dsPIC® Digital Signal Controllers
The Best of Both Worlds
October 2005
A Digital Signal Controller (DSC) is a single-chip, embedded controller that seamlessly integrates the control attributes of a Microcontroller (MCU) with the computation and throughput capabilities of a Digital Signal Processor (DSP) in a single core.

Microchip’s dsPIC® DSC offers everything you would expect from a powerful 16-bit MCU: fast, sophisticated and flexible interrupt handling; a wide array of digital and analog peripheral functions; power management; flexible clocking options; power-on-reset; brown-out protection; watchdog timer; code security; full-speed real-time emulation; and full-speed in-circuit debug solutions.

By skillfully adding DSP capability to a high-performance 16-bit MCU, Microchip’s dsPIC30F and dsPIC33F families of DSCs achieve the best of both worlds and mark the beginning of a new era in embedded control.

The Capability You Need

Powerful 16-bit MCU:
The dsPIC30F and dsPIC33F families of digital signal controllers execute most instructions in 1 cycle. Combine high instruction throughput with true DSP capabilities, such as single cycle 16-bit multiply and zero overhead looping, and you have the most powerful 16-bit MCU for your embedded control designs.

Flexible Flash:
The dsPIC30F and dsPIC33F both employ flexible and secure Flash memory. You can use the dsPIC DSC Flash to store programs or data tables. Additionally, all dsPIC DSCs can securely self-program their own flash in a finished product. If you need extraordinary retention or endurance, we have that too.

DSP for the DSP Expert!
A seasoned DSP developer will be amazed at the capabilities this family of digital signal controllers offers — everything you expect from a DSP of its class: dual 40-bit accumulators, single-cycle 16 x 16 MAC, 40-bit barrel shifter, dual operand fetches, saturation and rounding modes and DO and REPEAT loops. Then we added a few items usually missing from DSPs: flexible interrupts, large register sets, a watchdog timer, clock fail detect and real-time emulation to name a few.

Optimized C Compiler:
The architecture of these digital signal controllers was co-developed by our MPLAB® C30 C Compiler team. The result is a high C code efficiency when compared to any 16-bit MCU or DSP. C code benchmarks show that competitive 16-bit MCUs require up to double the amount of program code space for the same application program written in C.

Looking to Add DSP?
If you are one of the many MCU users looking to add DSP features to your system, chances are you don’t like your choices. Adding a DSP chip to your existing MCU-based system can be costly and complicated. The dsPIC30F and the dsPIC33F are designed to look and feel like MCUs. Adding DSP functionality in the familiar controller-like environment can be accomplished with ease.

Considering a 32-bit MCU?
Considering a 32-bit controller because your current MCU has run out of steam? Microchip’s digital signal controllers integrate the power of digital signal processors and can outperform a 32-bit controller in many applications. Our outstanding C code efficiency for a 32-bit data type reduces memory requirements and cost.
Outstanding MCU Performance

The first 16-bit MCUs were developed to overcome the native 64 KB boundary imposed by 8-bit MCUs. The need for advanced performance was not contemplated in these early architectures. When the need for improved performance became obvious, next-generation devices were developed, but were constrained by backward compatibility requirements and legacy issues.

Developed from the ground up, the dsPIC DSC addresses traditional 16-bit requirements without sacrificing performance. It combines state-of-the-art 16-bit MCU performance in its general-purpose, register-based core with all the features you need for DSP operations.

True DSP Performance

The dsPIC DSC balances its outstanding MCU qualities with real DSP performance. All the features you require from a high performance, robust DSP are effortlessly integrated in a single core.
Microchip’s 16-bit Embedded Controller Families

Microchip offers a broad selection of embedded control solutions. In addition to traditional 16-bit microcontrollers, the 16-bit digital signal controllers offer an innovative solution for today’s compute-intensive real-time control applications.

Built around an identical base architecture and instruction set, three compatible 16-bit controller families offer unprecedented flexibility, choice and performance: the dsPIC30F and the dsPIC33F DSCs and the PIC24 MCU.

While the PIC24 offers a base instruction set, the dsPIC30F and the dsPIC33F integrate full DSP capability.

dsPIC33F

- 40 MIPS @3.3V
- 3.0 to 3.6V operation
- -40° to 85°C (extended temp. planned)
- Up to 256 KB Program Flash
- Data EEPROM emulation in Program Flash
- Up to 30 KB RAM
- 64 to 100 pin packages
- 8 channel DMA

PIC24

- 16 and 40 MIPS version @3.3V
- 3.0 to 3.6V operation
- -40° to 85°C (-40° to 125°C planned)
- Up to 256 KB Program Flash
- Data EEPROM emulation in Program Flash
- Up to 16 KB RAM
- 28 to 100 pin packages

dsPIC30F

- 30 MIPS @5V
- 2.5 to 5.5V operation
- -40° to 85°C and -40° to 125°C
- Up to 144 KB Program Flash
- Integrated Data EEPROM
- Up to 8 KB RAM
- 18 to 80 pin packages

One Architecture: Three Compatible Families:

16-bit data, 24-bit wide instructions
Same instruction set (DSP features not in PIC24)
Same C compiler and software tools
Same hardware tools
Compatible peripherals
Compatible pinouts

dsPIC30F/dsPIC33F Family Block Diagram
dsPIC30F/dsPIC33F Features Overview

Operating Range dsPIC30F
- DC to 30 MIPS*
- Vcc range: 2.5 to 5.5V
- Ind. (-40° to 85° C) and ext. (-40° to 125°C)
 *(30 MIPS @ 4.5 to 5.5V, -40° to 85° C)

Operating Range dsPIC33F
- DC to 40 MIPS
- Vcc range: 3.0 to 3.6V
- Ind. (-40° to 85° C) Extended temp. planned

High Performance DSC CPU
- Single core combines MCU and DSP features
- C compiler optimized instruction set
- 16-bit wide data path
- 24-bit wide instructions
- 84 base instructions: mostly 1 word/1 cycle
- 16 16-bit general purpose registers
- 2 40-bit accumulators
 - With rounding and saturation options
- Flexible and powerful addressing modes
 - Indirect, modulo and bit-reversed
- Software stack
- 16 x 16 fractional/integer multiplier
- 32/16 and 16/16 divide
- Single cycle multiply-and-accumulate
- 40-stage barrel shifter

Hardware DMA (dsPIC33F)
- 8 channel DMA
- 2 KB dual port RAM

Power Management
- Switch between clock sources in real-time
- Programmable power-on reset start up
- Programmable low-voltage detect
- Programmable brown-out reset
- Idle and Sleep modes with fast wake-up

System Management
- Flexible clock options:
 - Primary external clock, crystal, resonator
 - Secondary lower power 32 kHz oscillator
 - Internal RC: fast or low power
 - Integrated low jitter PLL
 - PLL sourced by ext. & int. clock sources
- Programmable power-up timer
- Oscillator start-up timer/stabilizer
- Watchdog Timer with its own RC oscillator
- Clock switching/fail-safe clock monitor

Interrupt Controller
- 5 cycle fixed latency
- Up to 118 interrupt sources, up to 5 external
- 7 programmable priority levels
- 4 processor exceptions and software traps

Digital I/O
- Up to 85 programmable digital I/O pins
- Wake-up/Interrupt-on-change on up to 24 pins
- 25 mA sink and source on all dsPIC30F I/O pins

On-chip Flash, Data EE and RAM
- Flash program memory: up to 256 KB
- dsPIC30F Data EEPROM: up to 4 KB
 - 1 million erase/write cycles typical
- Data RAM: up to 30 KB

Timers/Capture/Compare/PWM
- Timer/counters: up to nine 16-bit timers
 - Can pair up to make 32-bit timers
 - 1 timer can run as real-time clock
- Input capture: up to 8 channels
 - Capture on rising, falling or both edges
 - 4-deep FIFO on each capture
- Output compare: up to 8 channels
 - Single or dual 16-bit compare mode
 - 16-bit glitchless PWM mode

Communication Modules
- 3wire SPI™: up to 2 modules
- • Framing supports I/O interface to simple codecs
- PCIe™: up to 2 modules
- • Full Multi-master and Slave mode support
- • 7-bit and 10-bit addressing

Motor Control Peripherals
- Motor Control PWM: up to 8 outputs
- • 4 duty cycle generators
- • Independent or complementary mode
- • Programmable dead time settings
- • Edge or center-aligned
- • Manual output override control
- • Up to 2 fault inputs
- • A/D samples triggered by PWM module

Analog-to-Digital Converters
- 10-bit A/D converter:
 - dsPIC30F: 1Msps, 1 module
 - dsPIC33F: 1.1 Msps, 1 or 2 modules
- Up to 8 simultaneous sample/hold

- 12-bit A/D converter:
 - dsPIC30F: 200 kspS, 1 module
 - dsPIC33F: 500 kspS, 1 or 2 modules

dsPIC DSC Packages

- **P**: 18-pin PDIP
 - (22.81 x 7.95 x 3.3 mm)

- **SO**: 18-pin SOIC
 - (11.53 x 10.34 x 2.31 mm)

- **SP**: 28-pin SPDIP
 - (34.67 x 7.87 x 3.3 mm)

- **SO**: 28-pin SOIC
 - (17.88 x 10.34 x 2.31 mm)

- **PT**: 44-pin TQFP
 - (10 mm x 10 mm x 1 mm)

- **PF**: 64-pin TQFP
 - (14 mm x 14 mm x 1 mm)

- **ML**: 28-pin QFN
 - (6 mm x 6 mm x 0.9 mm)

- **ML**: 44-pin QFN
 - (8 mm x 8 mm x 0.9 mm)

- **ML**: 28-pin QFN
 - (6 mm x 6 mm x 0.9 mm)

- **ML**: 44-pin QFN
 - (8 mm x 8 mm x 0.9 mm)

- **PT**: 80-pin TQFP
 - (12 mm x 12 mm x 1 mm)

