G1</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Between Contacts (X3)</td>
<td>G2</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Between Contacts</td>
<td>G3</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact 1 Index Chamfer</td>
<td>CH</td>
<td>0.13 X 45° REF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing CD4-3203A
6-Lead Very Thin Fine Pitch Land Grid Array (ATA) - 2.0x1.6 mm Body [VFLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-1201A Sheet 1 of 2
6-Lead Very Thin Fine Pitch Land Grid Array (ATA) - 2.0x1.6 mm Body [VFLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Units</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Terminals</td>
<td>N</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal Pitch</td>
<td>e</td>
<td>0.775 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>0.79</td>
<td>0.84</td>
<td>0.89</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>0.00</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Substrate Thickness (with Terminals)</td>
<td>A3</td>
<td>0.20 REF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>2.00 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>1.60 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b1</td>
<td>0.30</td>
<td>0.35</td>
<td>0.40</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b2</td>
<td>0.40</td>
<td>0.45</td>
<td>0.50</td>
</tr>
<tr>
<td>Terminal Length</td>
<td>L</td>
<td>0.50</td>
<td>0.55</td>
<td>0.60</td>
</tr>
<tr>
<td>Terminal 1 Index Chamfer</td>
<td>CH</td>
<td>-</td>
<td>0.15</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Recommended Land Pattern

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Units</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Pitch</td>
<td>E1</td>
<td>0.78 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E2</td>
<td>0.73 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Spacing</td>
<td>C</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Width (X4)</td>
<td>X1</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Width (X2)</td>
<td>X2</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Length (X6)</td>
<td>Y</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Between Contacts (X4)</td>
<td>G1</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Between Contacts (X3)</td>
<td>G2</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Between Contacts (X3)</td>
<td>G3</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact 1 Index Chamfer</td>
<td>CH</td>
<td>0.13 X 45° REF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
6-Lead Very Thin Fine Pitch Land Grid Array (AWA) - 2.5x2.0 mm Body [VFLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com-packaging

Microchip Technology Drawing C04-01204 Rev C Sheet 1 of 2
6-Lead Very Thin Fine Pitch Land Grid Array (AWA) - 2.5x2.0 mm Body [VFLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th></th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Terminals</td>
<td>N</td>
</tr>
<tr>
<td>Terminal Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Terminal Pitch</td>
<td>e1</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Substrate Thickness with Terminals</td>
<td>A3</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b1</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b2</td>
</tr>
<tr>
<td>Terminal Length</td>
<td>L</td>
</tr>
<tr>
<td>Terminal 1 Index Chamfer</td>
<td>CH</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.
6-Lead Very Thin Fine Pitch Land Grid Array (AWA) - 2.5x2.0 mm Body [VFLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>C1</td>
</tr>
<tr>
<td>Contact Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Width (X4)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Width (X2)</td>
<td>X2</td>
</tr>
<tr>
<td>Contact Pad Length (X6)</td>
<td>Y</td>
</tr>
<tr>
<td>Space Between Contacts (X4)</td>
<td>G1</td>
</tr>
<tr>
<td>Space Between Contacts (X3)</td>
<td>G2</td>
</tr>
<tr>
<td>Contact 1 Index Chamfer</td>
<td>CH</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing: C04-03204 Rev C
APPENDIX A: REVISION HISTORY

Revision A (October 2019)

• Initial release of DSA613 as Microchip data sheet DS20006262A.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>-XXX</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Stability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code Rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration #</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automotive Suffix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device: DSA613: Three-Output Low Power MEMS Clock Generator for Automotive

Example:

a) DSA613R1A-0024TVA0: Three-Output Low Power MEMS Clock Generator for Automotive, 6-Lead 2.5 mm x 2.0 mm VFLGA, –40°C to +85°C, ±50 ppm, 1st Revision, 1,000/Reel

b) DSA613NL2A-2885VA0: Three-Output Low Power MEMS Clock Generator for Automotive, 6-Lead 2.0 mm x 1.6 mm VFLGA, –40°C to +105°C, ±25 ppm, 1st Revision, 100/Bag

c) DSA613PA3A-8751BVA0: Three-Output Low Power MEMS Clock Generator for Automotive, 6-Lead 1.6 mm x 1.2 mm VFLGA, –40°C to +125°C, ±20 ppm, 1st Revision, 3,000/Reel

Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

The DSA613 is a highly configurable device and is factory programmed to meet the customer’s needs. Microchip’s ClockWorks Configurator must be used to choose the necessary options, create the final part number, data sheet, and order samples.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BenTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBloX, KeeLoq, Kleer, LANcheck, LinkMD, maxXtyle, maxTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, Q'Touch, SAM-BA, SenGenuity, SpyNiC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, InteliMOS, Libero, motorBench, mTouch, Powermate 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved.
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: http://www.microchip.com/support
Web Address: www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-1455

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7710

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Fax: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-3326-8000

China - Suzhou
Tel: 86-19-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2386138

China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880-3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-8-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-72400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenburg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820