Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, mxStylus, maxTouch, MedialLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated. All Rights Reserved.

ISBN: 978-1-5224-5712-1

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Table of Contents

Preface ... 5
 Introduction ... 5
 Document Layout ... 5
 Conventions Used in this Guide ... 6
 Recommended Reading .. 7
 The Microchip Website ... 7
 Customer Support .. 7
 Document Revision History .. 7

Chapter 1. Product Overview
 1.1 Introduction ... 9
 1.2 Short Overview ... 9
 1.3 Key Devices Main Features ... 10
 1.4 Reference Design Kit Contents ... 11

Chapter 2. Installation and Operation
 2.1 Overview .. 13
 2.2 Getting Started ... 13
 2.3 Setup/Configuration .. 15

Appendix A. Schematics and Layouts
 A.1 Introduction ... 17
 A.2 LED Driver Board – Schematic .. 18
 A.3 INT00923 Board – Schematic .. 19
 A.4 LED Driver Board – Top Silk .. 20
 A.5 LED Driver Board – Top Copper and Silk ... 20
 A.6 LED Driver Board – Top Copper ... 21
 A.7 LED Driver Board – Bottom Copper .. 21
 A.8 LED Driver Board – Bottom Copper & Silk ... 22
 A.9 LED Driver Board – Bottom Silk .. 22
 A.10 INT00923 Board – Top Silk ... 23
 A.11 INT00923 Board – Top Copper and Silk ... 23
 A.12 INT00923 Board – Top Copper ... 24
 A.13 INT00923 Board – Bottom Copper .. 24
 A.14 INT00923 Board – Bottom Copper & Silk ... 25
 A.15 INT00923 Board – Bottom Silk ... 25

Appendix B. Bill of Materials (BOM) ... 27

Appendix C. Waveforms
 C.1 Bluetooth White-Color-Mix LED Driver Board Test Waveform Examples 31

Worldwide Sales and Service .. 33

© 2020 Microchip Technology Inc.
INTRODUCTION

This chapter contains general information that will be useful to know before using the Bluetooth White-Color-Mix LED Driver Reference Design. Items discussed in this chapter include:

- Document Layout
- Conventions Used in this Guide
- Recommended Reading
- The Microchip Website
- Customer Support
- Document Revision History

DOCUMENT LAYOUT

This document describes how to use the Bluetooth White-Color-Mix LED Driver Reference Design as a development tool to emulate and debug firmware on a target board, as well as how to program devices. The document is organized as follows:

- **Chapter 1. “Product Overview”** – Provides important information about the Bluetooth White-Color-Mix LED Driver Reference Design and shows the hardware details of its components.
- **Chapter 2. “Installation and Operation”** – Includes instructions on how to use, power and test the Bluetooth White-Color-Mix LED Driver Reference Design.
- **Appendix A. “Schematics and Layouts”** – Shows the schematic and layout diagrams for the Bluetooth White-Color-Mix LED Driver Reference Design.
- **Appendix B. “Bill of Materials (BOM)”** – Lists the parts used to build the Bluetooth White-Color-Mix LED Driver Reference Design.
- **Appendix C. “Waveforms”** – Shows sample output waveforms generated by the Bluetooth White-Color-Mix LED Driver Reference Design.
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

