Features

- Qualified for Bluetooth SIG v5.0 core specification
- Certified to FCC, ISED, MIC, KCC, NCC, and SRRC radio regulations
- Certified by European RED Assessed Radio module
- Compliant to RoHS
- Supports UART interface
- Supports transparent UART data service of BLE
- The BM70 module supports 3-channel pulse-width modulation (PWM) and the BM71 module supports 1-channel PWM
- Supports Precision Temperature Sensor (PTS) for ambient temperature detection
- Supports 12-bit ADC (ENOB=10 or 8 bits) for battery and voltage detection
- Provides 8-channel ADC for the BM70 module and 5-channel ADC for the BM71 module
- Features 18 general purpose I/O (GPIO) pins for the BM70 module and 9 GPIO pins for the BM71 module
- Features integrated 32 MHz crystal
- Small and compact surface mount module
- Castellated surface mount pads for easy and reliable host PCB mounting

RF Features

- ISM band 2.402 GHz to 2.480 GHz operation
- Channels: 0 to 39
- Receive Sensitivity: typical -90 dBm (LE)
- Transmit Power: 0 dBm (typical)
- Received Signal Strength Indication (RSSI) monitor with 1 dB resolution

MAC/Baseband/Higher Layer Features

- Secure AES128 encryption
- GAP, GATT, SMP, L2CAP and integrated public profile support
- To create custom GATT services, refer to the “BM70/71 Bluetooth® Low Energy Module User’s Guide” (DS50002542) for details.
- Configurable role as peripheral/central, client/server

Antenna

- Chip antenna (BM7xBLES1FC2) range based on open air measurement and phone-module connection:
 - BM70: up to 50m
 - BM71: up to 10m
- External antenna (BM7xBLE01FC2) connection through RF pad

Power Management

- Two low power modes supported, with wake up through GPIO or internal timer
- Average current: Tx=3.3 mA and Rx=3.2 mA with buck at 3.0V VBAT input and 18.75 ms connection interval, when transmitting full data packets to achieve a data rate of approximately 8.6 kbps
Operating Conditions

• Operating voltage range: 1.9V to 3.6V
• Operating temperature: -40ºC to +85ºC

Applications

• Internet of Things (IoT)
• Secure Payment
• Wearable Devices
• Home and Security
• Health and Fitness
• Beacons
• Industrial and Data Logger

General Description

The BM70/71 module offers BLE solutions for embedded applications. It conforms to the Bluetooth 5 core specification to enhance the throughput and security for the IoT applications. It also supports beacon technology to enhance the user experience for the IoT applications, and enables users to control the cloud and receive data without opening the application through a smartphone.

The BM70/71 module has an integrated Bluetooth stack and is available in different form factors to optimize space, cost, and RF performance. The power-optimized design minimizes the current consumption and extends battery life for portable and wearable applications.
Table of Contents

1.0 Device Overview ... 5
2.0 Application Information .. 13
3.0 Module Configuration .. 25
4.0 Antenna ... 27
5.0 Electrical Characteristics ... 37
6.0 Physical Dimensions ... 43
7.0 Soldering Recommendations .. 51
8.0 Ordering Guide .. 53
Appendix A: Certification Notices .. 55
Appendix B: Revision History .. 63

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip’s Worldwide Web site: http://www.microchip.com
• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.
1.0 DEVICE OVERVIEW

The BM70/71 module is built around Microchip Technology IS1870/71 BLE Integrated Circuit (IC). The IS1870/71 IC includes an on-board Bluetooth stack, a power management subsystem, a 2.4 GHz transceiver, and an RF power amplifier. The user can embed Bluetooth functionality into any product using the BM70/71 module.

The BM70/71 module enables the following features:

- Simple integration and programming
- Reduced development time
- Superior wireless module with a low-cost system
- Interoperability with Apple® iOS and Android™ OS
- A wide range of applications

The BM70/71 module can independently maintain a low power wireless connection. Low power and flexible power management features maximize the lifetime of the BM70/71 module in battery-operated devices. A wide operating temperature range enables its applications in indoor and outdoor environments.

The BM70/71 module is a small, compact, and surface-mounted module with castellated pads for easy and reliable host PCB mounting. The relatively small form factor of the module is targeted for applications, such as wearable sports, fitness devices and so on.

1.1 Interface Description

Figure 1-1 and Figure 1-2 illustrate an example of the BM70/71 module-based system.

FIGURE 1-1: BM70 MODULE BLOCK DIAGRAM

The BM70/71 module includes a small, compact, and surface-mounted module with castellated pads for easy and reliable host PCB mounting. The relatively small form factor of the module is targeted for applications, such as wearable sports, fitness devices and so on.

Note 1: SPI and I²C peripherals of the IS1870/71 IC can be enabled on the BM70/71 module by changing the default firmware. For more details, contact a local Microchip representative.
FIGURE 1-2: BM71 MODULE BLOCK DIAGRAM

Note 1: SPI and I²C peripherals of the IS1870/71 IC can be enabled on the BM70/71 module by changing the default firmware. For more details, contact a local Microchip representative.
Figure 1-3 through Figure 1-6 illustrate the pin diagrams of the BM70/71 module.