- **PF**: 80-pin TQFP
 - (14 mm x 14 mm x 1 mm)

- **PT**: 100-pin TQFP
 - (12 mm x 12 mm x 1 mm)

- **PF**: 100-pin TQFP
 - (14 mm x 14 mm x 1 mm)
dsPIC30F Product Families

General Purpose Family

The dsPIC30F General Purpose Family is ideal for a wide variety of 16-bit embedded control applications. In addition, the variants with codec interfaces are well suited for speech and audio applications.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dsPIC30F3014</td>
<td>40/44</td>
<td>24</td>
<td>2048</td>
<td>1024</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>13 ch, 1 S/H</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>30</td>
<td>R, PT, ML</td>
<td></td>
</tr>
<tr>
<td>dsPIC30F4013</td>
<td>40/44</td>
<td>48</td>
<td>2048</td>
<td>1024</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>AC97, 1/S</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>30</td>
<td>R, PT, ML</td>
<td></td>
</tr>
<tr>
<td>dsPIC30F5011</td>
<td>64</td>
<td>66</td>
<td>4096</td>
<td>1024</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>AC97, 1/S</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>52</td>
<td>PT</td>
<td></td>
</tr>
<tr>
<td>dsPIC30F5011¹</td>
<td>64</td>
<td>132</td>
<td>6144</td>
<td>2048</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>16 ch, 1 S/H</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>52</td>
<td>PT</td>
<td></td>
</tr>
<tr>
<td>dsPIC30F5011²</td>
<td>64</td>
<td>132</td>
<td>6144</td>
<td>2048</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>16 ch, 1 S/H</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>52</td>
<td>PT</td>
<td></td>
</tr>
<tr>
<td>dsPIC30F5013</td>
<td>80</td>
<td>66</td>
<td>4096</td>
<td>1024</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>AC97, 1/S</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>68</td>
<td>PT</td>
<td></td>
</tr>
<tr>
<td>dsPIC30F5015</td>
<td>80</td>
<td>132</td>
<td>6144</td>
<td>2048</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>16 ch, 1 S/H</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>68</td>
<td>PT</td>
<td></td>
</tr>
</tbody>
</table>

Motor Control and Power Conversion Family

This dsPIC30F family supports motor control applications, such as brushless DC motors, single and 3-phase induction and switched reluctance motors. These are also ideal for UPS, inverters, switched mode power supplies and power factor correction.

<table>
<thead>
<tr>
<th>Product</th>
<th>Pins</th>
<th>Flash-Memory Kbytes</th>
<th>RAM Bytes</th>
<th>EEPROM Bytes</th>
<th>Timer 16-bit</th>
<th>Input Capture</th>
<th>Quadrature Encoder</th>
<th>Motor Control</th>
<th>Quadrature Encoder</th>
<th>UART</th>
<th>SPI™</th>
<th>I²C™</th>
<th>CAN</th>
<th>I/O Pins (Max.)†</th>
<th>Package Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsPIC30F2010</td>
<td>28</td>
<td>12</td>
<td>512</td>
<td>1024</td>
<td>3</td>
<td>4</td>
<td>6 ch</td>
<td>Yes</td>
<td>6 ch, 4 S/H</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>20</td>
<td>SF, SO, MM</td>
<td></td>
</tr>
<tr>
<td>dsPIC30F3010</td>
<td>28/44</td>
<td>24</td>
<td>1024</td>
<td>1024</td>
<td>5</td>
<td>4</td>
<td>6 ch</td>
<td>Yes</td>
<td>6 ch, 4 S/H</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>20</td>
<td>SF, SO, 44-pin ML</td>
<td></td>
</tr>
<tr>
<td>dsPIC30F4012</td>
<td>28/44</td>
<td>48</td>
<td>2048</td>
<td>1024</td>
<td>5</td>
<td>4</td>
<td>6 ch</td>
<td>Yes</td>
<td>6 ch, 4 S/H</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>SF, SO, 44-pin ML</td>
<td></td>
</tr>
<tr>
<td>dsPIC30F3011</td>
<td>40/44</td>
<td>24</td>
<td>1024</td>
<td>1024</td>
<td>5</td>
<td>4</td>
<td>6 ch</td>
<td>Yes</td>
<td>9 ch, 4 S/H</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>30</td>
<td>R, PT, ML</td>
<td></td>
</tr>
<tr>
<td>dsPIC30F4011</td>
<td>40/44</td>
<td>48</td>
<td>2048</td>
<td>1024</td>
<td>5</td>
<td>4</td>
<td>6 ch</td>
<td>Yes</td>
<td>9 ch, 4 S/H</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>30</td>
<td>R, PT, ML</td>
<td></td>
</tr>
<tr>
<td>dsPIC30F5015</td>
<td>64</td>
<td>66</td>
<td>2048</td>
<td>1024</td>
<td>5</td>
<td>4</td>
<td>8 ch</td>
<td>Yes</td>
<td>16 ch, 4 S/H</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>52</td>
<td>PT</td>
<td></td>
</tr>
<tr>
<td>dsPIC30F6015</td>
<td>64</td>
<td>144</td>
<td>8192</td>
<td>4096</td>
<td>5</td>
<td>8</td>
<td>8 ch</td>
<td>Yes</td>
<td>16 ch, 4 S/H</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>52</td>
<td>PF</td>
<td></td>
</tr>
<tr>
<td>dsPIC30F5016</td>
<td>80</td>
<td>66</td>
<td>2048</td>
<td>1024</td>
<td>5</td>
<td>4</td>
<td>8 ch</td>
<td>Yes</td>
<td>16 ch, 4 S/H</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>68</td>
<td>PT</td>
<td></td>
</tr>
<tr>
<td>dsPIC30F6010</td>
<td>80</td>
<td>144</td>
<td>8192</td>
<td>4096</td>
<td>5</td>
<td>8</td>
<td>8 ch</td>
<td>Yes</td>
<td>16 ch, 4 S/H</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>68</td>
<td>PF</td>
<td></td>
</tr>
<tr>
<td>dsPIC30F6010A*</td>
<td>80</td>
<td>144</td>
<td>8192</td>
<td>4096</td>
<td>5</td>
<td>8</td>
<td>8 ch</td>
<td>Yes</td>
<td>16 ch, 4 S/H</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>68</td>
<td>PF</td>
<td></td>
</tr>
</tbody>
</table>

Sensor Family

The dsPIC30F Sensor Family products have features to support high-performance, cost sensitive and space constrained applications. Offered as small as 6x6 mm and with pin counts as low as 18 pins, this family provides industry leading performance in a small form factor.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dsPIC30F2011</td>
<td>18</td>
<td>12</td>
<td>1024</td>
<td>—</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>8 ch, 1 S/H</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>SF, SO, 28-pin ML</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dsPIC30F3012</td>
<td>18/44</td>
<td>24</td>
<td>2048</td>
<td>1024</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>8 ch, 1 S/H</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>SF, SO, 44-pin ML</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dsPIC30F2012</td>
<td>28</td>
<td>12</td>
<td>1024</td>
<td>—</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>10 ch, 1 S/H</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>20</td>
<td>SF, SO, 28-pin ML</td>
<td></td>
</tr>
<tr>
<td>dsPIC30F3013</td>
<td>28/44</td>
<td>24</td>
<td>2048</td>
<td>1024</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>10 ch, 1 S/H</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>20</td>
<td>SF, SO, 44-pin ML</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
dsPIC33F Product Families

General Purpose Family

The dsPIC33F General Purpose Family is ideal for a wide variety of 16-bit embedded control applications. In addition, the variants with codec interfaces are well suited for speech and audio applications.

Motor Control and Power Conversion Family

This dsPIC33F family supports motor control applications, such as brushless DC motors, single and 3-phase induction and switched reluctance motors. These are also ideal for UPS, inverters, switched mode power supplies and power factor correction.

dsPIC33F Product Family

<table>
<thead>
<tr>
<th>Product</th>
<th>Pins</th>
<th>Flash (Kbytes)</th>
<th>Memory (Kbytes)</th>
<th>RAM (Kbytes)</th>
<th>DMA #</th>
<th>Timer 16-bit</th>
<th>Input Capture</th>
<th>Output Compare/Standard PWM</th>
<th>Codec Interface</th>
<th>A/D*</th>
<th>UART</th>
<th>SPI™</th>
<th>I²C™</th>
<th>CAN</th>
<th>I/O Pins (max)†</th>
<th>Package Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsPIC33FJ64GP206</td>
<td>64</td>
<td>64</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1 ADC, 18 Ch, 1 S/H</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>—</td>
<td>53</td>
<td>PT</td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ64GP306</td>
<td>64</td>
<td>64</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1 ADC, 18 Ch, 1 S/H</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>—</td>
<td>53</td>
<td>PT</td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ64GP706</td>
<td>64</td>
<td>64</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2 ADC, 18 ch, 2 S/H</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>—</td>
<td>53</td>
<td>PT</td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ128GP206</td>
<td>64</td>
<td>128</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1 ADC, 18 Ch, 1 S/H</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>—</td>
<td>53</td>
<td>PT</td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ128GP306</td>
<td>64</td>
<td>128</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1 ADC, 18 Ch, 1 S/H</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>—</td>
<td>53</td>
<td>PT</td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ128GP706</td>
<td>64</td>
<td>128</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2 ADC, 18 ch, 2 S/H</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>—</td>
<td>53</td>
<td>PT</td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ128GP310</td>
<td>64</td>
<td>256</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1 ADC, 18 Ch, 1 S/H</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>—</td>
<td>85</td>
<td>PT, PF</td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ64GP710</td>
<td>64</td>
<td>64</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2 ADC, 32 ch, 2 S/H</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>85</td>
<td>PT, PF</td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ128GP710</td>
<td>64</td>
<td>128</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1 ADC, 32, 1 S/H</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>85</td>
<td>PT, PF</td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ64MC506</td>
<td>64</td>
<td>64</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1 ADC, 16, 4 S/H</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>53</td>
<td>PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ64MC706</td>
<td>64</td>
<td>64</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2 A/D, 16, 8 S/H</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>53</td>
<td>PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ128MC506</td>
<td>64</td>
<td>128</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1 A/D, 16, 4 S/H</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>53</td>
<td>PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ128MC706</td>
<td>64</td>
<td>128</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2 A/D, 16, 8 S/H</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>53</td>
<td>PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ64MC508</td>
<td>80</td>
<td>64</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1 A/D, 18, 4 S/H</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>69</td>
<td>PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ128MC708</td>
<td>80</td>
<td>128</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2 A/D, 18, 8 S/H</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>69</td>
<td>PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ64MC510</td>
<td>100</td>
<td>64</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1 A/D, 24 Ch, 4 S/H</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>85</td>
<td>PT, PF</td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ64MC710</td>
<td>100</td>
<td>64</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2 A/D, 24, 8 S/H</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>85</td>
<td>PT, PF</td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ128MC510</td>
<td>100</td>
<td>128</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1 A/D, 24 Ch, 4 S/H</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>85</td>
<td>PT, PF</td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ128MC710</td>
<td>100</td>
<td>128</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2 A/D, 24 Ch, 8 S/H</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>85</td>
<td>PT, PF</td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ256MC510</td>
<td>100</td>
<td>256</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1 A/D, 24 Ch, 4 S/H</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>85</td>
<td>PT, PF</td>
<td></td>
</tr>
<tr>
<td>dsPIC33FJ256MC710</td>
<td>100</td>
<td>256</td>
<td>30</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2 A/D, 24 Ch, 8 S/H</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>85</td>
<td>PT, PF</td>
<td></td>
</tr>
</tbody>
</table>