<table>
<thead>
<tr>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial font:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italic characters</td>
<td>Referenced books</td>
<td>MPLAB® IDE User’s Guide</td>
</tr>
<tr>
<td>Emphasized text</td>
<td></td>
<td>is the only compiler...</td>
</tr>
<tr>
<td>Initial caps</td>
<td>A window</td>
<td>the Output window</td>
</tr>
<tr>
<td></td>
<td>A dialog</td>
<td>the Settings dialog</td>
</tr>
<tr>
<td></td>
<td>A menu selection</td>
<td>select Enable Programmer</td>
</tr>
<tr>
<td>Quotes</td>
<td>A field name in a window or dialog</td>
<td>"Save project before build"</td>
</tr>
<tr>
<td>Underlined, italic text with right angle bracket</td>
<td>A menu path</td>
<td>File></td>
</tr>
<tr>
<td>Bold characters</td>
<td>A dialog button</td>
<td>Click OK</td>
</tr>
<tr>
<td></td>
<td>A tab</td>
<td>Click the Power tab</td>
</tr>
<tr>
<td>N’Rnnnn</td>
<td>A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.</td>
<td>4’b0010, 2’hF1</td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
<td>A key on the keyboard</td>
<td>Press <Enter>, <F1></td>
</tr>
<tr>
<td>Courier New font:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Courier New</td>
<td>Sample source code</td>
<td>#define START</td>
</tr>
<tr>
<td></td>
<td>File names</td>
<td>autoexec.bat</td>
</tr>
<tr>
<td></td>
<td>File paths</td>
<td>c:\mcc18\h</td>
</tr>
<tr>
<td></td>
<td>Keywords</td>
<td>_asm, _endasm, static</td>
</tr>
<tr>
<td></td>
<td>Command-line options</td>
<td>-Opa+, -Opa-</td>
</tr>
<tr>
<td></td>
<td>Bit values</td>
<td>0, 1</td>
</tr>
<tr>
<td></td>
<td>Constants</td>
<td>0xFF, ‘A’</td>
</tr>
<tr>
<td></td>
<td>A variable argument</td>
<td>file.o, where file can be any valid filename</td>
</tr>
<tr>
<td>Square brackets []</td>
<td>Optional arguments</td>
<td>mcc18 [options] file [options]</td>
</tr>
<tr>
<td>Curly brackets and pipe character: { }</td>
<td>Choice of mutually exclusive arguments; an OR selection</td>
<td>*errorlevel {0</td>
</tr>
<tr>
<td>Ellipses...</td>
<td>Replaces repeated text</td>
<td>var_name [, var_name...]</td>
</tr>
<tr>
<td></td>
<td>Represents code supplied by user</td>
<td>void main (void)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{ ... }</td>
</tr>
</tbody>
</table>
RECOMMENDED READING

This user's guide describes how to use the Bluetooth White-Color-Mix LED Driver Reference Design. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources:

- HV9961 Data Sheet – “LED Driver with Average-Current Mode Constant-Current Control” (DS20005588)
- PIC16F15313 Data Sheet – “Full-Featured 8/14-Pin Microcontrollers” (DS40001897)
- RN4871 Data Sheet – “Bluetooth® Low Energy Module” (DS50002489)
- DN2470 Data Sheet – “N-Channel, Depletion-Mode, Vertical DMOS FET” (DS20005410)

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at:

http://www.microchip.com/support

DOCUMENT REVISION HISTORY

Revision A (March 2020)

- Initial release of this document.
Chapter 1. Product Overview

1.1 INTRODUCTION

This chapter provides an overview of the Bluetooth White-Color-Mix LED Driver Reference Design and covers the following topics:

- Short Overview
- Key Devices Main Features
- Reference Design Kit Contents

1.2 SHORT OVERVIEW

The Bluetooth White-Color-Mix LED Driver Reference Design is a Total System Solution (TSS) that demonstrates how to drive two different temperature color LED strings and how to control the desired color through a Bluetooth communication interface.

The important features of the Bluetooth White-Color-Mix LED Driver Reference Design include:

- The reference design combines a basic buck LED driver (HV9961) with an 8-bit PIC16F15313 microcontroller, which communicate through UART with the BLE module RN4871 to create a Microchip Intelligent LED Lighting TSS Solution.

- The microcontroller and the BLE module are supplied directly from the 120 VAC 60 Hz or 230 VAC 50 Hz, by means of a bridge rectifier and a Depletion Field-Effect Transistor (DN2470), followed by a usual 3V3 Low-Dropout (LDO) regulator MCP1703. The Bluetooth White-Color-Mix LED Driver can be supplied from a wide input voltage range, from 50 to 265VAC.

- The Bluetooth White-Color-Mix LED Driver offers an implementation of a passive Power Factor Correction (PFC). It provides a PFC of at least 0.9 at 120 VAC and 0.85 at 230 VAC.

