Introduction

The SAM C2x family of microcontrollers (MCUs) contains a sophisticated clock distribution system designed to give maximum flexibility to the user application. The clock system allows the tuning of the performance and power consumption of the device in a dynamic manner. This achieves the best trade-off between the two for an application.

The following figure illustrates the clock management diagram for SAMC21N MCU.

Figure 1. SAMC21N Clock Distribution
Table of Contents

Introduction...1

1. Description.. 3

2. Clock Synchronization...4

3. Power and Performance Considerations.. 5

4. Configuring Clocks with MPLAB Harmony v3... 6

 4.1. Use Case Scenarios...6

5. Resources... 11

 The Microchip Website...12

 Product Change Notification Service..12

 Customer Support.. 12

 Microchip Devices Code Protection Feature..12

 Legal Notice... 12

 Trademarks.. 13

 Quality Management System...13

 Worldwide Sales and Service...14
1. **Description**

The clock system of the SAMC21N MCU consists of the following blocks:

Clock Sources
The SAMC21N MCU has several clock sources. The supported clock source modules are as follows:

- **OSCCTRL**: High-frequency clock sources.
 - XOSC – 0.4 MHz to 32 MHz External Oscillator
 - OSC48M – 48 MHz Internal Oscillator
 - FDPLL96M – 48 MHz to 96 MHz Fractional Digital Phase Locked Loop Oscillator

- **OSCK32CTRL**: Low-frequency clock sources.
 - XOSC32K – 32 kHz External Crystal Oscillator, provides both 32 kHz and 1 kHz output
 - OSC32K – 32 kHz Internal Oscillator, provides both 32 kHz and 1 kHz output
 - OSCULP32K – 32 kHz Internal Ultra Low Power Oscillator, provides both 32 kHz and 1 kHz output

- **Generic Clock Controller (GCLK)**
The GCLK provides Generic Clocks to various peripheral clock domains. The GCLK consists of nine GCLK Generators and 46 Peripheral channels. The Generic Clock Controller Input/Output (GCLK_IO) blocks act as a clock source to the GCLK generators.

 Note: GCLK_IO[x] – Generic Input/Output External Clock Signal.

 GCLK1 is the output of the GCLK generator 1, and is one of the clock sources for all the GCLK generators except the GCLK generator 1.

 GCLK Generators consist of a programmable prescaler. The programmable prescaler scales down the input frequency (from one of the Clock Sources discussed above) to a slower rate for use in a peripheral.

 The peripheral channels multiplex and gate various generator outputs to one or more peripherals within the device. This setup allows a single common generator to feed one or more peripheral channels, which can then be enabled or disabled individually as required.

- **Main Clock Controller (MCLK)**
The MCLK also known as the Synchronous Clock Controller provides the synchronous clocks (CPU, bus (AHB, APB) clocks) to the system. The main clock GCLK_MAIN to the MCLK is fed from the GCLK Generator 0 through Peripheral Channel 0. The MCLK contains clock masks that can turn on or off the user interface of peripheral clocks and bus clocks, and contains prescalers to derive low-frequency CPU clocks.
2. **Clock Synchronization**

The peripherals on the SAM C21N MCU consists of the following two clock domain interfaces:

- Synchronous interface: It is connected to the AHB/APB bus running from the synchronous clock in the Main Clock (MCLK) domain. The CPU accesses the peripheral registers through the synchronous interface.
- Asynchronous interface: It is connected to the core peripheral running from the asynchronous peripheral Generic Clock (GCLK) domain. The core peripheral runs at the asynchronous peripheral generic clock.

Communication between these clock domains must be synchronized. This mechanism is implemented in the hardware through the SYNCBUSY peripheral status register. The synchronization process takes place even if the peripheral generic clock is running from the same clock source and on the same frequency as the bus interface.

Figure 2-1. Clock Synchronization
3. **Power and Performance Considerations**

In an application, the system and peripheral clock frequencies are configured based on the power and performance requirements of the application. The power consumption of a device is directly proportional to the frequency of operation. A device running at high speeds consumes more power versus a device running at low speed.

For SAM C21n MCU, refer to the chapter “Electrical Characteristics” of the device data sheet for power and performance values.

Each GCLK generator operates independently, enabling the GCLK generators to drive different clock frequencies for different peripherals, and to drive different clock frequencies for different instances of the same peripheral. This capability of GCLK generators enables power saving, hence only the necessary clocks are generated. In power saving mode of the MCU, when a peripheral is not utilizing the peripheral clock, the GCLK generator will not source from the oscillator until the peripheral requests the clock.

As noted above, the peripherals on SAM C2x devices run on the asynchronous clock domain. These asynchronous peripheral clocks are synchronized to the system clocks (CPU, AHB/APB) when the CPU accesses the peripheral registers. The synchronization time is an important factor in the overall response time of the system.