† I/O pin count includes pins shared by the peripheral functions

* The A/D is 10 or 1.2-bit (user configurable)
Designed for real-time control, the dsPIC DSC offers outstanding reliability, robustness and reduced system cost

On-chip oscillator eliminates crystal, reduces cost
The dsPIC DSC’s on-chip precision oscillator can be the clock source for many systems. The PLL in the dsPIC DSC can boost the clock speed and still meet ±2% accuracy over VDD and temperature. Now you can eliminate the external crystal, save board space and reduce system cost.

Power save modes optimizes power consumption
The dsPIC DSC offers many ways to optimize power consumption. Switch to a low frequency on-chip oscillator or divide down the system clock during periods of inactivity. Go into “power-down” mode to shut down all clocks to reduce current draw to microamperes yet allow a quick wake-up on interrupt.

On-chip system clock monitor adds safety
The dsPIC DSC’s on-chip clock monitor detects a system clock failure and forces a chip-reset. Restarting the system with the on-chip oscillator (FRC) provides a graceful way to handle such a catastrophic failure.

Low Jitter PLL for reliable system operation
On-chip PLL with crystal oscillator input offers low jitter, < ±0.75% over VDD and temperature for reliable operation of CAN, UART or other forms of communication.

Small package, big performance
Several dsPIC DSCs come in QFN packages as small as 6 x 6 mm and only 0.9 mm high. Now you can add 16-bit performance and save board space too.

Power-on Reset and Brown-out Reset add robustness, saves cost
Intelligent on-chip Power-on Reset eliminates external reset circuit in most systems. Vary the reset period to allow for different crystal start-up delays. Brown-out protection, if enabled, resets the chip in the event of a power glitch. All this adds up to a robust system at a reduced cost.

Self-monitoring CPU protects against software glitches
Code execution flow is continually monitored to prevent catastrophic failures due to software malfunction. Accesses to non-existing memory locations are trapped, as are stack overflow, stack underflow and uninitialized pointer accesses. Now your real-time system has an added level of safety.

The dsPIC DSC is designed to meet the rigorous demands of real-time systems. Not only is its real-time performance superior to other 16- and 32-bit controllers, it also offers a number of highly enabling features specifically designed to enhance system reliability and robustness, and reduce system cost by eliminating external components.

Reliable watchdog timer
Flash configuration bits are used to enable the watchdog timer and select its period. Software cannot disable it; it runs from its own internal oscillator, independent of the system clock. Now that is a reliable watchdog.

125°C ambient operation
The dsPIC30F devices operate up to 125°C ambient temperature, making these ideal for industrial applications that run “hot” such as motor control, power conversion, lighting control as well as “under the hood” automotive systems such as EHPS, electronic gearbox, cooling fan control, etc.

25 mA I/O drive saves cost
Each dsPIC30F I/O pin sources or sinks 25 mA, making it possible to drive LEDs directly or eliminate pre-drivers for external FET switches to save you space and cost.

On-chip oscillator eliminates crystal, reduces cost
On-chip system clock monitor adds safety
Low Jitter PLL for reliable system operation
Small package, big performance
Power-on Reset and Brown-out Reset add robustness, saves cost
Self-monitoring CPU protects against software glitches
One Architecture, Many Solutions

The versatile dsPIC DSC family provides solutions for embedded control applications and offers a wide variety of digital and analog peripheral modules. Choose a high pin count, high-density memory device as a main controller in a large, complex embedded system. Or select a small pin count, small package device to tackle a single motor or a sensor. No other 16-bit MCU or DSP family gives you so much flexibility. Invest in the dsPIC DSC architecture once and reap the benefits of having a single platform over many applications.

Motor Control

The dsPIC30F and dsPIC33F devices are ideal for motors requiring more than a basic microcontroller. Whether you need a little more computation power or full DSP capability, these devices deliver. Apply the digital signal control to sensorless control applications, precision speed/position/servo control, torque management, variable speed motors, high RPM motors, variable load applications, noise reduction or energy efficiency improvement. Brushless DC, AC induction or switched reluctance motors are ideal candidates for the these family of controllers. For additional information about Microchip’s motor control capabilities, please visit the Motor Control Design Center at www.microchip.com/motor.

Applications: Enabling Features of the dsPIC DSC:

• Heating, ventilation and air conditioning
• Absolute encoders and resolvers
• Blowers and lawn equipment
• Electronic Power Steering
• Industrial gate openers
• Seat belt tensioners
• Exercise equipment
• Washing machines
• Sewing machines
• Industrial pumps
• Stability control
• Power tools
• Refrigeration
• Printing machines

• 1 or 2 fault pins
• 28-, 40-, 64-, 80- and 100-pin variants
• 6 or 8 motor PWM output
• Complementary or independent PWM
• Center-aligned or edge-aligned PWM
• A/D sampling synchronized to PWM cycle
• 10-bit, 1 to 2.2 Msps A/D converter
• 2, 4 or 8 simultaneous A/D samples
• 5V native operation for noisy environments (dsPIC30F)
• On-chip Quadrature Encoder Interface (QEI)
• Motor control algorithm reference designs
• Up to 2 programmable dead time settings
• Visual design guide motor control GUI (MPLAB plug-in)

Internet Connectivity

If your embedded control system needs to be connected to the Internet or to a dial-up phone line, the dsPIC DSC provides you with a single chip solution. The ready-to-use TCP/IP Ethernet driver and soft modem application libraries help you to add connectivity to your design. For additional information about Microchip’s connectivity capabilities, please visit the Connectivity Design Center at www.microchip.com/connectivity.

Applications: Enabling Features of the dsPIC DSC:

• Remote diagnostics of industrial equipment
• Remote medical equipment
• Water, gas and electric meters
• Industrial gate openers
• Remote monitoring
• Vending machines
• Power line modems
• Security systems
• Set top boxes
• Internet speakers

• UART interface
• TCP/IP Software Library
• Soft Modem Library (V.32bis/V.22bis)
• Encryption libraries
• Ethernet modem software
• RTOS for multitasking
• Reduced board space
• Reduced total system cost
Speech

Often speech and low fidelity audio applications use a DSP for algorithm processing and an MCU for control. The dsPIC DSC can replace both in many applications and reduce total system cost. The dsPIC DSC provides enough MIPS for many speech and audio applications, such as noise and echo cancellation, speech recognition and quality speech compression and playback. The dsPIC DSC is also an ideal companion to a main DSP in high-end audio applications; offloading functions such as a digital tuner, satellite radio, equalizer, etc.

Applications:
- Intercom systems
- High quality speech playback
- Distributed speaker network
- Musical instrument effects
- Voice activated and wireless microphones
- Teleconferencing equipment
- Noise cancelling headsets
- Cabin noise cancellation
- Speech recognition
- Speakerphones
- Hands-free kit
- Answering machines
- Digital two-way radios
- Voice recorders

Enabling Features of the dsPIC DSC:
- Codec interface: AC97 and I²S
- 12-bit, up to 1 Msps A/D converter
- Small footprint package options
- Reduced total system cost
- Reduced board space
- Digital Filter Design tool
- Ready to use DSP Library
- Noise Suppression Library
- Line Echo Cancellation Library
- Acoustic Echo Cancellation Library
- Speech Encoding/Decoding Library
- Speech Recognition Application Library

Power Conversion and Monitoring

dsPIC DSCs are ideal for a variety of power conversion and monitoring applications. UPSs, inverters, as well as power management units within complex equipment, such as copiers, telecom switches and routers, require advanced power management. The dsPIC30F and dsPIC33F have Pulse Width Modulation (PWM) outputs, fast analog-to-digital conversion and plenty of computation power to satisfy the needs of these applications.