- The PIC16F15313 microcontroller receives the data from the Bluetooth module...
and controls the color Temperature and the intensity of the LED load by means of a 2 PWM output and two auxiliary FETs, according to the values which were set by the user in the mobile Android application.

- At the same time, the microcontroller performs a memory function by retaining the last set values in the flash memory to be used as default values at power on.
- The Bluetooth White-Color-Mix LED Driver uses the RN4871 Bluetooth Low Energy (BLE) module which integrates Bluetooth 4.2 baseband controller, on-board Bluetooth stack, digital and analog I/O, and RF power amplifier into one solution.
- Bluetooth low energy takes a different direction. Instead of increasing the data rates available, it has been optimized for ultra-low power consumption.

1.3 KEY DEVICES MAIN FEATURES

1.3.1 HV9961 LED Driver - Average Current Mode Control

- Fast Average Current Control
- Programmable Constant Off-Time Switching
- Linear Dimming Input
- PWM Dimming Input
- Operating IQ = 0.5 µA
- LED Current Accuracy +/-3%
- Input Supply: 8V - 450V
- Output Short Circuit Protection (SCP) with Skip Mode
- Ambient Operating Temperature: -40°C to +125°C
- Package: 8-lead SOIC, 16-lead SOIC

![HV9961 Typical Application Circuit.](image)

1.3.2 RN4871 - Bluetooth Low Energy Module

- Compact Form Factor, Surface Mount, 12 mm x 22 mm
- Bluetooth 5, FCC Certified
- 2.5x Throughput Improvement vs. Bluetooth 4.1
- Completely Integrated Bluetooth 4.2 Software Stack
- Increased Privacy Features
- Remote Configuration Capability
- 1.9V~3.6V Operating Range
- UART/ I2C/ SPI Interface Supported
- ASCII Command Interface API over UART
- Scripting Engine for Hostless Operation
- ISM Band 2.402 to 2.480 GHz Operation
• Excellent RX Sensitivity: -90 dBm, TX Power: 0 dBm
• Antenna: Ceramic Chip Antenna/External Antenna

1.3.3 PIC16F15313 8-Bit Microcontroller
• Enhanced Mid-Range Core with 49 Instruction, 16 Stack Levels
• Flash Program Memory with Self-read/write Capability
• eXtreme Low Power (XLP)
• IDLE and DOZE Low Power Modes
• Peripheral Module Disable (PMD)
• Peripheral Pin Select (PPS)
• 4x 10-bit PWMs
• 5-Channel 10-bit ADC with Voltage Reference
• 5-bit Digital to Analog Converter (DAC)
• Temperature Range (°C): -40 to 125
• Operating Voltage Range (V): 1.8 to 5.5
• Package: 8-PIN PDIP, SOIC, MSOP

1.3.4 DN2470 - 700V, N-Channel, Depletion Mode, Vertical DMOS FET
• High D-S Breakdown Voltage
• High Input Impedance
• Low Input Capacitance
• Fast Switching Speeds
• Low On-Resistance
• Free from Secondary Breakdown
• Low Input and Output Leakage
• Package: TO-252 DPAK

1.4 REFERENCE DESIGN KIT CONTENTS
The Bluetooth White-Color-Mix LED Driver Reference Design kit includes:
• LED Driver Board ARD00922
• LED Load Board INT00923
• Important Information Sheet
Chapter 2. Installation and Operation

2.1 OVERVIEW

The following sections describe how to use the Bluetooth White-Color-Mix LED Driver Board.

2.2 GETTING STARTED

The Bluetooth White-Color-Mix LED Driver Board (ARD00922) is fully assembled and tested to evaluate and demonstrate its functionality connected to the LED Load Board (INT00923), which is provided.

2.2.1 Powering the Bluetooth White-Color-Mix LED Driver Board

The board is connected directly to 230 VAC. A variable AC power supply is needed for testing and evaluation in the laboratory. The power supply requires an output capability of at least 1A and a voltage range of 80 to 265 VAC. This can be obtained from an autotransformer supplied from the mains or an electronic AC/AC power supply (for example, Chroma ATE Inc.’s 61500 series).