For example, running a peripheral with a low speed has lower active power consumption. However, at the same time, the synchronization to the synchronous clock domain is dependent on the peripheral clock speed. The slower peripheral clock can give a lower response time, and more time waiting for the synchronization to complete.
4. Configuring Clocks with MPLAB Harmony v3

MPLAB® Harmony is a modular framework that provides interoperable firmware libraries for application development on 32-bit microcontrollers and microprocessors. It includes an easy to use Graphical User Interface (MPLAB Harmony Configurator) for selecting, configuring, and generating starter codes, peripheral libraries and middlewares (USB, TCP/IP, graphics and so on). The MHC provides an easy to use UI window, and a Clock Easy View window to configure the system and peripheral clocks.

For additional information on MPLAB Harmony v3 refer to: https://www.microchip.com/mplab/mplab-harmony/mplab-harmony-v3.

4.1 Use Case Scenarios

The following use case scenarios demonstrate how to use MHC clock manager, Clock Easy View window to configure the clocks.

1. To launch the Clock Easy View window, in MPLAB X IDE, select MHC and then select Tools > Clock Configuration, see figure below.

 Figure 4-1. Steps to Launch Clock Configuration

2. Click on the Clock Easy View tab.

Use Case Scenario 1

Configure the device to run at the maximum possible speed. Measure the frequency of the configured clock by routing the prescaled clock signal to a GPIO pin.

1. SAMC21N operates at 48 MHz maximum frequency. The OSC48M oscillator is configured and enabled to run the main clock at maximum frequency. The configured oscillator (OSC48M) is fed as input to the GCLK generator '0' and a suitable clock divider and masker must be selected to achieve a maximum frequency of 48 MHz. Refer to the following figure to configure the main clock.
2. Enable the GCLK generator 1 and select the oscillator OSC48M as the generator input. The divider value of a generator will be used to derive the low-frequency clocks from the GCLK generator sourced clocks. Configure the divider value as 12 to achieve a 4 MHz clock frequency at the GCLK generator 1 output. Refer to the following figure to configure GCLK IO1. Refer to the data sheet for maximum clock frequency an I/O pin can operate at.
3. The output of the GCLK Generator 1 is used to measure the frequency and accuracy of the main clock. Click on the GCLK I/O Configuration to check the configured GCLK I/O [1] clock frequency, see figure below.

Figure 4-4. GCLK I/O [1] Configuration

4. Configure the pin which maps to GCLK1 on the device. To configure clock signal GCLK1 to a pin, use the Pin Configuration option in MHC. Launch Pin Configuration in MPLAB X IDE by selecting MHC > Tools > Pin Configuration.

Use Case Scenario 2
Configure the SERCOM Peripheral Clock to run the SERCOM (as USART) peripheral.

1. Configure the main clock, as shown in "Step 1" of the Use case scenario 1.
2. By default, MHC automatically enables the peripheral clock when a peripheral is added to the project graph. Click on the Peripheral Clock Configuration button to check the specific peripheral (SERCOM) clock. The SERCOM4 clock source is selected as GLCK0, which is set to 48 MHz, see figure below.
3. The Peripheral Clock Configuration window can be used to configure the peripheral to run at a frequency different from the default frequency of 48 MHz. A different clock source can be selected. Refer to the following figure to configure the SERCOM4 peripheral clock with a 12 MHz frequency by using the GCLK2 as the source.

Figure 4-6. SERCOM Peripheral Clock Configuration with 12 MHz Clock Source

4. Configure the SERCOM (as USART) pins on the device. To configure the SERCOM (as USART) pins, use the Pin Configuration option in the MHC. Launch Pin Configuration in MPLAB X IDE by selecting `MHC > Tools > Pin Configuration`.
Use Case Scenario 3

Follow these steps to configure the RTC peripheral clock in Harmony v3 to run the RTC peripheral at low power.

1. Configure the main clock, as shown in "Step 1" of the Use Case Scenario 1.
2. On SAMC21N, some of the peripherals, such as the RTC, WDT, and EIC will run directly with the 32 kHz oscillator controller outputs (OSC32K, OSC1K, OSCULP32K, OSCULP1K(3), XOSC32K, XOSC1K).
3. Select the OSCULP1K oscillator as the RTC peripheral clock input to run the RTC at low power. The OSCULP1K oscillator will provide 1 KHz clock frequency as the oscillator output by running at low power. Refer to the following figure to configure the RTC peripheral clock.

Figure 4-7. RTC Peripheral Clock Configuration

4. The RTC peripheral can be used for different applications, for example, the RTC used as a calendar requires an accurate clock source. When the RTC is used as a calendar, it uses an external accurate clock source. The external clock sources (XOSC1K or XOSC32K) can be configured through MHC.

