Features

- High Input Impedance
- Low Input Capacitance
- Fast Switching Speeds
- Low On-Resistance
- Free from Secondary Breakdown
- Low Input and Output Leakage

Applications

- Normally-On Switches
- Solid-State Relays
- Converters
- Constant-Current Sources
- Power Supply Circuits
- Telecommunication Switches

General Description

The DN3525 is a low-threshold Depletion-mode (normally-on) transistor that uses an advanced vertical DMOS structure and a well-proven silicon gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally induced secondary breakdown.

Microchip’s vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance and fast switching speeds are desired.

Package Type

See Table 3-1 for pin information.
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-to-Source Breakdown Voltage</td>
<td>BVDSX</td>
<td>250</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>VGS = –5V, ID = 100 µA</td>
</tr>
<tr>
<td>Gate-to-Source Off Voltage</td>
<td>VGS(OFF)</td>
<td>–1.5</td>
<td>—</td>
<td>–3.5</td>
<td>V</td>
<td>VDS = 15V, ID = 1 mA</td>
</tr>
<tr>
<td>Change in VGS(OFF) with Temperature</td>
<td>ΔVGS(OFF)</td>
<td>—</td>
<td>—</td>
<td>–4.5</td>
<td>mV/°C</td>
<td>VDS = 15V, ID = 1 mA (Note 1)</td>
</tr>
<tr>
<td>Gate Body Leakage Current</td>
<td>IGSS</td>
<td>—</td>
<td>—</td>
<td>100 nA</td>
<td>nA</td>
<td>VGS = ±20 V, VDS = 0V</td>
</tr>
<tr>
<td>Drain-to-Source Leakage Current</td>
<td>ID(OFF)</td>
<td>—</td>
<td>—</td>
<td>1 µA</td>
<td>µA</td>
<td>VDS = Maximum rating, VGS = –5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td>VDS = 0.8 Maximum rating, VGS = –5V, TA = 125°C (Note 1)</td>
</tr>
<tr>
<td>Saturated Drain-to-Source Current</td>
<td>IDSS</td>
<td>300</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>VGS = 0V, VDS = 15V</td>
</tr>
<tr>
<td>Static Drain-to-Source On-State Resistance</td>
<td>RDS(ON)</td>
<td>—</td>
<td>—</td>
<td>6</td>
<td>Ω</td>
<td>VGS = 0V, ID = 200 mA</td>
</tr>
<tr>
<td>Change in RDS(ON) with Temperature</td>
<td>ΔRDS(ON)</td>
<td>—</td>
<td>—</td>
<td>1.1</td>
<td>%/°C</td>
<td>VGS = 0V, ID = 200 mA (Note 1)</td>
</tr>
</tbody>
</table>

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: TA = 25°C unless otherwise specified. All DC parameters are 100% tested at 25°C unless otherwise stated. Pulse test: 300 µs pulse, 2% duty cycle

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-to-Source Breakdown Voltage</td>
<td>BVDSX</td>
<td>250</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>VGS = –5V, ID = 100 µA</td>
</tr>
<tr>
<td>Gate-to-Source Off Voltage</td>
<td>VGS(OFF)</td>
<td>–1.5</td>
<td>—</td>
<td>–3.5</td>
<td>V</td>
<td>VDS = 15V, ID = 1 mA</td>
</tr>
<tr>
<td>Change in VGS(OFF) with Temperature</td>
<td>ΔVGS(OFF)</td>
<td>—</td>
<td>—</td>
<td>–4.5</td>
<td>mV/°C</td>
<td>VDS = 15V, ID = 1 mA (Note 1)</td>
</tr>
<tr>
<td>Gate Body Leakage Current</td>
<td>IGSS</td>
<td>—</td>
<td>—</td>
<td>100 nA</td>
<td>nA</td>
<td>VGS = ±20 V, VDS = 0V</td>
</tr>
<tr>
<td>Drain-to-Source Leakage Current</td>
<td>ID(OFF)</td>
<td>—</td>
<td>—</td>
<td>1 µA</td>
<td>µA</td>
<td>VDS = Maximum rating, VGS = –5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td>VDS = 0.8 Maximum rating, VGS = –5V, TA = 125°C (Note 1)</td>
</tr>
<tr>
<td>Saturated Drain-to-Source Current</td>
<td>IDSS</td>
<td>300</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>VGS = 0V, VDS = 15V</td>
</tr>
<tr>
<td>Static Drain-to-Source On-State Resistance</td>
<td>RDS(ON)</td>
<td>—</td>
<td>—</td>
<td>6</td>
<td>Ω</td>
<td>VGS = 0V, ID = 200 mA</td>
</tr>
<tr>
<td>Change in RDS(ON) with Temperature</td>
<td>ΔRDS(ON)</td>
<td>—</td>
<td>—</td>
<td>1.1</td>
<td>%/°C</td>
<td>VGS = 0V, ID = 200 mA (Note 1)</td>
</tr>
</tbody>
</table>