FIGURE 1-3: BM70BLE01FC2 PIN DIAGRAM

FIGURE 1-4: BM70BLES1FC2 PIN DIAGRAM
FIGURE 1-5: BM71BLE01FC2 PIN DIAGRAM

FIGURE 1-6: BM71BLES1FC2 PIN DIAGRAM
Table 1-1 provides pin descriptions of the BM70/71 module.

TABLE 1-1: BM70/71 PIN DESCRIPTION

<table>
<thead>
<tr>
<th>BM70BLE0 1FC2</th>
<th>BM70BLE S1FC2</th>
<th>BM71BLE 01FC2</th>
<th>BM71BLE S1FC2</th>
<th>Pin Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>GND</td>
<td>Power</td>
<td>Ground reference</td>
</tr>
<tr>
<td>—</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>GND</td>
<td>Power</td>
<td>Ground reference</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>12</td>
<td>13</td>
<td>VBAT</td>
<td>Power</td>
<td>Battery input. Voltage range: 1.9V to 3.6V</td>
</tr>
<tr>
<td>—</td>
<td>4</td>
<td>11</td>
<td>14</td>
<td>BK_IN</td>
<td>Power</td>
<td>Buck input. Voltage range: 1.9V to 3.6V</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>P2_2</td>
<td>DIO</td>
<td>GPIO, default pull-high input PWM1</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>—</td>
<td>—</td>
<td>VDD_IO</td>
<td>Power</td>
<td>I/O positive supply. Do not connect. Ensure VDD_IO and MCU I/O voltage are compatible</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>VDD_IO</td>
<td>Power</td>
<td>I/O positive supply. Do not connect. Ensure VDD_IO and MCU I/O voltage are compatible</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>ULPC_O</td>
<td>Power</td>
<td>1.2V programmable ULPC LDO output for AON-logic and retention memory supply. Internal use only, do not connect to other devices</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>P2_3</td>
<td>DI</td>
<td>GPIO, default pull-high input PWM2</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>BK_O</td>
<td>Power</td>
<td>1.55V buck output. Internal use only, do not connect to other devices</td>
</tr>
<tr>
<td>—</td>
<td>13</td>
<td>6</td>
<td>—</td>
<td>P1_6</td>
<td>DIO</td>
<td>P1_6, when connected to the host MCU, set the MCU pin connected to P1_6 either high impedance or drive pin to low during firmware start-up (approximately 22 msec)</td>
</tr>
<tr>
<td>—</td>
<td>14</td>
<td>5</td>
<td>—</td>
<td>P1_7</td>
<td>DIO</td>
<td>P1_7</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>P2_7/TX_IND</td>
<td>DIO</td>
<td>GPIO: P2_7 ADC Input: AD14 TX_IND</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>—</td>
<td>—</td>
<td>P1_1</td>
<td>DIO</td>
<td>GPIO: P1_1 ADC Input: AD9</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>2</td>
<td>3</td>
<td>P1_2</td>
<td>DIO</td>
<td>GPIO, default pull-high input AD10</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>3</td>
<td>4</td>
<td>P1_3</td>
<td>DIO</td>
<td>GPIO, default pull-high input AD11</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td>8</td>
<td>11</td>
<td>P0_0</td>
<td>DIO</td>
<td>GPIO, default pull-high input AD0 UART flow-control RTS</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>—</td>
<td>—</td>
<td>P1_0</td>
<td>DIO</td>
<td>GPIO, default pull-high input AD8</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>6</td>
<td>9</td>
<td>P3_6</td>
<td>DIO</td>
<td>GPIO, default pull-high input PWM0 UART flow-control RTS</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>P2_0</td>
<td>DI</td>
<td>System configuration, default pull-high input H: Application mode L: Test mode</td>
</tr>
<tr>
<td>BM70BLE0 1FC2</td>
<td>BM70BLE S1FC2</td>
<td>BM71BLE 01FC2</td>
<td>BM71BLE S1FC2</td>
<td>Pin Name</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>17</td>
<td>19</td>
<td>—</td>
<td>—</td>
<td>P2_4</td>
<td>DIO</td>
<td>GPIO, default pull-high input</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>—</td>
<td>—</td>
<td>NC</td>
<td>—</td>
<td>No connection</td>
</tr>
</tbody>
</table>

Legend:
A = Analog
D = Digital
I = Input
O = Output

A = Analog
D = Digital
I = Input
O = Output

19 | 21 | 7 | 10 | RST_N | DI | Module Reset (active-low) (internal pull up) |

20 | 22 | 5 | 7 | HCI_RXD | DI | HCI UART data input |

21 | 23 | 4 | 8 | HCI_TXD | DO | HCI UART data output |

22 | 24 | — | — | P3_1 | DIO | GPIO: P3_1 |

23 | 25 | — | — | P3_2 | DIO | GPIO: P3_2 |

24 | 26 | — | — | P3_3 | DIO | GPIO: P3_3 |

25 | 27 | — | — | P3_4 | DIO | GPIO: P3_4 |

26 | 28 | — | — | P3_5 | DIO | GPIO, default pull-high input LED1 |

27 | 29 | — | — | P0_7 | DIO | GPIO, default pull-high input AD7 |

28 | 30 | 9 | 12 | P0_2/LED | DI | P02 |

29 | 31 | 17 | 2 | GND | Power | Ground reference |

30 | — | 1 | — | BT_RF | AI | External antenna connection (50 Ohm) Only for BM70BLE01FC2 and BM71BLE01FC2 No connection for BM71BLES1FC2 |

33 | — | — | — | GND | Power | Ground reference |
Table 1-2 provides the hardware features of the BM70/71 module.