The output of the driver can supply a voltage around 30V and an output current of maximum 400 mA.

2.2.2 The LED Load (INT00923)

- The LED Load is included in the kit by Microchip Technology. For long-term operation, it is necessary to use a heatsink, which is not provided. As a suggestion, a proper heatsink would be a circular pin-fin heatsink produced by MechaTronix LED Coolers, manufacturer code LPF60A30-5-B.
- The LED Load contains 20 White LEDs distributed into two interlaced strings of 10 LEDs each, in parallel. Every string has a different color temperature, such as 2700K and 6500K.
• The rated voltage/current of the load is 30V/275 mA.
• The connection to the driver is made by a 4-wire flat cable.

The Bluetooth White-Color-Mix LED Driver Board (ARD00922) can vary the output voltage and current of the INT00923 LED load by 2 PWM outputs of the PIC16F15313 microcontroller, which controls the current for the two LED strings of the load. The PIC® controller receives the data from the Bluetooth module and controls the temperature color and the brightness of the LED load according to the values set by the user in the mobile application.

On Power Off, the microcontroller will retain the last set values in flash memory which will be used as default values at Power On.

2.2.3 Mobile Application

• The mobile application is used to connect to the Bluetooth White-Color-mix LED Driver Board (ARD00922) through the Bluetooth protocol.
• It offers two slide bars used to vary the Brightness and Color Temperature of the LED Load.
• At the same time, the application offers two buttons used to switch the light ON/OFF and one button to trigger a demonstrative function.
• The button Flip Color is used to accommodate the proper sequence of the LEDs as populated on the LED Load.

FIGURE 2-3: First Window of the Android Application.
2.3 SETUP/CONFIGURATION

2.3.1 Procedure for Testing the LED Driver - LED Load Assembly

1. Connect the supply (230 VAC) as shown in Test Configuration Set-Up, at the input of the driver board J2 (the frequency of the power supply can be 50 Hz or 60 Hz). The maximum accepted line voltage is 265 VAC.

2. With the power supply OFF, connect the J1 connector from the driver board (ARD00922) with the J1 connector from the LED Load, INT00923, by means of the 4-wire ribbon cable. Make sure to connect the ribbon cable in the right position regarding its one-way connection key.

3. Use a light filter (color plexiglass) to dim the light and protect your eyes before checking that all the LEDs are working (lit).

4. Turn on the power supply for a few seconds (maximum 1 minute, as no heatsink is installed on the LED Load). For longer term operation, you should attach the LED Load on a proper heatsink.

5. On an Android device, install the Bluetooth application downloaded from the Microchip site. Enable “installation by unknown sources” on your device. After installation, launch the application and enable the Bluetooth and the location for the device.

6. Search for the device named “BLE” and select it. If the connection was successful, the LED D6 will blink twice periodically.

7. Check if the intensity of the light can be changed by moving the cursor of the Brightness bar or the Color Temperature by changing the Color Temperature bar in the Android application, at the first window (Figure 2-3).
FIGURE 2-6: LED Driver and LED Load - Physical Assembly.
Appendix A. Schematics and Layouts

A.1 INTRODUCTION

This appendix contains the following schematics and layouts for the LED Driver Board (ARM00922) and INT00923 Board (INT00923):

- LED Driver Board – Schematic
- INT00923 Board – Schematic
- LED Driver Board – Top Silk
- LED Driver Board – Top Copper and Silk
- LED Driver Board – Top Copper
- LED Driver Board – Bottom Copper
- LED Driver Board – Bottom Copper and Silk
- LED Driver Board – Bottom Silk
- INT00923 Board – Top Silk
- INT00923 Board – Top Copper and Silk
- INT00923 Board – Top Copper
- INT00923 Board – Bottom Copper
- INT00923 Board – Bottom Copper and Silk
- INT00923 Board – Bottom Silk
A.2 LED DRIVER BOARD – SCHEMATIC
A.4 LED DRIVER BOARD – TOP SILK