Applications:
- Power and environment monitor in servers
- Power management for equipment
- Circuit breakers
- Arc fault detection
- Auxiliary power unit
- Electric vehicles
- AC to DC converters
- DC to DC converters
- Power factor correction
- Inverters
- Online UPS
- Welding machines

Enabling Features of the dsPIC DSC:
- 10-bit, 1 to 2.2 Msps A/D converter
- Up to 8 sample/hold
- A/D sampling synchronized to PWM cycle
- 6 or 8 PWM output
- Complementary or independent PWM
- Center-aligned or edge-aligned PWM
- 1 or 2 fault pins
- 58.6 kHz PWM frequency at 10-bit resolution (at 30 MIPS)
- Up to 2 programmable dead time settings
- 28-, 40-, 64-, 80- and 100-pin variants
- 5V native operation for noisy environments (dsPIC30F)
Sensor Control

The 18- and 28-pin small footprint dsPIC30F devices are ideal for advanced sensor control. The combination of a 12-bit A/D converter, communication peripherals, approximately 1 μA power-down current, power management features and DSP capability makes it possible to create intelligent sensor interface modules. These devices can also assist an overloaded central controller.

Applications:

Advanced 2-D PIR detection
Chemical and gas sensors
Glass break detectors
Gyrosopic modules
Knock detection
Vibration sensors
Pressure sensors
Torque sensors
Coin acceptors
Magnetic sensors
Ultrasonic sensors

Enabling Features of the dsPIC DSC:

- Data EEPROM
- DSP capability
- High speed input capture
- Small footprint 18- or 28-pin packages
- 12-bit, 200 Ksps A/D converter
- SPI™, I²C™ and UART communication ports
- Visual digital filter design tool
- Configurable Flash memory can update algorithms

Automotive

Microchip is an ISO/TS 16949:2002 qualified supplier to major automotive manufacturers. Most of our products are available for automotive-grade temperature requirements and support a long product life cycle. Available in 18- to 100-pin packages, the dsPIC30F and dsPIC33F devices are ideal for a variety of automotive applications from a large central controller to a small sensor interface or a peripheral processor. For additional information about Microchip’s automotive capabilities, please visit the Automotive Design Center at www.microchip.com/auto.

Applications:

Electrically assisted hydraulic steering
Electronic clutch and gearboxes
Roll and stability controllers
Seat belt pretensioners
Electronic power steering
Cabin noise cancellation
Advanced battery monitors
Airbag main controllers
Ignition controllers
Side impact airbags
Occupant sensors
Fuel pressure controls

Enabling Features of the dsPIC DSC:

- DSP capability
- Powerful MCU core
- CAN and OSEK Library
- 18- to 100-pin products
- One or two CAN/ECAN 2.0B modules
- Long product life cycle supported
- Broad product selection for many applications
- Extended temperature operation
- LIN support through UART and software
- Safe mode operation: LVD, BOR, WDT, software traps
- For extraordinary Flash endurance (1 million erase/write cycles and data retention of >40 years) choose the dsPIC30F family
Powerful Tools and Libraries to Ease Your Development

Microchip’s digital signal controllers come with an extensive array of development tools, application libraries (many of which are free of charge), development boards and reference designs that allow high-performance embedded solutions to be designed effortlessly and rapidly.

MPLAB® Integrated Development Environment (IDE)

All dsPIC DSC tools operate effortlessly under the MPLAB IDE umbrella. The powerful and yet easy-to-use MPLAB IDE has all of the advanced edit/build/debug features you would expect from a 32-bit debug environment. MPLAB IDE integrates not only software, but all of Microchip’s hardware tools and many third party tools. Key features of MPLAB IDE:

- Designed for Windows® XP 2000 and Windows NT®
- Project build and management
- Flexible watch windows
- Mouse over variable inspection
- Full feature code editor with color context
- Source level debug in ASM and C
- Searchable trace buffers
- Version control integration

The Essential Software and Hardware Development Tools

Microchip is committed to making your development as easy and efficient as possible. This commitment is the reason why Microchip develops its own software and hardware tools. You have our full technical support whether the issue is silicon or tools-related.

Our development tools suite provides value with many free and low-cost tools. You can get started with the MPLAB ICD 2 In-Circuit Debugger and the MPLAB IDE for approximately US $160.

If you already own a PRO MATE® II, the dsPIC30F family is supported on it. If you are considering a new full-featured programmer, the MPLAB PM3 is recommended.

<table>
<thead>
<tr>
<th>MPLAB® IDE</th>
<th>Integrated Development Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLAB® ASM30</td>
<td>Assembler*</td>
</tr>
<tr>
<td>MPLAB® SIM</td>
<td>Software Simulator*</td>
</tr>
<tr>
<td>MPLAB® C30</td>
<td>ANSI C Compiler</td>
</tr>
<tr>
<td>MPLAB® ICD 2</td>
<td>In-Circuit Debugger/Development Programmer</td>
</tr>
<tr>
<td>MPLAB® ICE 4000</td>
<td>In-Circuit Emulator for dsPIC30F**</td>
</tr>
<tr>
<td>MPLAB® PRO MATE® II</td>
<td>Full Featured Device Programmer</td>
</tr>
<tr>
<td>MPLAB® PM3</td>
<td>Full Featured Device Programmer</td>
</tr>
<tr>
<td>MPLAB® VDI</td>
<td>Visual Device Initializer*</td>
</tr>
</tbody>
</table>

* Comes with no-cost MPLAB® IDE
** A low cost in-circuit emulator family is planned for the dsPIC33F
Develop DSP Algorithms: The Easy Way

dsPICworks™ Data Analysis and DSP Software

The dsPICworks Data Analysis and DSP Software makes it easy to evaluate and analyze DSP algorithms. You can run a variety of DSP and arithmetic operations and analyze your data in both time and frequency domain. Key features of the dsPICworks Data Analysis and DSP Software:

- Visually analyze time and frequency domain data
- DSP operations: FFT, convolution, correlation, DCT and filtering
- Waveform synthesis
- Tool generates one-, two- and three-dimensional frequency graphs
- Data import/export options to interface with MPLAB IDE and MPLAB ASM30
- Support for fractional, integer and IEEE floating point data in decimal and hexadecimal notation

Digital Filter Design Tool

The Digital Filter Design Tool makes designing and analyzing FIR and IIR filters easy. Enter frequency specifications and filter code and coefficients are generated automatically. Graphical output windows provide the desired filter’s characteristics.

Digital Filter Design Lite Tool

Not ready to purchase the whole Digital Filter package? Why not start Lite? The Digital Filter Design Lite Tool includes most of the features of the full-featured version at a fraction of the cost.

Jump-start Your Design with Proven and Optimized Building Block Libraries

Math Library

This IEEE-754 compliant library provides single and double precision floating point ANSI C standard math functions. These routines have been optimized to provide the smallest code size. The library can be used in assembly or C. Key functions in the Math Library:

- \(\sin, \cos, \tan \)
- \(\text{asin}, \text{acos}, \text{atan} \)
- \(\ln, \log_{10}, \sqrt{x}, \text{power} \)
- ceil, floor, mod, frexp

DSP Algorithm Library

This extensive DSP building block library is fully optimized in assembly code for execution speed. The DSP functions can be used in assembly or C. Some key algorithms addressed in the DSP Algorithm Library:

- Cascaded IIR filters
- FIR filters and LMS filters
- Correlation, convolution
- FFT and window functions
- Matrix and vector operations

Peripheral Driver Library

This library of over 270 C utility functions helps you set up and operate the hardware peripheral modules in various modes. Functions covered in the Peripheral Driver Library:

- 10-bit and 12-bit A/D converters
- UART, SPI™, I²C™ and codec interface
- Motor Control PWM and QEI
- General purpose timers
- Input capture and output compare
World Class Software Development Tools

Assembler/Linker/Librarian

The MPLAB ASM30 is a full-featured macro assembler. User defined macros, conditional assembly and a variety of assembler directives make the MPLAB ASM30 a powerful code generation tool.

The MPLAB LINK30 and MPLAB LIB30 are Linker and Librarian modules that allow efficient linking, library creation and maintenance.

Industry Leading C Code Efficiency

The dsPIC DSC was designed with a robust, full-featured instruction set optimized for C compiler efficiency from the start. Coupled with Microchip’s highly optimized MPLAB C30 C Compiler, this combination produces results that fit into a smaller sized on-chip Flash memory.

MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator is a full-featured, cycle accurate software simulator. In addition to simulating the CPU and the instruction set, it also supports key peripherals, such as timers, I/O, interrupts, UART and A/D modules. MPLAB SIM has powerful stimulus capabilities and file I/O. It is ideal for algorithm development.

MPLAB VDI (Visual Device Initializer)

Configuring a powerful 16-bit MCU or DSP can be a complex and challenging task, but not for our dsPIC DSCs. Our MPLAB VDI allows you to configure the entire DSC graphically and when complete, a mouse click generates initialization code usable in assembly or C programs.

The MPLAB VDI does extensive error checking on assignments and conflicts on pins, memories and interrupts, as well as a selection of operating conditions. The generated code files are effortlessly integrated with the rest of your application code through the MPLAB project manager.

The detailed reports on resource assignment and configuration simplify project documentation. Key features of the MPLAB VDI:

• Drag-and-drop feature selection
• One click configuration
• Extensive error checking
• Generates initialization code
• Integrates effortlessly in MPLAB project manager
• Printed reports ease project documentation requirements

Download a full-featured, time-restricted demonstration version of the MPLAB C30 C Compiler from the Microchip web site for your evaluation.

Relative Code Size (in Bytes)

16-bit Applications (~ 40 KB code)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microchip MPLAB® C30 V 1.30</td>
<td>100%</td>
<td>111%</td>
<td>110%</td>
<td>115%</td>
<td>115%</td>
<td>116%</td>
</tr>
<tr>
<td>Leading Competitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32-bit Applications (~ 50 KB code)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microchip MPLAB® C30 V 1.30</td>
<td>100%</td>
<td>114%</td>
<td>129%</td>
<td>136%</td>
<td>149%</td>
<td>188%</td>
</tr>
<tr>
<td>Leading Competitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Libraries for Speech Applications

Noise Suppression Library

This application library suppresses the noise interference in a speech signal, such as ambient noise picked up by a microphone while capturing speech. This algorithm is particularly useful for systems such as hands-free phones, speakerphones, intercoms and headsets where an isolated noise reference is not available. The algorithm handles 0-4 kHz audio bandwidth and provides 10-20 dB of noise reduction. The library also includes some sample rate conversion functions to support input/output sampling rates of 9.6 kHz, 11.025 kHz and 12 kHz.