Note: I²C and SPI are accessible using specific firmware versions that support these peripheral interfaces. Please refer to the BM70/71 product page on the Microchip web site for the latest firmware.

<table>
<thead>
<tr>
<th>TABLE 1-2: BM70/71 MODULE HARDWARE FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature/ Modules</td>
</tr>
<tr>
<td>Configuration</td>
</tr>
<tr>
<td>UART</td>
</tr>
<tr>
<td>GPIO (see Note 2)</td>
</tr>
<tr>
<td>12-bit ADC channels</td>
</tr>
<tr>
<td>PWM</td>
</tr>
<tr>
<td>Total pins</td>
</tr>
<tr>
<td>On board antenna with CAN</td>
</tr>
<tr>
<td>No Antenna</td>
</tr>
<tr>
<td>Government regulatory RF certified</td>
</tr>
<tr>
<td>Size (mm)</td>
</tr>
</tbody>
</table>

Note 1: The GPIO, ADC and PWM numbers used are based on disabling the LED indication and UART Hardware flow-control (RTS/CTS) functionality, see Table 1-1.

Note 2: For a detailed explanation of GPIO, refer to the “BM70/71 Bluetooth® Low Energy Module User’s Guide” (DS50002542).
Table 1-3 provides the details of the test pads used for the production test on the bottom of the BM70/71 module. See Figure 1-3 through Figure 1-6 for more details.

TABLE 1-3: TEST PADS DETAILS

<table>
<thead>
<tr>
<th>BM70BLE 01FC2</th>
<th>BM70BLE S1FC2</th>
<th>BM71BLE 01FC2</th>
<th>BM71BLE S1FC2</th>
<th>Pin Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP-1</td>
<td>TP-1</td>
<td>TP-3</td>
<td>TP-3</td>
<td>VCC_PA</td>
<td>Power</td>
<td>1.55V RF PA LDO</td>
</tr>
<tr>
<td>TP-2</td>
<td>TP-2</td>
<td>TP-1</td>
<td>TP-1</td>
<td>CLDO_O</td>
<td>Power</td>
<td>1.2V CLDO output</td>
</tr>
<tr>
<td>TP-3</td>
<td>TP-3</td>
<td>TP-2</td>
<td>TP-2</td>
<td>VCC_RF</td>
<td>Power</td>
<td>1.28V RF LDO output</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>TP-4</td>
<td>TP-4</td>
<td>ULPC_O</td>
<td>Power</td>
<td>1.2V ULPC LDO output</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>TP-5</td>
<td>TP-5</td>
<td>BK_O</td>
<td>Power</td>
<td>1.55V buck output</td>
</tr>
</tbody>
</table>
2.0 APPLICATION INFORMATION

2.1 Reference Schematics

Figure 2-1 through Figure 2-8 illustrate the BM70/71 module reference schematics for the various Stock Keeping Units (SKUs). The GPIOs are configurable, and the connection depends on the user’s application circuit.

It is recommended to use an external Reset IC in all applications. An example of using this circuit with the MCP111-195 is illustrated in Figure 2-1, Figure 2-3, Figure 2-5, and Figure 2-7. This Reset IC prevents the Flash data corruption, when VBAT drops below 1.9V (this includes brown-out, power-down, and power-up conditions).

The RF antenna impedance matching circuit in Figure 2-3 and Figure 2-5 require users to implement by the selected antenna specification.

For battery-powered applications, it is recommended to use the following external circuits as illustrated in Figure 2-2, Figure 2-4, Figure 2-6, and Figure 2-8. The first circuit (left side) ensures that the LED indicator is bright enough in applications with VBAT > 3.0V. The second circuit (right side) provides protection from battery voltage reverse connection.

If a fixed voltage source is applied to VBAT (e.g. 3.3V), the soft start output is necessary to prevent the inrash voltage over 3.6V to damage the Flash.

FIGURE 2-1: BM70BLES1FC2 REFERENCE CIRCUIT
FIGURE 2-2: BM70BLES1FC2 REFERENCE CIRCUIT

Optional Circuit

- LED Option
- Battery Reverse Protection

*Used in BAT_IN>3.0V condition to ensure LED is bright enough
*Voltage reverse protection in reverse battery input condition

FIGURE 2-3: BM70BLE01FC2 REFERENCE CIRCUIT

Main Circuit

- Power Input (1.9V~3.6V)
- ANT Matching
- Configurable I/O

1.9V RESET IC

Configuration Interface

<table>
<thead>
<tr>
<th>Test Point</th>
<th>Configuration</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0.0, P0.1, P0.2</td>
<td>VBAT, LOW Test Mode, High APP Mode</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 2-4: BM70BLE01FC2 REFERENCE CIRCUIT

Optional Circuit

LED Option

Battery Reverse Protection

*Used in BAT_IN>3.0V condition to ensure LED is bright enough

*Voltage reverse protection in reverse battery input condition

FIGURE 2-5: BM71BLE01FC2 REFERENCE CIRCUIT

1.9V RESET IC

Power Input (1.9V-3.6V)

*Note 1

Configuration Interface Test Point

1. P₂₀
2. VBAT
3. HCL_RXD
4. HCL_TXD

P₂₀ MODE
LOW Test Mode
High APP Mode

Note 1: Place the capacitor C3 as close as possible to the module. Connect the BK_IN and VBAT trace at C3.