A.5 LED DRIVER BOARD – TOP COPPER AND SILK
A.6 LED DRIVER BOARD – TOP COPPER

A.7 LED DRIVER BOARD – BOTTOM COPPER
A.10 INT00923 BOARD – TOP SILK

A.11 INT00923 BOARD – TOP COPPER AND SILK
A.12 INT00923 BOARD – TOP COPPER

A.13 INT00923 BOARD – BOTTOM COPPER
A.14 INT00923 BOARD – BOTTOM COPPER AND SILK

A.15 INT00923 BOARD – BOTTOM SILK
Appendix B. Bill of Materials (BOM)

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
<td>Capacitor, ceramic, 1 µF, 10V, 10%, X7R, SMD, 0603</td>
<td>Taiyo Yuden Co., Ltd.</td>
<td>CELMK107B7105KA-T</td>
</tr>
<tr>
<td>2</td>
<td>C2, C5</td>
<td>Capacitor, aluminum, 100 µF, 200V, 20%, RAD, P7.5D16H20</td>
<td>United Chemi-Con</td>
<td>EKXG201ELL101ML20S</td>
</tr>
<tr>
<td>2</td>
<td>C3, C8</td>
<td>Capacitor, film, 0.1 µF, 400V, 10%, RAD, P10L11.5W4H6.9</td>
<td>TDK Electronics (previously EPCOS)</td>
<td>B32561J6104K</td>
</tr>
<tr>
<td>1</td>
<td>C4</td>
<td>Capacitor, ceramic, 100 pF, 50V, 5%, C0G, SMD, 0805</td>
<td>Wurth Electronik</td>
<td>885012007057</td>
</tr>
<tr>
<td>1</td>
<td>C6</td>
<td>Capacitor, ceramic, 4.7 µF, 10V, 20%, X7R, SMD, 0805</td>
<td>TDK Corporation</td>
<td>C2012X7R1A475M125AC</td>
</tr>
<tr>
<td>4</td>
<td>C7, C12, C15, C20</td>
<td>Capacitor, ceramic, 0.1 µF, 16V, 10%, X7R, SMD, 0805</td>
<td>Samsung</td>
<td>CL10B104KO8NNNC</td>
</tr>
<tr>
<td>2</td>
<td>C9, C10</td>
<td>Capacitor, ceramic, 18 pF, 50V, 5%, NPO, SMD, 0805</td>
<td>Yageo Corporation</td>
<td>CC0805JRNPO9BN180</td>
</tr>
<tr>
<td>1</td>
<td>C11</td>
<td>Capacitor, ceramic, 10 µF, 10V, 10%, X5R, SMD, 0805</td>
<td>Taiyo Yuden Co., Ltd.</td>
<td>LMK212BJ106KG-T</td>
</tr>
<tr>
<td>3</td>
<td>C13, C14, C16</td>
<td>Capacitor, ceramic, 1 µF, 16V, 20%, Y5V, SMD, 0603</td>
<td>Yageo Corporation</td>
<td>CC0603ZRY5V7BB105</td>
</tr>
<tr>
<td>1</td>
<td>C17</td>
<td>Capacitor, ceramic, 0.47 µF, 10V, 10%, X5R, SMD, 0603</td>
<td>KEMET</td>
<td>C0603C474K8PACUT</td>
</tr>
<tr>
<td>1</td>
<td>C19</td>
<td>Capacitor, aluminum, 47 µF, 63V, Through Hole</td>
<td>Wurth Electronik</td>
<td>860080774008</td>
</tr>
<tr>
<td>1</td>
<td>CBL1</td>
<td>Mechanical, hardware, cable, Picoflex, IDT to IDT, 4-Cond., 250 mm</td>
<td>Molex®</td>
<td>92315-0425</td>
</tr>
<tr>
<td>4</td>
<td>D1, D2, D3, D5</td>
<td>Diode, rectifier, STTH1L06A, 1.3V, 1A, 600V, SMD, SMA</td>
<td>STMicroelectronics</td>
<td>STTH1L06A</td>
</tr>
<tr>
<td>1</td>
<td>D4</td>
<td>Diode, rectifier, BRG, MB6S, 1V, 0.5A, 600V, SMD, SOIC-4</td>
<td>Sensitron Semiconductor</td>
<td>MB6S</td>
</tr>
<tr>
<td>1</td>
<td>D6</td>
<td>Diode, LED, Blue, 2.8V, 20 mA, 15 mcd, clear, SMD, 0603</td>
<td>Vishay Lite-On</td>
<td>LTST-C193TBKT-5A</td>
</tr>
<tr>
<td>0</td>
<td>D7</td>
<td>Diode, LED, green, 2.05V, 10 mA, clear, SMD, 0603 - DO NOT POPULATE</td>
<td>Panasonic SSG</td>
<td>LNJ326W83RA</td>
</tr>
<tr>
<td>1</td>
<td>D8</td>
<td>Diode, Schottky, B0520WS, 430 mV, 500 mA, 20V, SOD-323</td>
<td>Diodes Incorporated®</td>
<td>B0520WS-7-F</td>
</tr>
<tr>
<td>1</td>
<td>F1</td>
<td>Resistor, fuse, 2A, 300 VAC slow radial, Through Hole, P5.08D8.5H8</td>
<td>Littelfuse Wickmann</td>
<td>38312000000</td>
</tr>
<tr>
<td>1</td>
<td>J1</td>
<td>Connector, header-1.27, male, 1x4, tin, SMD, vertical</td>
<td>Molex®</td>
<td>90814-0804</td>
</tr>
<tr>
<td>1</td>
<td>J2</td>
<td>Connector, terminal, 5.08mm, 1x2, female, 16-22AWG, 12A, Through Hole, R/A</td>
<td>On-Shore Technology, Inc.</td>
<td>OSTHD020080</td>
</tr>
</tbody>
</table>