Acoustic Echo Cancellation Library

This library provides a function to eliminate the echo generated in the acoustic path between a speaker and a microphone, such as in a speakerphone or an intercom system. This library is fully compliant with the G.167 standard and provides 16, 32 or 64 ms echo delays. It handles 0-4 kHz audio bandwidth and provides echo cancellation of 40-50 dB. It also includes some sample rate conversion functions to support input/output sampling rates of 9.6 kHz, 11.025 kHz and 12 kHz.

Line Echo Cancellation Library

This library provides a function to cancel electrical line echoes caused by 2- to 4-wire conversion hybrids in telephone lines. The library can be used in long distance voice communication applications, especially in links involving satellite networks and intercontinental long haul networks, as well as digital networks, such as Voice over IP (VoIP). This library is fully compliant with the ITU-T G.168 recommendation. The library can be used for full-duplex operation. It handles 0-4 kHz audio bandwidth (8 kHz sampling of 16-bit speech data).

Speech Encoding/Decoding Library

This application library performs speech compression and decompression and is based on a modified open-source Speex technology. The library features a 16:1 compression ratio and an 8 kbps data rate, making the library a good choice for digital voice communication, store-and-playback and playback-only applications. For playback-only applications, a PC software utility is included, allowing the designer to create encoded speech files for playback.

Speech Recognition

Automatic Speech Recognition (ASR) for our digital signal controllers supports a variety of voice-activated applications like handset and home appliance control. A Speech Word Library Builder and a Speech Recognition Software Library make up the ASR software suite.
Plug and Play with Our Connectivity Libraries

TCP/IP Protocol Stack

MicroNet™ TCP/IP Stack by CMX
MicroNet TCP/IP Stack by CMX is specifically designed for optimized use of Flash and RAM resources on the dsPIC DSC. The software runs directly on the processor with no gateways or PCs required. The stack can be run in stand alone mode or work in conjunction with an RTOS. Using only industry standard protocols, CMX-MicroNet offers true TCP/IP networking via direct, dial-up or Ethernet connectivity and wireless Ethernet (802.11b) as well. This library can be readily implemented on the dsPICDEM.net™ Connectivity Board. This stack supports Point-to-Point Protocol, E-mail support and modem control, which are not currently supported on the free Microchip stack.

Microchip Free TCP/IP Stack
The Microchip TCP/IP Stack is a free suite of programs that provide services for standard TCP/IP-based applications (HTTP server, FTP server, etc.) or it can be used in a custom TCP/IP-based application. The stack is optimized for size and is designed to run on the dsPIC DSC. While this particular implementation is specifically targeted to run on the dsPICDEM.net Connectivity Development Board, it can be retargeted to any hardware equipped with a dsPIC DSC. HTML web pages generated by the digital signal controller can be viewed with a standard web browser such as Microsoft® Internet Explorer.

Microchip Free ZigBee™ Stack
The ZigBee software stack is available for PIC18, PIC24 and dsPIC30F, dsPIC33F devices. This stack supports Reduced Function Device (RFD), Full Function Device (FFD) and Coordinator functionality. The stack is available form Microchip under a no cost license agreement and may be downloaded from Microchip's web site at www.microchip.com/ZigBee.

Soft Modem Libraries

V.22bis/V.22 Soft Modem Library
This library is available free of charge from the Microchip web site. The V.22bis Soft Modem Library is a collection of algorithms for ITU-T compliant V.21/Bell 103, V.22 and V.22bis modems and V.42 recommendations. The V.22bis library comes with full source code and archives that contain object code modules required for linking with your application. The transmit and receive data pump code modules are coded in assembly language for optimal speed and smallest code size, while the AT, V.42 and Data Pump APIs are coded in C. Hardware component drivers, such as UART and Data Converter Interface (DCI) for Analog Front End (AFE) I/O are provided. This library can be readily implemented on the dsPICDEM.net Connectivity Board.

V.32bis Soft Modem Library
The V.32bis Soft Modem Library is a collection of algorithms for ITU-T compliant V.21/Bell 103, V.22, V.22bis, V.32 and V.32bis modems and V.42 recommendations. The V.32bis library is provided with archives that contain object code modules required for linking with your application. The transmit and receive data pump code modules are coded in assembly language for optimal speed and smallest code size, while the AT, V.42 and Data Pump APIs are coded in C. Hardware component drivers, such as UART and DCI for Analog Front End (AFE) I/O are provided. This library can be readily implemented on the dsPICDEM.net™ Connectivity Development Board.

V.32/V.22/V22bis Soft Modem Library by VOCAL Technologies, LTD
The Soft Modem Library is a collection of data modulations and protocols (V.32, V.22, V.22bis, V.23, V.21, Bell 103, Bell 212A and Bell 202). This library is provided with archives that contain object code modules, which link to your application. The data modulation is coded in C with inline assembly language optimization for speed and code size. Hardware component drivers, such as UART and DCI for AFE I/O are provided. This library can be readily implemented on the dsPICDEM.net Connectivity Board.

MicroNet™ TCP/IP Stack by CMX
- RFC compliant protocol stack
- Supports CMX RTOS
- Ethernet NIC driver
- Small Flash/RAM footprint
- Source code provided

Microchip Free TCP/IP Stack
- Out-of-box support for MPLAB C30 compilers
- Implements complete TCP state machine
- Modules provided: MAC, SLIP, ARP, IP, ICMP, TCP, SNMP, UDP, DHCP, FTP, IP Gleaning, HTTP, MPFS (Microchip File System)
- RTOS independent
Motor Control Application Software

The Motor Control Family is suited for advanced AC Induction Motor (ACIM), Brushless DC (BLDC) and Switched Reluctance (SR) motor applications. Two advanced applications are available that run on the dsPIC30F Motor Control Development System. Full documentation and source code are available for free on the Microchip web site for all application notes.

Sensorless BLDC Motor Control Using the dsPIC30F6010

This application note describes a fully-tested sensorless control algorithm for a 3-phase BLDC motor. Motor current, motor velocity and bus voltage are regulated in control loops. An LCD menu interface provides adjustment of all sensorless motor control parameters. This application solution utilizes a dsPIC30F6010 device and the dsPICDEM MC1 development system (Application Note: AN901).

Sensorless BLDC Motor Control Using the dsPIC30F2010

This application note describes how to provide sensorless BLDC motor control with the dsPIC30F2010 device. The technique used is based on another Microchip application note: Using the dsPIC30F for Sensorless BLDC Control (AN901). This application solution and AN957 present a low pin count solution with minimal I/O and use the PICDEM MC LV system with a dsPIC30F2010 device (Application Note: AN992).

Encryption Libraries

Implement reliable secure applications using the Symmetric and Asymmetric Key Embedded Encryption Libraries. Developed for Microchip by NTRU Cryptosystems Inc., these libraries are both proven and optimized. These library functions can be easily called by your C or assembly code.

The algorithms included in these libraries have emerged as de facto standards for many large scale secure applications such as web access (SSL/TLS), E-mail (S-MIME), secure XML transactions and virtual private networks (IPsec). These algorithms are also recommended by Federal Information Processing Standards (FIPS) and the Internet Engineering Task Force (IETF).

Vector Control of an ACIM

This application note describes a fully-tested vector, or field oriented, control algorithm for a 3-phase ACIM. The motor currents, torque and velocity are regulated in control loops. Full documentation and source code are available for free on the Microchip web site (Application Note: AN908).

Introduction to ACIM Control

This application note is an introductory approach to the methods described in Application Note: AN908. Code is provided in an example that provides basic variable speed control of a single or three-phase ACIM (Application Note: AN984).

Sensored BLDC Motor Control

This application note describes a fully-tested 3-phase BLDC motor control algorithm with 3 hall-effect sensors. Code is available with and without a PI speed control loop (Application Note: AN957).

$5 Evaluation License for Evaluation and Development

A common issue with software libraries is that in order to evaluate the complete library, you must enter into a complex and expensive license arrangement. Any Microchip dsPIC DSC library can be licensed for $5.00 for evaluation and development purposes. These libraries are complete and unchanged from the production libraries, not reduced function evaluation versions. Evaluation licenses are available from the Microchip web site (http://buy.microchip.com). Licenses for production are based on a simple low cost one-time license fee. Production licenses are available from Microchip or from our authorized distributors.
Operating Systems and Communication Drivers

RTOS

If you need a Real-Time Operating System (RTOS) to handle multitasking, we have a three-tier solution for you.

- CMX-RTX™: full-featured fully preemptive multi-tasking OS
- CMX-Tiny+™: fully preemptive scaled-down version of the RTX OS
- CMX-Scheduler™: fully preemptive multi-tasking mini OS (FREE)

All three operating systems are fully preemptive and written in assembly language optimized for maximum performance. These RTOS products are developed by CMX and available from Microchip and CMX.

OSEK and CAN Drivers

Vector Informatik GmbH provides automotive operating systems, sometimes labeled as an OSEK operating system. The Vector Informatik osCAN operating system, which is based on the OSEK/VDX® standard, provides a multitasking operating system with optimal features for use on MCUs. This product represents a small, sturdy operating system kernel.

The companion support for managing the CAN interface drivers on the dsPIC30F family of products is the CANbedded CAN driver suite from Vector Informatik. This product consists of a number of adaptive source code modules that cover the basic communication requirements in automotive applications.

Resources for Self-paced Learning

Web Seminars

Microchip offers extensive online resources for designers ranging from downloadable documentation to web seminars (webinars) to online discussion groups. All of these helpful resources are accessible on www.microchip.com/webseminars and are updated frequently with the most current information on our products and services.