2: The antenna matching component value depends on the user’s antenna and PCB layout.
FIGURE 2-6: BM71BLE01FC2 REFERENCE CIRCUIT

LED Option

Battery Reverse Protection

*Used in BAT_IN>3.0V condition to ensure LED is bright enough

*Voltage reverse protection in reverse battery input condition

FIGURE 2-7: BM71BLES1FC2 REFERENCE CIRCUIT

Main Circuit

1.9V RESET IC

Configuration Interface Configurable I/O
Test Point

P2_0 MODE

LOW Test Mode

High APP Mode

P1_2

P1_3

P1_7

P1_6

P0_6

P2_7

Note 1: Place the capacitor C3 as close as possible to the module.
FIGURE 2-8: BM71BLES1FC2 REFERENCE CIRCUIT - OPTIONAL

Optional Circuit

LED Option

Battery Reverse Protection

*Used in BAT_IN>3.0V condition to ensure LED is bright enough

*Voltage reverse protection in reverse battery input condition
2.2 External Configuration and Programming

The BM70/71 module can be configured and programmed using an external configuration and programming tool. Figure 2-9 illustrates the minimum signals required for configuring and programming the module using host PCB.

Configuration and programming modes can be configured using the P2_0 pin. Refer to 3.4, System Configuration for details.

FIGURE 2-9: EXTERNAL CONFIGURATION AND PROGRAMMING
2.3 Host MCU Interface

2.3.1 HOST MCU INTERFACE OVER UART

Figure 2-10 and Figure 2-11 illustrate the interfacing between the BM70/71 and host MCU using UART. UART uses Host Control Interface (HCI) to share the communication among the Host MCU and BM70/71 module. The interface also illustrates the power scheme using a 3.3V Low Drop Out (LDO) regulator that supplies 3.3V to the BM70/71 (BAT_IN) and MCU VDD. This power scheme ensures that the BM70/71 module and MCU I/O voltages are compatible.

FIGURE 2-10: BM70 MODULE TO MCU INTERFACE

Note 1: Ensure that VBAT(=I/O Voltage) and MCU VDD voltages are compatible.

2: Control and indication ports are configurable.
FIGURE 2-11: BM71 MODULE TO MCU INTERFACE

Note 1: Ensure that VBAT (=I/O Voltage) and MCU VDD voltages are compatible.
2: Control and indication ports are configurable.
3: 10 μF (X5R) and 330 Ohm resistor are required for the BM71 module.
4: BK_IN connect to VBAT for BM71BLE01FC2.
2.3.2 UART READY AFTER EXTERNAL RESET

In MCU applications, the time between Reset and the BM70/71 module UART port ready for Test mode and Application mode, after an external Reset (RST_N) must be notified. Figure 2-12 illustrates the timing diagram of the BM70/71 module UART port ready for Test mode and Application mode after Reset.

FIGURE 2-12: TIMING DIAGRAM OF BM70/71 MODULE UART READY FOR TEST MODE AFTER RESET
2.3.3 UART READY AFTER POWER-ON RESET

Figure 2-13 illustrates the timing diagram of the BM70 module UART port ready for Test mode and Application mode after Power-on Reset (POR).

In Application mode, when the BM70/71 module is ready to communicate with the host MCU after reset, the BM70/71 module may have internal status indicated by the status pins, or by a status report UART command. This status pin or status report UART command is sent to inform the MCU that the BM70/71 module is ready for communication.

FIGURE 2-13: TIMING DIAGRAM OF BM70 MODULE UART READY FOR TEST MODE AFTER POWER-ON
2.4 Typical Hosted Configuration

Figure 2-14 illustrates the typical hosted configuration for the BM71 module. It also illustrates an application using a coin cell battery at VBAT input. For the BM71 module, a 10 μF capacitor (X5R/X7R) is applied to the BAT_IN pin. Only on the BM71 module, the BK_IN pin of the module must be connected to the BAT_IN pin.

Note 1: Hardware functions can include ADC and PWM. Refer to "BM70/71 Bluetooth® Low Energy Module User’s Guide" (DS50002542) for a full description of all possible configurable behavior and hardware.
2.5 Power-Drop Protection

To prevent the BM70/71 module from disruptions, when the voltage drops to less than 1.9V, an “Open Drain” Reset chip with a delay time of ≤ 10 ms that triggers Reset at 1.8V output voltage is recommended. Figure 2-15 illustrates the Reset circuit block diagram.