Note:

1. Advanced clock configuration options, such as RUN in STANDBY, ONDEMAND clock, DFLL COARSE, FINE and so on can be configured in the Clock Tree View window (Refer to the MHC Project graph > System > Clock).
2. In these use case scenarios above, the MHC UI screen shots are captured using MPLAB Harmony 3 Configurator version 2.0.5.2 and repository Chip Support Package (CSP), version 3.4.0.
3. OSCULP1K is an Oscillator name used in MPLAB Harmony 3 configurator for 1.024 kHz output from 32 kHz internal Oscillator.
5. **Resources**

For additional information on the clock system and low-power features, refer to the following documents:

For other relevant information, refer to the Microchip web site.

- https://www.microchip.com/
The Microchip Website

Microchip provides online support via our website at http://www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to http://www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with
your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit http://www.microchip.com/quality.
Worldwide Sales and Service

<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Office</td>
<td>Australia - Sydney</td>
<td>India - Bangalore</td>
<td>Austria - Wels</td>
</tr>
<tr>
<td>2355 West Chandler Blvd.</td>
<td>Tel: 61-2-9868-6733</td>
<td>Tel: 91-80-3090-4444</td>
<td>Tel: 43-7242-2244-39</td>
</tr>
<tr>
<td>Chandler, AZ 85224-6199</td>
<td>Tel: 86-10-8569-7000</td>
<td>Tel: 91-11-4160-8631</td>
<td>Fax: 43-7242-2244-393</td>
</tr>
<tr>
<td>Tel: 480-792-7200</td>
<td>Tel: 86-28-8665-5511</td>
<td>Tel: 91-20-4121-0141</td>
<td>Denmark - Copenhagen</td>
</tr>
<tr>
<td>Fax: 480-792-7277</td>
<td>Tel: 86-23-8980-9588</td>
<td>Japan - Osaka</td>
<td>Tel: 45-4450-2828</td>
</tr>
<tr>
<td>Technical Support:</td>
<td>Tel: 86-769-8702-9880</td>
<td>Japan - Tokyo</td>
<td>Fax: 45-4485-2829</td>
</tr>
<tr>
<td>http://www.microchip.com/support</td>
<td>China - Chengdu</td>
<td>Tel: 81-3-6880-3770</td>
<td>Finland - Espoo</td>
</tr>
<tr>
<td>Web Address:</td>
<td>Tel: 86-20-8755-8029</td>
<td>Korea - Daegu</td>
<td>Tel: 358-9-4520-820</td>
</tr>
<tr>
<td>http://www.microchip.com</td>
<td>China - Hangzhou</td>
<td>Korea - Seoul</td>
<td>France - Paris</td>
</tr>
<tr>
<td>Atlanta</td>
<td>Tel: 86-671-8792-8115</td>
<td>Tel: 82-2-554-7200</td>
<td>Tel: 33-1-69-53-63-20</td>
</tr>
<tr>
<td>Duluth, GA</td>
<td>Tel: 86-25-8473-2460</td>
<td>Malaysia - Kuala Lumpur</td>
<td>Tel: 33-1-69-30-90-79</td>
</tr>
<tr>
<td>Tel: 678-957-9614</td>
<td>China - Nanjing</td>
<td>Malaysia - Penang</td>
<td>Germany - Garching</td>
</tr>
<tr>
<td>Fax: 678-957-1455</td>
<td>Tel: 86-21-3326-8000</td>
<td>Tel: 60-4-227-8870</td>
<td>Tel: 49-8931-9700</td>
</tr>
<tr>
<td>Austin, TX</td>
<td>China - Hong Kong SAR</td>
<td>Philippines - Manila</td>
<td>Germany - Haan</td>
</tr>
<tr>
<td>Tel: 512-257-3370</td>
<td>Tel: 852-2943-5100</td>
<td>Tel: 63-2-634-9065</td>
<td>Tel: 49-2129-3766400</td>
</tr>
<tr>
<td>Boston</td>
<td>China - Nanjing</td>
<td>Singapore</td>
<td>Germany - Heilbronn</td>
</tr>
<tr>
<td>Westbrook, MA</td>
<td>Tel: 86-26-2334-2829</td>
<td>Tel: 65-6334-8870</td>