Workshop in a Box

Periodically Microchip or our sales channel partners offer a fee-based, instructor-led Workshop in a Box, a full day, hands-on training session. The registration fee includes a “box” containing a dsPIC DSC development board and related training material, that is yours to keep to help you further your development skills.

If you have interest in a dsPIC DSC Introductory Workshop in a Box or a dsPIC DSC Motor Control Workshop in a Box, please contact your sales representative. In-house workshops can be arranged to accommodate larger design teams.

<table>
<thead>
<tr>
<th>Webinar Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to the dsPIC® Digital Signal Controller</td>
<td>20 min</td>
</tr>
<tr>
<td>Introduction to Microchip’s Development Tools</td>
<td>25 min</td>
</tr>
<tr>
<td>Introduction to dsPIC30F Architecture - Part 1</td>
<td>20 min</td>
</tr>
<tr>
<td>Introduction to dsPIC30F Architecture - Part 2</td>
<td>20 min</td>
</tr>
<tr>
<td>Introduction to MPLAB® IDE Integrated Development Environment</td>
<td>25 min</td>
</tr>
<tr>
<td>Basic dsPIC30F Development Tools</td>
<td>25 min</td>
</tr>
<tr>
<td>dsPIC30F Addressing Modes - Part 1</td>
<td>20 min</td>
</tr>
<tr>
<td>dsPIC30F Addressing Modes - Part 2</td>
<td>20 min</td>
</tr>
<tr>
<td>Introduction to dsPIC30F DSP Engine and ALU</td>
<td>30 min</td>
</tr>
<tr>
<td>Introduction to dsPIC30F Interrupts</td>
<td>25 min</td>
</tr>
<tr>
<td>dsPIC30F 12-bit ADC Module - Part 1</td>
<td>20 min</td>
</tr>
<tr>
<td>dsPIC30F 12-bit ADC Module - Part 2</td>
<td>20 min</td>
</tr>
<tr>
<td>dsPIC30F 10-bit ADC Module - Part 1</td>
<td>20 min</td>
</tr>
<tr>
<td>dsPIC30F 10-bit ADC Module - Part 2</td>
<td>20 min</td>
</tr>
<tr>
<td>Introduction to the MPLAB® VDI Visual Device Initializer</td>
<td>30 min</td>
</tr>
<tr>
<td>Serial Communications using the dsPIC30F - Part 1 (UART)</td>
<td>20 min</td>
</tr>
<tr>
<td>Serial Communications using the dsPIC30F - Part 2 (SPI™)</td>
<td>20 min</td>
</tr>
<tr>
<td>Serial Communications using the dsPIC30F - Part 3 (I²C™)</td>
<td>30 min</td>
</tr>
<tr>
<td>Serial Communications using the dsPIC30F - Part 4 (CAN)</td>
<td>30 min</td>
</tr>
<tr>
<td>General Purpose Timers</td>
<td>20 min</td>
</tr>
<tr>
<td>dsPIC30F Motor Control Peripherals - Part 1 (MCPWM)</td>
<td>20 min</td>
</tr>
<tr>
<td>dsPIC30F Motor Control Peripherals - Part 2 (QEI)</td>
<td>20 min</td>
</tr>
</tbody>
</table>

For more information about additional self-paced learning resources, please visit www.microchip.com/training.
Hardware Development Tools

MPLAB ICD 2
In-Circuit Debugger

The MPLAB ICD 2 In-Circuit Debugger is a powerful, low-cost development tool. Running under MPLAB IDE, MPLAB ICD 2 can debug ASM or C source code, watch and modify variables, single step and set breakpoints. Key features of the MPLAB ICD 2:

- Full speed dsPIC DSC operation
- USB or serial port connection to PC
- Supports full dsPIC DSC supply voltage range
- Can be used as an inexpensive programmer
- Smart watch variable windows
- Advanced breakpoint features

MPLAB PM3
Device Programmer

MPLAB PM3 Device Programmer is a full-featured, production quality universal device programmer. Using interchangeable socket modules, the MPLAB PM3 supports virtually all programmable devices from Microchip. MPLAB PM3 has improved programming time for many devices and offers a built-in interface for robust In-Circuit Serial Programming™ (ICSP™).

The dsPIC DSC family is supported on the PM3 and PRO MATE II Device Programmer with appropriate socket modules.

MPLAB ICE 4000
In-Circuit Emulator for the dsPIC30F*

The powerful, full-featured real-time MPLAB ICE 4000 In-Circuit Emulator for the dsPIC30F is capable of debugging the most demanding real-time systems. Key features of the MPLAB ICE 4000 In-Circuit Emulator:

- Full-speed, real-time emulation
- Supports full dsPIC30F supply voltage range
- 64K deep by 216-bit wide trace memory
- Unlimited breakpoints
- Complex break, trace and trigger logic
- Multi-level trigger up to four levels
- 48-bit time stamp
- USB connection to PC
- Stopwatch

* A low cost in-circuit emulator family is planned for the dsPIC33F
Hardware Development Boards: Jump-start Your Design

A variety of hardware development boards are available for the dsPIC DSC, enabling you to shorten your design cycle. These boards are designed to allow easy connection to an MPLAB ICD 2, MPLAB ICE 4000 or MPLAB PM3. All development boards include documentation and example source code to accelerate your design.

dsPICDEM™ 80-Pin Starter Development Board

This development board offers a very economical way to evaluate the 80-pin dsPIC30F General Purpose and Motor Control Families as well as the dsPIC33F devices. Key features:

- Includes a 80-pin dsPIC30F6014A General Purpose plug-in module (MA300014)
- Accommodates 80-pin dsPIC30F6010 Motor Control plug-in module (MA300013)
- Accommodates the 100- to 80-pin dsPIC33F General Purpose plug-in module (MA330012)
- Power input from 9V supply
- LEDs, switches, potentiometer, UART interface
- A/D input filter circuit for speech-band signal input
- On-board DAC and filter for speech-band signal output
- Circuit prototyping area
- Assembly language demonstration program and tutorial
- Includes a selectable voltage regulator with outputs of 5 to 3.3V

dsPICDEM 28-Pin Starter Development Board

This development board provides an economical solution to get started with the 28-pin dsPIC30F devices, including Motor Control, Sensor and Power Conversion families. Key features:

- Includes a 28-pin dsPIC30F2010 device
- Power input from 9V power supply
- UART interface
- Header for access to all device I/O pins
- Circuit prototyping area
- Assembly language demonstration program and tutorial
- Accommodates all dsPIC30F 28-pin DIP or SOIC devices

Explorer 16 Development Board

This development board offers a very economical way to evaluate both the dsPIC33F General Purpose and Motor Control Family devices as well as the PIC24 microcontrollers. This board is an ideal prototyping tool to help you quickly develop and validate key design requirements. Key features:

- Supports the dsPIC33FJ256GP710 and the PIC24FJ128GA010
- Modular design for plug-in demonstration boards, expansion header
- Terminal interface program and menu programs
- Includes 100-pin dsPIC33F General Purpose (MA330011) and 100-pin PIC24 (MA240011) plug-in modules
Advanced Development Boards: Complex Designs Made Simple

A variety of hardware development boards are available for the dsPIC DSC, enabling you to shorten your design cycle. These boards are designed to allow easy connection to an MPLAB ICD 2, MPLAB ICE 4000 or MPLAB PM3. All development boards include documentation and example source code to accelerate your design.

dsPICDEM 1.1 General Purpose Development Board

This board provides development support for speech and audio-related applications. Key features:

- Includes a dsPIC30F6014A plug-in module (MA300014)
- Serial communication channels (two UART, SPI, CAN)
- Si3000 codec with MIC IN/Speaker OUT
- General purpose prototyping area and expansion header
- Digital potentiometer, LEDs, switches, etc.

dsPICDEM.net Connectivity Development Board

This board provides development support for soft modem and connectivity-related applications. Key features:

- dsPICDEM.net 1 (DM300004-1) supports FCC/JATE PSTN countries
- dsPICDEM.net 2 (DM300004-2) supports CTR-21 PSTN countries
- Includes a dsPIC30F6014 plug-in module (MA300011)
- 10-Base T Ethernet MAC and PHY interface
- PSTN interface with DAA/AFE chipset
- Serial communication channels (UART and CAN)
- External EEPROM and RAM memory for storing constants
- General purpose prototyping area and expansion header
- LEDs, switches, potentiometers and LCD display

Motor Control Development System

The Motor Control Development System provides quick prototyping and validation of BLDC, ACIM, PMSM, SR and UPS applications. The system consists of the dsPICDEM MC1 Motor Control Development Board and one of two optional power modules. The dsPICDEM MC1H 3-Phase High-Voltage Power Module (DM300021) supports AC line-powered applications, while the dsPICDEM MC1L 3-Phase Low-Voltage Power Module (DM300022) supports DC-powered applications up to 48V. Key features:

- Heat sink for ambient cooling of power sections
- Full automatic protection of power circuits
- Electrical isolation from power circuits
- Many options for motor feedback signals

PICDEM™ MC LV Motor Control Development Board

This development board provides a cost-effective method of evaluating and developing sensored or sensorless Brushless DC (BLDC) motor control applications. A 28-pin, dsPIC30F3010 device is used with this board. Key features:

- Over-current protection and temperature sensor with PIC™ interface
- 3-phase voltage source inverter bridge
- 9 LEDs, 3 for generic status indication and 6 for PWM indication
- Test points for motor current and back EMF sensing
- Speed control potentiometer
- Supports maximum motor ratings of 48V and 2.2A
- Also supports 28-pin PIC18 MCUs; specifically the PIC18F2431
- Power supply and motor are available (optional) for out-of-the-box experience
Microchip offers various development boards, without having to unsolder and resolder parts. This is especially useful for the dsPIC DSC development boards, which also support the MPLAB ICE 4000 emulator device adapters. This method allows for easy swapping of devices onto the plug-in module.