FIGURE 2-15: RESET CIRCUIT BLOCK DIAGRAM
BM70/71

3.0 MODULE CONFIGURATION

The BM70/71 module features and services can be configured to fit a wide range of application requirements. Refer to the "BM70/71 Bluetooth® Low Energy Module User's Guide" (DS50002542) for details of all device behavior along with information on how to configure the IS8170/71 IC on the BM70/71 module. Refer to 3.1 "UART Interface" through 3.4 "System Configuration" that describe default behavior of the BM70/71 module, which can be easily changed.

3.1 UART Interface

The BM70/71 module UART pins, TXD and RXD, are connected to the UART pins of the host MCU. By default, the UART characteristics are set to a baud rate of 115200, with 8-bit data, 1 stop bit, no parity, and no hardware flow control. These characteristics are configurable; refer to the "BM70/71 Bluetooth® Low Energy Module User's Guide" (DS50002542) for the full description.

3.2 Control and Indication I/O Pins

The BM70/71 module I/O pins are configurable as either control or indication signal. The control signals are input to the BM70/71 module and the indication signals are output from the BM70/71 module. Table 3-1 and Table 3-2 provide default pin functions of the default firmware logic in the IS1870/71 IC on the BM70/71 module. For different BM70/71 module application requirements, the I/O pin assignment is configurable and can fit a wide range of application requirements. For additional information related to I/O pin assignment, refer to the "BM70/71 Bluetooth® Low Energy Module User’s Guide" (DS50002542).

TABLE 3-1: CONFIGURATION AND INDICATION I/O ASSIGNMENTS FOR BM70 MODULE

<table>
<thead>
<tr>
<th>PINS</th>
<th>N/C(1)</th>
<th>LOW_BATTERY_IND(1)</th>
<th>RSSI_IND(1)</th>
<th>LINK_DROP(1)</th>
<th>UART_RX_IND(1)</th>
<th>PAIRING_KEY(1)</th>
<th>RF_ACTIVE_IND(1)</th>
<th>STATUS1_IND(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3_1</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3_2</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3_4</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0_7</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2_2</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2_4</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3_5</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3_6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2_7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: These signals are part of the remappable hardware functionality and can be input/output on different GPIO pins of the module. Refer to the “BM70/71 Bluetooth® Low Energy Module User’s Guide” (DS50002542) for details.
3.3 Reset (RST_N)

The Reset input pin (RST_N) is used to reset the BM70/71 module with an active-low pulse with a minimum pulse width of 63 ns.

3.4 System Configuration

Table 3-3 provides the system configuration settings of the P2_0 pin that places the BM70/71 module into various operational modes. The P2_0 pin has an internal pull up.

TABLE 3-3: SYSTEM CONFIGURATION SETTINGS

<table>
<thead>
<tr>
<th>P2_0</th>
<th>Operational Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Application mode</td>
</tr>
<tr>
<td>Low</td>
<td>Test mode (calibration of the IS1870/71 IC), Configuration mode (programming of configuration parameters for default firmware), Firmware Update mode (programming of internal flash memory of IS1870/71 IC).</td>
</tr>
</tbody>
</table>

Note: For more details and information on the use of these different modes, refer to the “BM70/71 Bluetooth® Low Energy Module User’s Guide” (DS50002542).
4.0 ANTEenna

4.1 Antenna Characteristics

4.1.1 BM70BLES1FC2 Ceramic Chip Antenna

The BM70BLES1FC2 module contains an inbuilt ceramic chip antenna. Figure 4-1 illustrates the antenna radiation pattern of the ceramic chip antenna on the BM70BLES1FC2 module.

FIGURE 4-1: BM70BLES1FC2 Antenna Radiation Pattern

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>2450 MHz</td>
</tr>
<tr>
<td>Peak Gain</td>
<td>1.63 dBi</td>
</tr>
<tr>
<td>Efficiency</td>
<td>71.55%</td>
</tr>
</tbody>
</table>

Table 4-1 provides the antenna radiation pattern details of the BM70BLES1FC2 module.

Table 4-1: BM70BLES1FC2 Antenna Radiation Pattern Details
4.1.2 BM71BLES1FC2 CERAMIC CHIP ANTENNA

The BM71BLES1FC2 module contains an inbuilt ceramic chip antenna. Figure 4-2 illustrates the antenna radiation pattern of the ceramic chip antenna on the BM71BLES1FC2 module.

FIGURE 4-2: BM71BLES1FC2 ANTENNA RADIATION PATTERN

Table 4-2 provides the antenna radiation pattern details of the BM71BLES1FC2 module.

TABLE 4-2: BM71BLES1FC2 ANTENNA RADIATION PATTERN DETAILS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>2442 MHz</td>
</tr>
<tr>
<td>Peak Gain</td>
<td>0.1 dBi</td>
</tr>
<tr>
<td>Efficiency</td>
<td>42.7%</td>
</tr>
</tbody>
</table>
4.2 Antenna Placement

For a Bluetooth wireless product, the antenna placement affects the whole system performance. The antenna requires free space to radiate the RF signals and it cannot be surrounded by the ground plane.

Figure 4-3 illustrates a typical example of good and poor antenna placement of the BM70BLES1FC2 module on the main application board with the ground plane.