Note: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.
<table>
<thead>
<tr>
<th>Qty.</th>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J3</td>
<td>Connector, USB2.0, Micro-B, female, Through Hole/SMD, R/A</td>
<td>Amphenol Corporation</td>
<td>10118194-0001LF</td>
</tr>
<tr>
<td>1</td>
<td>J5</td>
<td>Connector, header-2.54, male, 1x6, gold, 5.84MH, Through Hole, R/A</td>
<td>Wurth Electronik</td>
<td>61300611021</td>
</tr>
<tr>
<td>1</td>
<td>J7</td>
<td>Connector, header-2.54, male, 1x2, gold, 5.84MH, Through Hole, vertical</td>
<td>Multicomp Inc.</td>
<td>SPC20481</td>
</tr>
<tr>
<td>1</td>
<td>L1</td>
<td>Inductor, 6800 μH, 380 mA, 10%, SMD, L12.3W12.3H10, AEC-Q200</td>
<td>Coilcraft</td>
<td>MSS1210-685KEB</td>
</tr>
<tr>
<td>2</td>
<td>M2, M3</td>
<td>Transistor, FET, N-Channel, TN2510N8-G, 100V, 730 mA, 1.6W, SOT-89</td>
<td>Microchip Technology Inc.</td>
<td>TN2510N8-G</td>
</tr>
<tr>
<td>1</td>
<td>MOV1</td>
<td>Resistor, varistor, MO, 275V, 43J, disc, 10 mm</td>
<td>TDK Electronics (previously EPCOS)</td>
<td>B72210S0271K151</td>
</tr>
<tr>
<td>1</td>
<td>NTC1</td>
<td>Resistor, thermistor, NTC, 200R, 0.5A, 20%, RAD, P7.5L11W5.5</td>
<td>Canadian Thermostats & Control Devices Ltd.</td>
<td>MF72-200D9</td>
</tr>
<tr>
<td>1</td>
<td>PCB1</td>
<td>Printed Circuit Board</td>
<td>Microchip Technology Inc.</td>
<td>04-10817-R2.2</td>
</tr>
<tr>
<td>1</td>
<td>Q1</td>
<td>Transistor, FET, N-Chan., IPD50R500CEAUMA1, 550V, 7.6A, 57W TO-252-3</td>
<td>Infineon Technologies AG</td>
<td>IPD50R500CEAUMA1</td>
</tr>
<tr>
<td>1</td>
<td>Q2</td>
<td>Transistor, FET, N-Chan., DN2470K4-G, 700V, 0.17A, 2.5W, TO-252-3</td>
<td>Microchip Technology Inc.</td>
<td>DN2470K4-G</td>
</tr>
<tr>
<td>4</td>
<td>R1, R2, R5, R6</td>
<td>Resistor, TKF, 15k, 1%, 1/8W, SMD, 0805</td>
<td>Yageo Corporation</td>
<td>RC0805FR-0715KL</td>
</tr>
<tr>
<td>1</td>
<td>R3</td>
<td>Resistor, CF, 18R, 2%, 1W, SMD, 0207</td>
<td>Vishay Bayschlag</td>
<td>CMB02070X1809GB200</td>
</tr>
<tr>
<td>2</td>
<td>R4, R22</td>
<td>Resistor, TKF, 4.7k, 5%, 1/10W, SMD, 0603</td>
<td>Panasonic</td>
<td>ERJ-3GYJ472V</td>
</tr>
<tr>
<td>1</td>
<td>R7</td>
<td>Resistor, TKF, 4.7k, 1%, 1/16W, SMD, 0603</td>