Development Tools

<table>
<thead>
<tr>
<th>Development Tool</th>
<th>Description</th>
<th>Part#</th>
<th>Available From</th>
<th>List Price (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLAB® IDE</td>
<td>Integrated Development Environment</td>
<td>SW007002</td>
<td>Microchip</td>
<td>Free</td>
</tr>
<tr>
<td>MPLAB® ASM30</td>
<td>Assembler (included in MPLAB® IDE)</td>
<td>SW007002</td>
<td>Microchip</td>
<td>Free</td>
</tr>
<tr>
<td>MPLAB® SIM</td>
<td>Software Simulator (included in MPLAB® IDE)</td>
<td>SW007002</td>
<td>Microchip</td>
<td>Free</td>
</tr>
<tr>
<td>MPLAB® VDI</td>
<td>Visual Device Initializer (included in MPLAB® IDE)</td>
<td>SW007002</td>
<td>Microchip</td>
<td>Free</td>
</tr>
</tbody>
</table>

Hardware Development Tools

<table>
<thead>
<tr>
<th>Development Tool</th>
<th>Description</th>
<th>Part#</th>
<th>Available From</th>
<th>List Price (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLAB® ICE 4000</td>
<td>In-Circuit Debugger and Device Programmer</td>
<td>DV164005</td>
<td>Microchip</td>
<td>$159.99</td>
</tr>
<tr>
<td></td>
<td>In-Circuit Emulator Pod for dsPIC30F</td>
<td>ICE4000</td>
<td>Microchip</td>
<td>$2560</td>
</tr>
<tr>
<td></td>
<td>Processor Module for dsPIC30F</td>
<td>PMK30X01</td>
<td>Microchip</td>
<td>$695</td>
</tr>
<tr>
<td></td>
<td>Device Adapter for 80L/64L TQFP Devices</td>
<td>DM30-2</td>
<td>Microchip</td>
<td>$295</td>
</tr>
<tr>
<td></td>
<td>Device Adapter for 44L TQFP Devices</td>
<td>DM30-3</td>
<td>Microchip</td>
<td>$225</td>
</tr>
<tr>
<td></td>
<td>Transition Socket for 18L S0IC</td>
<td>XIT28S0</td>
<td>Microchip</td>
<td>$75</td>
</tr>
<tr>
<td></td>
<td>Transition Socket for 18L DIP</td>
<td>AICED202</td>
<td>Microchip</td>
<td>$20</td>
</tr>
<tr>
<td></td>
<td>Transition Socket for 28L S0IC</td>
<td>XIT28S0</td>
<td>Microchip</td>
<td>$75</td>
</tr>
<tr>
<td></td>
<td>Transition Socket for 28L DIP</td>
<td>AICED204</td>
<td>Microchip</td>
<td>$30</td>
</tr>
<tr>
<td></td>
<td>Transition Socket for 28L ML/MM</td>
<td>XLT28F0N3 or XLT28F0N4</td>
<td>Microchip</td>
<td>$75</td>
</tr>
<tr>
<td></td>
<td>Transition Socket for 40L DIP</td>
<td>AICED206</td>
<td>Microchip</td>
<td>$40</td>
</tr>
<tr>
<td></td>
<td>Transition Socket for 44L ML</td>
<td>XLT44F0N2</td>
<td>Microchip</td>
<td>$175</td>
</tr>
<tr>
<td></td>
<td>Transition Socket for 44L TQFP</td>
<td>XLT44F0T or XLT44F0T3</td>
<td>Microchip</td>
<td>$125</td>
</tr>
<tr>
<td></td>
<td>Transition Socket for 64L TQFP (PF Package)</td>
<td>XLT64F0T3 or XLT64F0T5</td>
<td>Microchip</td>
<td>$125</td>
</tr>
<tr>
<td></td>
<td>Transition Socket for 64L TQFP (PF Package)</td>
<td>XLT64F0T3 or XLT64F0T5</td>
<td>Microchip</td>
<td>$125</td>
</tr>
<tr>
<td></td>
<td>Transition Socket for 80L TQFP (PF Package)</td>
<td>XLT80F0T2</td>
<td>Microchip</td>
<td>$125</td>
</tr>
<tr>
<td></td>
<td>Transition Socket for 80L TQFP (PF Package)</td>
<td>XLT80F0T2</td>
<td>Microchip</td>
<td>$125</td>
</tr>
<tr>
<td></td>
<td>Transition Socket for 80L TQFP (TP Package)</td>
<td>XLT80F0T3 or XLT80F0T5</td>
<td>Microchip</td>
<td>$125</td>
</tr>
<tr>
<td></td>
<td>Socket Module for 18L DIP/SOIC Devices</td>
<td>AC30F005</td>
<td>Microchip</td>
<td>$189</td>
</tr>
<tr>
<td></td>
<td>Socket Module for 28L DIP/SOIC Devices</td>
<td>AC30F004</td>
<td>Microchip</td>
<td>$189</td>
</tr>
<tr>
<td></td>
<td>Socket Module for 44L DIP Devices</td>
<td>AC30F003</td>
<td>Microchip</td>
<td>$159</td>
</tr>
<tr>
<td></td>
<td>Socket Module for 44L TQFP Devices</td>
<td>AC30F006</td>
<td>Microchip</td>
<td>$159</td>
</tr>
<tr>
<td></td>
<td>Socket Module for 64L TQFP Devices (PF Package)</td>
<td>AC30F002</td>
<td>Microchip</td>
<td>$159</td>
</tr>
<tr>
<td></td>
<td>Socket Module for 64L TQFP Devices (PF Package)</td>
<td>AC30F008</td>
<td>Microchip</td>
<td>$159</td>
</tr>
<tr>
<td></td>
<td>Socket Module for 80L TQFP Devices (PF Package)</td>
<td>AC30F001</td>
<td>Microchip</td>
<td>$159</td>
</tr>
<tr>
<td></td>
<td>Socket Module for 80L TQFP Devices (PT Package)</td>
<td>AC30F007</td>
<td>Microchip</td>
<td>$159</td>
</tr>
<tr>
<td></td>
<td>Full Featured Device Programmer Base Unit</td>
<td>DV007004</td>
<td>Microchip</td>
<td>$895</td>
</tr>
<tr>
<td></td>
<td>Socket Module for 44L ML Devices</td>
<td>AC164301</td>
<td>Microchip</td>
<td>$189</td>
</tr>
<tr>
<td></td>
<td>Socket Module for 44L ML Devices</td>
<td>AC164302</td>
<td>Microchip</td>
<td>$189</td>
</tr>
<tr>
<td></td>
<td>Socket Module for 44L ML Devices</td>
<td>AC164322</td>
<td>Microchip</td>
<td>$189</td>
</tr>
<tr>
<td></td>
<td>Socket Module for 44L ML Devices</td>
<td>AC164322</td>
<td>Microchip</td>
<td>$189</td>
</tr>
<tr>
<td></td>
<td>Socket Module for 44L ML Devices</td>
<td>AC164313</td>
<td>Microchip</td>
<td>$189</td>
</tr>
<tr>
<td></td>
<td>Socket Module for 64L TQFP Devices (PT Package)</td>
<td>AC164319</td>
<td>Microchip</td>
<td>$189</td>
</tr>
<tr>
<td></td>
<td>Socket Module for 64L TQFP Devices (PT Package)</td>
<td>AC164314</td>
<td>Microchip</td>
<td>$189</td>
</tr>
<tr>
<td></td>
<td>Socket Module for 64L TQFP Devices (PT Package)</td>
<td>AC164314</td>
<td>Microchip</td>
<td>$189</td>
</tr>
<tr>
<td></td>
<td>Socket Module for 64L TQFP Devices (PT Package)</td>
<td>AC164320</td>
<td>Microchip</td>
<td>$189</td>
</tr>
</tbody>
</table>

Development Boards and Reference Designs

<table>
<thead>
<tr>
<th>Development Tool</th>
<th>Description</th>
<th>Part#</th>
<th>Available From</th>
<th>List Price (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Purpose Development Board</td>
<td>dsPICDEM™ 1.1 Development Board for 80L TQFP devices</td>
<td>DM300014</td>
<td>Microchip</td>
<td>$299.99</td>
</tr>
<tr>
<td>Starter Development Boards</td>
<td>dsPICDEM™ 80-pin Starter Development Board</td>
<td>DM300019</td>
<td>Microchip</td>
<td>$79.99</td>
</tr>
<tr>
<td></td>
<td>dsPICDEM™ 28-pin Starter Development Board</td>
<td>DM300017</td>
<td>Microchip</td>
<td>$79.99</td>
</tr>
<tr>
<td></td>
<td>dsPICDEM™ 2 Development Board</td>
<td>DM300018</td>
<td>Microchip</td>
<td>$99.99</td>
</tr>
<tr>
<td></td>
<td>Explorer 16 Development Board</td>
<td>DM240001</td>
<td>Microchip</td>
<td>$129.99</td>
</tr>
<tr>
<td>Motor Control Development Boards</td>
<td>dsPICDEM™ MC1 3-Phase ACIM High Voltage Power Module</td>
<td>DM300021</td>
<td>Microchip</td>
<td>$80.00</td>
</tr>
<tr>
<td></td>
<td>dsPICDEM™ MC1L 3-Phase High Voltage Power Module</td>
<td>DM300021</td>
<td>Microchip</td>
<td>$80.00</td>
</tr>
<tr>
<td></td>
<td>3-Phase BLDC Low Voltage Motor (24V)</td>
<td>AC300002</td>
<td>Microchip</td>
<td>$120.00</td>
</tr>
<tr>
<td>Connectivity Development Boards</td>
<td>dsPICDEM.net™ 1 with FCC/ATE compliant and Ethernet NIC support</td>
<td>DM300001</td>
<td>Microchip</td>
<td>$389.99</td>
</tr>
<tr>
<td></td>
<td>dsPICDEM.net™ 2 with CTR-21-compliant and Ethernet NIC support</td>
<td>DM300002</td>
<td>Microchip</td>
<td>$389.99</td>
</tr>
</tbody>
</table>

Plug-In Modules for Development Boards

Plug-In Modules (PIM) are a daughter board with a dsPIC DSC soldered on top and header socket strips on the bottom. The PIMs use the device header pins, on the dsPIC DSC development boards, which also support the MPLAB ICE 4000 emulator device adapters. This method allows for easy swapping of devices onto the various development boards, without having to unsolder and resolder parts.