FIGURE 4-3: BM70BLES1FC2 ANTENNA PLACEMENT EXAMPLES
Figure 4-4 illustrates a typical example of good and poor antenna placement of the BM71BLES1FC2 module on the main application board with the ground plane.

FIGURE 4-4: BM71BLES1FC2 ANTENNA PLACEMENT EXAMPLES
4.3 Antenna Considerations

Table 4-3 provides the part number and manufacturer details of the antenna used on the BM70BLES1FC2 module.

TABLE 4-3: BM70BLES1FC2 ANTENNA DETAILS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANT ANT3216A063R2400A PIFA 2.4 GHZ L3.2W1.6</td>
<td>ANT3216A063R2400A</td>
<td>YAGEO</td>
</tr>
</tbody>
</table>

Table 4-4 provides the part number and manufacturer details of the antenna used on the BM71BLES1FC2 module.

TABLE 4-4: BM71BLES1FC2 ANTENNA DETAILS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANT ANT3216LL00R2400A 2.4 GHZ L3.2W1.6</td>
<td>ANT3216LL00R2400A</td>
<td>YAGEO</td>
</tr>
</tbody>
</table>
4.4 Host PCB Mounting Suggestion

4.4.1 BM70BLES1FC2 HOST PCB MOUNTING

Figure 4-5 illustrates the host PCB mounting suggestions for the BM70BLES1FC2 module, showing the minimum ground plane area to the left and right of the module for best antenna performance.

The area under the antenna must not contain any top, inner or bottom copper layer, while designing the host PCB. A low-impedance ground plane ensures the best radio performance (best range, low noise). The ground plane can be extended beyond the minimum recommended as required for the host PCB EMC noise reduction. For best range performance, keep all external metal away from the ceramic chip antenna by a minimum of 30 mm.

FIGURE 4-5: BM70BLES1FC2 HOST PCB MOUNTING SUGGESTION
4.4.2 BM70BLE01FC2 HOST PCB MOUNTING

Figure 4-6 illustrates the mounting suggestions for the BM70BLE01FC2 module and also shows a connection to UFL connector. A low-impedance ground plane will ensure the best radio performance (best range, low noise).

The pin 30 (BT_RF) is connected to an external antenna connector, a PCB trace antenna, or a component (ceramic chip) antenna through a host PCB 50 Ohm micro-strip trace. The micro-strip trace can be extended to include passive parts for antenna attenuation padding, impedance matching, or to provide test points. It is recommended that the micro-strip trace be as short as possible for minimum loss and best impedance matching. If the micro-strip trace is longer, it must be a 50 Ohm controlled impedance.

FIGURE 4-6: BM70BLE01FC2 HOST PCB MOUNTING SUGGESTIONS
4.4.3 BM71BLES1FC2 HOST PCB MOUNTING

Figure 4-7 illustrates the mounting suggestions for the BM71BLES1FC2 module. It also shows the area around the antenna, required for the best antenna performance.

The area under the antenna must not contain any top, inner, or bottom copper layer while designing the host PCB. A low-impedance ground plane ensures the best radio performance (best range, low noise). The ground plane can be extended beyond the minimum recommended as required for the host PCB EMC noise reduction. For best range performance, keep all external metal away from the ceramic chip antenna by a minimum of 30 mm.

FIGURE 4-7: BM71BLES1FC2 HOST MOUNTING SUGGESTION
4.4.4 BM71BLE01FC2 HOST PCB MOUNTING

Figure 4-8 illustrates the mounting suggestions for the BM71BLE01FC2 module. It also shows a connection to the UFL connector. A low-impedance ground plane ensures the best radio performance (best range, low noise).

The pin 1 (BT_RF) is connected to an external antenna connector, a PCB trace antenna, or a component (ceramic chip) antenna through a host PCB 50 Ohm micro-strip trace. The micro-strip trace can be extended to include passive parts for antenna attenuation padding, impedance matching, or to provide test points. It is recommended that the micro-strip trace be as short as possible for minimum loss and best impedance matching. If the micro-strip trace is longer, it must be a 50 Ohm controlled impedance.

FIGURE 4-8: BM71BLE01FC2 HOST PCB MOUNTING SUGGESTION

Top Copper Layer

Bottom Copper Layer
5.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the BM70/71 module electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute Maximum Ratings

Ambient temperature under bias for modules parts ending with 0002..-20°C to +70°C
Ambient temperature under bias for modules parts ending with 0B0x..-40°C to +85°C
Storage temperature .. -40°C to +125°C
Voltage on VDD with respect to Vss .. -0.3V to +3.6V
Voltage of any digital pin ..0.3V to VDD + 0.3 ≤ 3.9
Maximum output current sink by any I/O pin..12 mA
Maximum output current sourced by any I/O pin..12 mA

Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
Table 5-1 provides the recommended operating conditions of the BM70/71 module.