<td>Multicomp Inc.</td>
<td>MC0063W060314K7</td>
</tr>
<tr>
<td>1</td>
<td>R8</td>
<td>Resistor, TKF, 100k, 1%, 1/8W, SMD 0805</td>
<td>Vishay Dale</td>
<td>CRCW0805100KFKEC</td>
</tr>
<tr>
<td>1</td>
<td>R9</td>
<td>Resistor, TKF, 100k, 1%, 1/10W, SMD, 0603</td>
<td>TE Connectivity</td>
<td>1622827-1</td>
</tr>
<tr>
<td>1</td>
<td>R10</td>
<td>Resistor, TKF, 1k, 1%, 1/10W, SMD, 0603</td>
<td>Yageo Corporation</td>
<td>RC0603FR-071KL</td>
</tr>
<tr>
<td>1</td>
<td>R11</td>
<td>Resistor, TKF, 100R, 1%, 1/4W, SMD, 1206</td>
<td>Yageo Corporation</td>
<td>RC1206FR-07100RL</td>
</tr>
<tr>
<td>2</td>
<td>R12, R13</td>
<td>Resistor, TKF, 2R, 1%, 1/8W, SMD, 0805</td>
<td>Yageo Corporation</td>
<td>RC0805FR-072RL</td>
</tr>
<tr>
<td>1</td>
<td>R14</td>
<td>Resistor, TKF, 390k, 1%, 1/10W, SMD, 0603</td>
<td>Panasonic</td>
<td>ERJ-3EFJ3903V</td>
</tr>
<tr>
<td>1</td>
<td>R15</td>
<td>Resistor, TKF, 12k, 1%, 1/10W, SMD, 0603</td>
<td>Yageo Corporation</td>
<td>RC0603FR-0712KL</td>
</tr>
<tr>
<td>2</td>
<td>R16, R17</td>
<td>Resistor, TKF, 2.1k, 1%, 1/10W, SMD, 0603</td>
<td>Panasonic</td>
<td>ERJ-3EFJ2101V</td>
</tr>
<tr>
<td>0</td>
<td>R18</td>
<td>Resistor, TKF, 12k, 1%, 1/10W, SMD, 0603</td>
<td>Yageo Corporation</td>
<td>RC0603FR-0712KL</td>
</tr>
<tr>
<td>1</td>
<td>R19</td>
<td>Resistor, TKF, 27k, 1%, 1/10W, SMD, 0603</td>
<td>Yageo Corporation</td>
<td>RC0603FR-0727KL</td>
</tr>
<tr>
<td>1</td>
<td>R24</td>
<td>Resistor, TKF, 100R, 1%, 1/8W, SMD, 0805</td>
<td>Panasonic</td>
<td>ERJ-6ENF1000V</td>
</tr>
<tr>
<td>0</td>
<td>Shld1</td>
<td>Mechanical, hardware, board shield 0.65X0.65X0.142” AL Frame 2118707-4 - DO NOT POPULATE</td>
<td>TE Connectivity</td>
<td>2118707-4</td>
</tr>
<tr>
<td>2</td>
<td>SW1, SW2</td>
<td>Switch, Tact. Spst., 24V, 50 mA, 147873-1, SMD</td>
<td>TE Connectivity Aloswitch</td>
<td>147873-1</td>
</tr>
<tr>
<td>1</td>
<td>TH1</td>
<td>Temp. sensor, RTD, 100 OHM, 0603</td>
<td>Vishay Bayschlag</td>
<td>PTS060301B100RP100</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>Microchip Analog LED Driver, HV9961LG-G, SOIC-8</td>
<td>Microchip Technology Inc.</td>
<td>HV9961LG-G</td>
</tr>
</tbody>
</table>