<table>
<thead>
<tr>
<th>Development Tool</th>
<th>Description</th>
<th>Part#</th>
<th>Available From</th>
<th>List Price (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC board with 80-pin dsPIC30F6014 general purpose DSC sample</td>
<td>MA300011</td>
<td>Microchip</td>
<td>$25</td>
<td></td>
</tr>
<tr>
<td>PC board with 80-pin dsPIC30F6010 motor control DSC sample</td>
<td>MA300013</td>
<td>Microchip</td>
<td>$25</td>
<td></td>
</tr>
<tr>
<td>PC board with 80-pin dsPIC30F256F710 DSC sample</td>
<td>MA300014</td>
<td>Microchip</td>
<td>$25</td>
<td></td>
</tr>
<tr>
<td>PC board with 100-pin dsPIC3F256F710 DSC sample</td>
<td>MA300011</td>
<td>Microchip</td>
<td>$25</td>
<td></td>
</tr>
</tbody>
</table>

(1) List price may change without notice.
Software Libraries and Application Development Tools

<table>
<thead>
<tr>
<th>Development Tool</th>
<th>Description</th>
<th>Part#</th>
<th>Available From</th>
<th>List Price(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsPIC30F Math Library</td>
<td>Standard math and floating point library (ASM, C Wrapper)</td>
<td>SW300020</td>
<td>Microchip</td>
<td>Free</td>
</tr>
<tr>
<td>dsPIC30F Peripheral Library</td>
<td>Peripheral initialization, control and utility routines (C)</td>
<td>SW300021</td>
<td>Microchip</td>
<td>Free</td>
</tr>
<tr>
<td>dsPIC30F DSP Library</td>
<td>Essential DSP algorithm suite (Filters, FFT)</td>
<td>SW300022</td>
<td>Microchip</td>
<td>Free</td>
</tr>
<tr>
<td>dsPicCocks™ Library</td>
<td>Data analysis and DSP software</td>
<td>SW300023</td>
<td>Microchip</td>
<td>Free</td>
</tr>
<tr>
<td>Digital Filter Design</td>
<td>Full featured graphical IR and FR filter design package for dsPIC30F</td>
<td>SW300001</td>
<td>Microchip</td>
<td>$249</td>
</tr>
<tr>
<td>Digital Filter Design Lite</td>
<td>Graphical IR and FR filter design package for dsPIC30F</td>
<td>SW300001LT</td>
<td>Microchip</td>
<td>$29</td>
</tr>
<tr>
<td>CMX-Tiny™ for dsPIC® DSC</td>
<td>Preemptive Real-time Operating System (RTOS) for dsPIC30F from CMX</td>
<td>CMX Tiny+</td>
<td>CMX</td>
<td>$3000</td>
</tr>
<tr>
<td>CMX-RTX™ for dsPIC® DSC</td>
<td>Fully preemptive Real-time Operating System (RTOS) for dsPIC30F from CMX</td>
<td>CMX RTX</td>
<td>CMX</td>
<td>$4000</td>
</tr>
<tr>
<td>CMX Schedulers™</td>
<td>Multi-tasking, preemptive scheduler for dsPIC30F</td>
<td>SW300030</td>
<td>CMX</td>
<td>Free</td>
</tr>
<tr>
<td>Symmetric Key Embedded Encryption Library</td>
<td>Security encryption software support for AES, triple-DES, SHA-1, RNG and MD5</td>
<td>SW300050 - 5K*</td>
<td>Microchip</td>
<td>$2500</td>
</tr>
<tr>
<td>Asymmetric Key Embedded Encryption Library</td>
<td>Security encryption software support for RSA, DSA, Diffie-Hellman, SHA-1, RNG and MD5</td>
<td>SW300055 - 5K*</td>
<td>Microchip</td>
<td>$2500</td>
</tr>
<tr>
<td>Noise Suppression Library</td>
<td>Function to suppress noise interference in speech signals</td>
<td>SW300040 - 5K*</td>
<td>Microchip</td>
<td>$150</td>
</tr>
<tr>
<td>Acoustic Echo Cancellation Library</td>
<td>Function to eliminate echo generated from a speaker to a microphone</td>
<td>SW300060 - 5K*</td>
<td>Microchip</td>
<td>$5</td>
</tr>
<tr>
<td>Acoustic Accessory Kit</td>
<td>Accessory Kit (includes: audio cable, headset, oscillators, microphone, speaker, DB9 M/F RS-232 cable, DB9M/DB9M Null Modem Adapter)</td>
<td>AC200030</td>
<td>Microchip</td>
<td>$87.50</td>
</tr>
<tr>
<td>Line Echo Cancellation Library</td>
<td>Function to cancel electrical line echoes caused by 2- or 4-wire conversion hybrids</td>
<td>SW300080 - 5K*</td>
<td>Microchip</td>
<td>$2500</td>
</tr>
<tr>
<td>ZigBee™ Software Stack</td>
<td>Supports RFD, FTD and coordinator functionality</td>
<td>SW300025</td>
<td>Microchip</td>
<td>Contact Microchip</td>
</tr>
<tr>
<td>TCP/IP Library</td>
<td>TCP/IP connectivity and protocol support</td>
<td>CMX-MicroNet for dsPIC30F</td>
<td>CMX</td>
<td>Contact Vendor</td>
</tr>
<tr>
<td>Soft Modem Library</td>
<td>Evaluation copy of V.32bis Soft Modem Library</td>
<td>SW300003</td>
<td>Microchip</td>
<td>$500</td>
</tr>
<tr>
<td>Speech Recognition System</td>
<td>Automatic speech recognition system including a PC-based speech training sub-system and a speech recognizer software library</td>
<td>SW300001 - 5K*</td>
<td>Microchip</td>
<td>$2500</td>
</tr>
<tr>
<td>Speech Encoding/Decoding Library</td>
<td>Speech library to perform speech compression and decompression</td>
<td>SW300070 - 5K*</td>
<td>Microchip</td>
<td>$2500</td>
</tr>
<tr>
<td>CANbridged for dsPIC® DSC</td>
<td>CAN driver library for dsPIC30F</td>
<td>Vector Informatik</td>
<td>Vector Informatik</td>
<td>Contact Vendor</td>
</tr>
<tr>
<td>osCAN for dsPIC® DSC</td>
<td>osCAN for dsPIC® DSC</td>
<td>Microchip</td>
<td>Contact Microchip</td>
<td></td>
</tr>
</tbody>
</table>

(1) List price may change without notice; ** To license for production quantities greater than 5000 pieces for a project’s lifetime—contact Microchip.

Documentation(2)

<table>
<thead>
<tr>
<th>Document Type</th>
<th>Document Title</th>
<th>Document Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>dsPIC30F High Performance 16-bit Digital Signal Controller Family Overview</td>
<td>DS70043</td>
</tr>
<tr>
<td></td>
<td>dsPIC33F High Performance 16-bit Digital Signal Controller Family Overview</td>
<td>DS70155</td>
</tr>
<tr>
<td>Data Sheets</td>
<td>dsPIC30F/33F Programmer’s Reference Manual</td>
<td>DS70030</td>
</tr>
<tr>
<td></td>
<td>AN901 - Using the dsPIC30F for Sensorless BLD Control</td>
<td>DS00901</td>
</tr>
<tr>
<td></td>
<td>AN908 - Using the dsPIC30F for Vector Control of an AC Induction Motor</td>
<td>DS00908</td>
</tr>
<tr>
<td></td>
<td>AN957 - Sensorless BLD Motor Control Using the dsPIC30F</td>
<td>DS00957</td>
</tr>
<tr>
<td></td>
<td>AN962 - Implementing Auto Baud on dsPIC30F Devices</td>
<td>DS00962</td>
</tr>
<tr>
<td></td>
<td>AN984 - An Introduction to AC Induction Motor Control Using the dsPIC30F</td>
<td>DS00984</td>
</tr>
<tr>
<td></td>
<td>AN992 - Sensorless BLD Motor Control Using dsPIC30F2010</td>
<td>DS00992</td>
</tr>
</tbody>
</table>

(2) Note that all the latest revisions of these documents are always available from the Microchip web site.

Third Party Contact Information

<table>
<thead>
<tr>
<th>Company</th>
<th>Phone</th>
<th>E-mail</th>
<th>Web Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMX Systems, Inc.</td>
<td>+1 904 880 1840</td>
<td>cmx@cmx.com</td>
<td>www.cmx.com</td>
</tr>
<tr>
<td>Hi-TECH Software</td>
<td>+61 7 3552 777</td>
<td>hitech@htsoft.com</td>
<td>www.htsoft.com</td>
</tr>
<tr>
<td>IAR</td>
<td>+46 18 16 78 00</td>
<td>info@iar.se</td>
<td>www.iar.se</td>
</tr>
<tr>
<td>Vector Informatik GmbH</td>
<td>+49 711 80070 0</td>
<td>info@vectorinformatik.com</td>
<td>www.vectorinformatik.com</td>
</tr>
<tr>
<td>VOCAL Technologies, LTD</td>
<td>+1 716 688 4675</td>
<td>sales@vocal.com</td>
<td>www.vocal.com</td>
</tr>
</tbody>
</table>