TABLE 5-1: RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>1.9V</td>
<td>3.0V</td>
<td>3.6V</td>
</tr>
<tr>
<td>VDD (VBAT, BK_IN, AVDD)</td>
<td>1.9V</td>
<td>3.0V</td>
<td>3.6V</td>
</tr>
<tr>
<td>RST_N</td>
<td>1.9V</td>
<td>3.0V</td>
<td>3.6V</td>
</tr>
<tr>
<td>Other I/O</td>
<td>1.9V</td>
<td>—</td>
<td>3.6V</td>
</tr>
<tr>
<td>GPIO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_HH (Input High Voltage)</td>
<td>0.7 VDD</td>
<td>—</td>
<td>VDD</td>
</tr>
<tr>
<td>V_IL (Input Low Voltage)</td>
<td>VSS</td>
<td>—</td>
<td>0.3 VDD</td>
</tr>
<tr>
<td>V_OH (Output High Voltage) (High drive, 12 mA)</td>
<td>0.8 VDD</td>
<td>—</td>
<td>VDD</td>
</tr>
<tr>
<td>V_OL (Output Low Voltage) (High drive, 12 mA)</td>
<td>VSS</td>
<td>—</td>
<td>0.2 VDD</td>
</tr>
<tr>
<td>Pull up resistance</td>
<td>34 kOhm</td>
<td>48 kOhm</td>
<td>74 kOhm</td>
</tr>
<tr>
<td>Pull down resistance</td>
<td>29 kOhm</td>
<td>47 kOhm</td>
<td>86 kOhm</td>
</tr>
</tbody>
</table>

Supply Current (see Note 1)

<table>
<thead>
<tr>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Tx mode current at VDD=3V,</td>
<td>—</td>
<td>10 mA at +25°C</td>
<td>13 mA at +70°C/+85°C</td>
</tr>
<tr>
<td>Tx=0 dBm, Buck mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Rx mode current at VDD=3V,</td>
<td>—</td>
<td>10 mA at +25°C</td>
<td>13 mA at +70°C/+85°C</td>
</tr>
<tr>
<td>Buck mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Reduced current consumption" low power mode</td>
<td>—</td>
<td>60 μA at +25°C</td>
<td></td>
</tr>
<tr>
<td>current (see Note 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Shutdown" low power mode current (see Note 2)</td>
<td>1.0 μA</td>
<td>—</td>
<td>2.9 μA</td>
</tr>
</tbody>
</table>

Note 1: The current measurements are characterized across a sample of BM70/71 modules at room temperature (+25°C), unless otherwise noted.

2: For more details on “Reduced current consumption” or “Shutdown” low power modes, refer to the “BM70/71 Bluetooth® Low Energy Module User’s Guide” (DS50002542).

Note: For more details on “Analog to Digital Converter (ADC) and Precision Temperature Sensor (PTS) specifications, refer to “IS1870/71 Bluetooth® Low Energy SoC data sheet” (DS60001371).
Table 5-2 provides the RF specifications of the BM70/71 module.

TABLE 5-2: RF SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>2402 MHz</td>
<td>—</td>
<td>2480 MHz</td>
</tr>
<tr>
<td>Output Power</td>
<td>—</td>
<td>0 dBm</td>
<td>—</td>
</tr>
<tr>
<td>RF Power Control Range</td>
<td>-25 dBm</td>
<td>—</td>
<td>3 dBm</td>
</tr>
<tr>
<td>In-band Spurious (N±2)</td>
<td>—</td>
<td>-38.5 dBm</td>
<td>—</td>
</tr>
<tr>
<td>In-band Spurious (N±3)</td>
<td>—</td>
<td>-43.25 dBm</td>
<td>—</td>
</tr>
<tr>
<td>Modulation Characteristic - Frequency Deviation (see Note 1)</td>
<td>—</td>
<td>247 kHz</td>
<td>—</td>
</tr>
<tr>
<td>Receiver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>2402 MHz</td>
<td>—</td>
<td>2480 MHz</td>
</tr>
<tr>
<td>Sensitivity Level (interference active)</td>
<td>—</td>
<td>-90 dBm</td>
<td>—</td>
</tr>
<tr>
<td>Interference Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-channel</td>
<td>—</td>
<td>17 dB</td>
<td>—</td>
</tr>
<tr>
<td>Adjacent ± 1 MHz</td>
<td>—</td>
<td>0 dB</td>
<td>—</td>
</tr>
<tr>
<td>Adjacent ± 2 MHz</td>
<td>—</td>
<td>-25 dB</td>
<td>—</td>
</tr>
<tr>
<td>Adjacent >= ± 3 MHz</td>
<td>—</td>
<td>-32 dB</td>
<td>—</td>
</tr>
<tr>
<td>Inter-modulation Characteristic (n=3,4,5)</td>
<td>—</td>
<td>-37.5 dBm</td>
<td>—</td>
</tr>
<tr>
<td>Maximum Usable Level</td>
<td>—</td>
<td>0 dBm</td>
<td>—</td>
</tr>
</tbody>
</table>

Note 1: Tested by transmitting known ‘00001111'b patterns.
5.1 Current Consumption Details

5.1.1 Tx/Rx CURRENT CONSUMPTION DETAILS

Figure 5-1 illustrates the Tx/Rx peak current consumption of 12 mA during an advertising event. However, the average current consumption is only around 230 μA while advertising at an interval of approximately 100 ms, see Figure 5-2. This is due to the “Reduced Current Consumption” Low Power mode being enabled (configuration parameter - UART_RX_IND). Reducing the current draw to approximately 60 μA, while not actively transmitting the

advertisings packets, refer to the “BM70/71 Bluetooth® Low Energy Module User’s Guide” (DS50002542) for more details.