Note 1: Specification is obtained by characterization and is not 100% tested.
AC ELECTRICAL CHARACTERISTICS

Electrical Specifications: $T_A = 25°C$ unless otherwise specified. Specification is obtained by characterization and is not 100% tested.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Transconductance</td>
<td>G_{FS}</td>
<td>225</td>
<td>—</td>
<td>—</td>
<td>mmho</td>
<td>$V_{DS} = 10V, I_D = 150 mA$</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>C_{ISS}</td>
<td>—</td>
<td>270</td>
<td>350</td>
<td>pF</td>
<td>$V_{GS} = -5V, V_{DS} = 25V, f = 1 MHz$</td>
</tr>
<tr>
<td>Common Source Output Capacitance</td>
<td>C_{OSS}</td>
<td>—</td>
<td>20</td>
<td>60</td>
<td>pF</td>
<td>$V_{DD} = 25V, I_D = 150 mA, R_{GEN} = 25Ω$</td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>C_{RSS}</td>
<td>—</td>
<td>5</td>
<td>20</td>
<td>pF</td>
<td>$V_{GS} = 0V to -10V$</td>
</tr>
<tr>
<td>Turn-On Delay Time</td>
<td>$t_{d(ON)}$</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_r</td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Turn-Off Delay Time</td>
<td>$t_{d(OFF)}$</td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_f</td>
<td>—</td>
<td>—</td>
<td>40</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

DIODE PARAMETER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode Forward Voltage Drop</td>
<td>V_{SD}</td>
<td>—</td>
<td>—</td>
<td>1.8</td>
<td>V</td>
<td>$V_{GS} = -5V, I_{SD} = 150 mA$ (Note 1)</td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>t_{rr}</td>
<td>—</td>
<td>800</td>
<td>—</td>
<td>ns</td>
<td>$V_{GS} = -5V, I_{SD} = 150 mA$ (Note 1)</td>
</tr>
</tbody>
</table>

Note 1: Unless otherwise stated, all DC parameters are 100% tested at 25°C. Pulse test: 300 µs pulse, 2% duty cycle.

TEMPERATURE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPERATURE RANGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Ambient Temperature</td>
<td>T_A</td>
<td>−55</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_S</td>
<td>−55</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

PACKAGE THERMAL RESISTANCE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-lead SOT-89</td>
<td></td>
<td>—</td>
<td>133</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th></th>
<th>I_D (Note 1)</th>
<th></th>
<th>I_D (Pulsed)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td></td>
<td>(Continuous)</td>
<td>(mA)</td>
<td>(Pulsed)</td>
<td>(A)</td>
<td></td>
</tr>
<tr>
<td>3-lead SOT-89</td>
<td></td>
<td>360</td>
<td>1</td>
<td>1.6</td>
<td>360</td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: I_D (continuous) is limited by maximum T_J.

Note 2: Mounted on an FR4 board, 25 mm x 25 mm x 1.57 mm
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g. outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: Output Characteristics.

FIGURE 2-2: Transconductance vs. Drain Current.

FIGURE 2-3: Maximum Rated Safe Operating Area.

FIGURE 2-4: Saturation Characteristics.

FIGURE 2-5: Power Dissipation vs. Ambient Temperature.