<td>Tel: 49-7131-72400</td>
</tr>
<tr>
<td>Tel: 774-760-0087</td>
<td>China - Shenzhen</td>
<td>Taiwan - Hsin Chu</td>
<td>Germany - Karlsruhe</td>
</tr>
<tr>
<td>Fax: 774-760-0088</td>
<td>Tel: 86-766-8864-2200</td>
<td>Tel: 886-3-577-8366</td>
<td>Tel: 49-721-625370</td>
</tr>
<tr>
<td>Chicago</td>
<td>China - Suzhou</td>
<td>Taiwan - Kaohsiung</td>
<td>Germany - Munich</td>
</tr>
<tr>
<td>Itasca, IL</td>
<td>Tel: 86-186-6233-1526</td>
<td>Tel: 886-7-213-7830</td>
<td>Tel: 49-89-627-144-0</td>
</tr>
<tr>
<td>Tel: 630-285-0071</td>
<td>China - Wuhan</td>
<td>Taiwan - Taipei</td>
<td>Fax: 49-89-627-144-44</td>
</tr>
<tr>
<td>Fax: 630-285-0075</td>
<td>Tel: 86-28-9833-7252</td>
<td>Tel: 886-2-2508-8600</td>
<td>Germany - Rosenheim</td>
</tr>
<tr>
<td>Dallas</td>
<td>China - Xian</td>
<td>Thailand - Bangkok</td>
<td>Tel: 49-8031-354-560</td>
</tr>
<tr>
<td>Addison, TX</td>
<td>Tel: 86-27-5980-5300</td>
<td>Tel: 66-2-694-1351</td>
<td>Israel - Ra’anana</td>
</tr>
<tr>
<td>Tel: 972-818-7423</td>
<td>China - Zhuhai</td>
<td>Vietnam - Ho Chi Minh</td>
<td>Tel: 972-9-744-7705</td>
</tr>
<tr>
<td>Fax: 972-818-2924</td>
<td>Tel: 86-766-3210040</td>
<td>Tel: 84-28-5448-2100</td>
<td>Italy - Milan</td>
</tr>
<tr>
<td>Detroit</td>
<td></td>
<td></td>
<td>Tel: 39-0331-742611</td>
</tr>
<tr>
<td>Novi, MI</td>
<td></td>
<td></td>
<td>Fax: 39-0331-466781</td>
</tr>
<tr>
<td>Tel: 248-848-4000</td>
<td></td>
<td></td>
<td>Italy - Padova</td>
</tr>
<tr>
<td>Houston, TX</td>
<td></td>
<td></td>
<td>Tel: 39-049-7625286</td>
</tr>
<tr>
<td>Tel: 281-894-5983</td>
<td></td>
<td></td>
<td>Netherlands - Drunen</td>
</tr>
<tr>
<td>Indianapolis</td>
<td></td>
<td></td>
<td>Tel: 31-416-690399</td>
</tr>
<tr>
<td>Noblesville, IN</td>
<td></td>
<td></td>
<td>Fax: 31-416-690340</td>
</tr>
<tr>
<td>Tel: 317-773-8323</td>
<td></td>
<td></td>
<td>Norway - Trondheim</td>
</tr>
<tr>
<td>Fax: 317-773-5453</td>
<td></td>
<td></td>
<td>Tel: 47-72864388</td>
</tr>
<tr>
<td>Tel: 317-536-2380</td>
<td></td>
<td></td>
<td>Poland - Warsaw</td>
</tr>
<tr>
<td>Los Angeles</td>
<td></td>
<td></td>
<td>Tel: 48-22-3325737</td>
</tr>
<tr>
<td>Mission Viejo, CA</td>
<td></td>
<td></td>
<td>Romania - Bucharest</td>
</tr>
<tr>
<td>Tel: 949-462-9523</td>
<td></td>
<td></td>
<td>Tel: 40-21-407-87-50</td>
</tr>
<tr>
<td>Fax: 949-462-9608</td>
<td></td>
<td></td>
<td>Spain - Madrid</td>
</tr>
<tr>
<td>Tel: 951-273-7800</td>
<td></td>
<td></td>
<td>Tel: 34-91-708-08-90</td>
</tr>
<tr>
<td>Raleigh, NC</td>
<td></td>
<td></td>
<td>Fax: 34-91-708-08-91</td>
</tr>
<tr>
<td>Tel: 919-844-7510</td>
<td></td>
<td></td>
<td>Sweden - Gothenberg</td>
</tr>
<tr>
<td>New York, NY</td>
<td></td>
<td></td>
<td>Tel: 46-31-704-60-40</td>
</tr>
<tr>
<td>Tel: 631-435-6000</td>
<td></td>
<td></td>
<td>Sweden - Stockholm</td>
</tr>
<tr>
<td>San Jose, CA</td>
<td></td>
<td></td>
<td>Tel: 46-8-5090-4654</td>
</tr>
<tr>
<td>Tel: 408-735-9110</td>
<td></td>
<td></td>
<td>UK - Wokingham</td>
</tr>
<tr>
<td>Tel: 408-436-4270</td>
<td></td>
<td></td>
<td>Tel: 44-118-921-5800</td>
</tr>
<tr>
<td>Canada - Toronto</td>
<td></td>
<td></td>
<td>Fax: 44-118-921-5820</td>
</tr>
</tbody>
</table>