Note: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.
TABLE B-1: BILL OF MATERIALS (BOM) (CONTINUED)

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Reference</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>U2, U3</td>
<td>IC Photo, HCPL-181, 4-SMD</td>
<td>Broadcom<sup>®</sup></td>
<td>HCPL-181-00CE</td>
</tr>
<tr>
<td>1</td>
<td>U4</td>
<td>Microchip RF Bluetooth, RN4871-V/RM118, Module -16</td>
<td>Microchip Technology Inc.</td>
<td>RN4871-V/RM118</td>
</tr>
<tr>
<td>1</td>
<td>U5</td>
<td>Microchip Analog LDO, 3.3V, MCP1703AT-5002E/CB, SOT-23A-3</td>
<td>Microchip Technology Inc.</td>
<td>MCP1703AT-3302E/CB</td>
</tr>
<tr>
<td>1</td>
<td>U6</td>
<td>Microchip MCU, 8-bit, 32 MHz, 3.5 kB, PIC16F15313T-I/SN, SOIC-8</td>
<td>Microchip Technology Inc.</td>
<td>PIC16F15313T-I/SN</td>
</tr>
<tr>
<td>1</td>
<td>U7</td>
<td>Microchip Interface, USB, I2C/UART, MCP2221A-I/ML, QFN-16</td>
<td>Microchip Technology Inc.</td>
<td>MCP2221A-I/ML</td>
</tr>
<tr>
<td>1</td>
<td>U8</td>
<td>Microchip Analog Voltage Detector, 1.9V, MCP112T-195I/TT, SOT-23-3</td>
<td>Microchip Technology Inc.</td>
<td>MCP112T-195I/TT</td>
</tr>
<tr>
<td>3</td>
<td>Z1, Z2, Z3</td>
<td>Diode Zener, MMSZ7V5T1G, 7.5V, 500 mW, SMD, SOD-123</td>
<td>Rochester Electronics, LLC</td>
<td>MMSZ7V5T1G</td>
</tr>
</tbody>
</table>

Note: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.
Appendix C. Waveforms

C.1 BLUETOOTH WHITE-COLOR-MIX LED DRIVER BOARD TEST WAVEFORM EXAMPLES

FIGURE C-1: Input Voltage and Input Current.

FIGURE C-2: LED Driver’s Switching Node Waveforms with PWM Dimming to 50%.
FIGURE C-3: LED Driver Output Current with 40-60% Switching Ratio Between Warm-Cool Color.
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: http://www.microchip.com/support
Web Address: www.microchip.com

Atlanta
Duluth, GA
Tel: 770-957-9614
Fax: 770-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 508-257-3370
Fax: 508-257-3375

Chicago
Itasca, IL
Tel: 847-868-3590
Fax: 847-868-3595

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9888-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5000

China - Nanjing
Tel: 86-25-8702-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2329

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2386138

China - Zhuhai
Tel: 86-768-3210040

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880-3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-8-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-72400

Germany - Karlsruhe
Tel: 49-72-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenburg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820