FIGURE 2-6: Thermal Response Characteristics.
FIGURE 2-7: \(\text{BV}_{DSV} \) Variation with Temperature.

FIGURE 2-8: Transfer Characteristics.

FIGURE 2-9: Capacitance vs. Drain-to-Source Voltage.

FIGURE 2-10: On-Resistance vs. Drain Current.

FIGURE 2-11: \(V_{GS(OFF)} \) and \(R_{DS(ON)} \) with Temperature.

FIGURE 2-12: Gate Drive Dynamic Characteristics.
3.0 PIN DESCRIPTION

Table 3-1 shows the description of pins in DN3525. Refer to Package Type for the location of pins.

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gate</td>
<td>Gate</td>
</tr>
<tr>
<td>2, 4</td>
<td>Drain</td>
<td>Drain</td>
</tr>
<tr>
<td>3</td>
<td>Source</td>
<td>Source</td>
</tr>
</tbody>
</table>
4.0 FUNCTIONAL DESCRIPTION

Figure 4-1 illustrates the switching waveforms and test circuit for DN3525.

TABLE 4-1: PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>BVDSX/BVDGX (mA)</th>
<th>RDS(ON) (Maximum) (Ω)</th>
<th>IDSS (Minimum) (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>6</td>
<td>300</td>
</tr>
</tbody>
</table>
5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Legend:
- XX...X Product Code or Customer-specific information
- Y Year code (last digit of calendar year)
- YY Year code (last 2 digits of calendar year)
- WW Week code (week of January 1 is week '01')
- NNN Alphanumeric traceability code
- * This package is Pb-free. The Pb-free JEDEC designator (メディカル®) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.
3-Lead TO-243AA (SOT-89) Package Outline (N8)

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>A</th>
<th>b</th>
<th>b1</th>
<th>C</th>
<th>D</th>
<th>D1</th>
<th>E</th>
<th>E1</th>
<th>e</th>
<th>e1</th>
<th>H</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>1.40</td>
<td>0.44</td>
<td>0.36</td>
<td>0.35</td>
<td>4.40</td>
<td>1.62</td>
<td>2.29</td>
<td>2.00*</td>
<td>1.50</td>
<td>3.00</td>
<td>0.73*</td>
</tr>
<tr>
<td>NOM</td>
<td>-</td>
</tr>
<tr>
<td>MAX</td>
<td>1.60</td>
<td>0.56</td>
<td>0.48</td>
<td>0.44</td>
<td>4.60</td>
<td>1.83</td>
<td>2.60</td>
<td>2.29</td>
<td>4.25</td>
<td>1.20</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

† This dimension differs from the JEDEC drawing

Drawings not to scale.
APPENDIX A: REVISION HISTORY

Revision A (May 2018)

• Converted Supertex Doc# DSFP-DN3525 to Microchip DS20005705A
• Added a pin function table
• Changed the package marking format
• Made minor text changes throughout the document
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>XX</th>
<th>Package Options</th>
<th>Environmental</th>
<th>Media Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>DN3525</td>
<td>N-Channel Depletion-Mode Vertical DMOS FET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td>N8</td>
<td>3-lead SOT-89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td>G</td>
<td>Lead (Pb)-free/RoHS-compliant Package</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media Type</td>
<td>(blank)</td>
<td>2000/Reel for an N8 Package</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:

a) DN3525N8-G: N-Channel Depletion-Mode Vertical DMOS FET, 3-lead SOT-89, 2000/Reel
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.

- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

- Microchip is willing to work with the customer who is concerned about the integrity of their code.

- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Hello, JukeBox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntellIMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany ll GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-3117-6
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 508-387-3300
Fax: 508-387-3312

Chicago
Itasca, IL
Tel: 630-285-0087
Fax: 630-285-0088

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000
Fax: 248-848-4003

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9888-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8782-0426

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8664-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xi’an
Tel: 86-592-2386138

China - Zhuhai
Tel: 86-756-8210040

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6800-3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2308-0600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-8-5448-2100

ASIA/PACIFIC

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7289-7561

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenburg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820