The overall average current consumption is measured with a 3.3V VBAT input, and is affected by the way the IS1870/71 IC on the BM70/71 module has been configured to operate. A low average current value can be achieved by choosing the minimum settings for the advertising interval and connection interval, which meet the data throughput requirements of the intended application. The lower or less frequent the interval time periods, the lower the overall average current to be drawn.

FIGURE 5-1: TX/RX PEAK CURRENT CONSUMPTION OF AN ADVERTISING EVENT
Figure 5-2 illustrates the oscilloscope screen, captured when the auto operation and Low Power mode is active on the BM70/71 module. Refer to the "BM70/71 Bluetooth® Low Energy Module User’s Guide" (DS50002542) for more details on the auto operation.

FIGURE 5-2: TX/RX AVERAGE CURRENT CONSUMPTION WHILE BM70/71 MODULE IS ADVERTISING

For additional information on the current consumption measurements, test conditions and test environment setup, refer to the “BM70/71 Bluetooth® Low Energy Module User’s Guide” (DS50002542). This user guide provides detailed information about the behavior of the default internal logic of the IS1870/71 IC on the BM70/71 module.
Table 5-3 provides the average current consumption measurements for the BM70/71 module in Application mode.

TABLE 5-3: BM70/71 APPLICATION MODE CURRENT CONSUMPTION MEASUREMENTS

<table>
<thead>
<tr>
<th>Test Mode</th>
<th>Interval [ms]</th>
<th>Average Current Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advertising</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(see Note 1,2,3)</td>
<td>20</td>
<td>1.061 mA</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>505 μA</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>298 μA</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>113 μA</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>89 μA</td>
</tr>
<tr>
<td>Connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(see Note 1,2,4)</td>
<td>18.75</td>
<td>2.23 mA</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2.13 mA</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2.10 mA</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>83 μA</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>80 μA</td>
</tr>
</tbody>
</table>

Note 1: These measurements are done at an operating temperature of +25°C at 3.3V and are characterized across a sample of BM70/71 modules.

2: These measurements are taken with version 1.06 firmware, loaded into the module with “Reduced Current Consumption” Low Power mode enabled. For more details on Low Power modes and current consumption configuration, refer to “BM70/71 Bluetooth® Low Energy Module User’s Guide” (DS50002542).

3: The advertising packet data payload is approximately 15 bytes in length.

4: The amount of data being transmitted between two peer devices can affect the average current measured. The average current measurements are done with only the necessary Bluetooth packets being exchanged to keep the connection active at the stated interval.
6.0 PHYSICAL DIMENSIONS

6.1 BM70BLES1FC2

Figure 6-1 illustrates the physical dimensions of the BM70BLES1FC2 module.

FIGURE 6-1: BM70BLES1FC2 MODULE DIMENSIONS

Dimensions are in millimeters
Tolerances:
PCB Thickness: +/-0.06mm
Figure 6-2 illustrates the recommended PCB footprint. Ensure that no top copper layer is near the test pin area.

FIGURE 6-2: BM70BLES1FC2 RECOMMENDED PCB FOOTPRINT

Top View
6.2 BM70BLE01FC2

Figure 6-3 illustrates the physical dimensions of the BM70BLE01FC2 module.

FIGURE 6-3: BM70BLE01FC2 MODULE DIMENSIONS

Dimensions are in millimeters
Tolerances:
PCB Thickness:+/-0.06mm

Pad Detail
Figure 6-4 illustrates the recommended PCB footprint.

FIGURE 6-4: BM70BLE01FC2 RECOMMENDED PCB FOOT PRINT

![Top View Diagram](image-url)
6.3 BM71BLES1FC2

Figure 6-5 illustrates the physical dimensions of the BM71BLES1FC2 module.

FIGURE 6-5: BM71BLES1FC2 MODULE DIMENSIONS

Dimensions are in millimeters
Tolerances:
PCB Thickness: +/- 0.06mm

Pad Detail
Figure 6-6 illustrates the recommended PCB footprint. Ensure that no top copper layer is near the test pin area.

FIGURE 6-6: BM71BLES1FC2 RECOMMENDED PCB FOOTPRINT
6.4 BM71BLE01FC2

Figure 6-7 illustrates the physical dimensions of the BM71BLE01FC2 module.

FIGURE 6-7: BM71BLE01FC2 MODULE DIMENSIONS

Top View

Side View

Bottom View

Dimensions are in millimeters
Tolerances:
PCB Thickness: +/-0.06mm

Pad Detail
Figure 6-8 illustrates the recommended PCB footprint.

FIGURE 6-8: BM71BLE01FC2 RECOMMENDED PCB FOOTPRINT
7.0 SOLDERING RECOMMENDATIONS

The BM70/71 module is assembled using a standard lead-free, reflow profile, IPC/JEDEC J-STD-020. The BM70/71 module can be soldered to the host PCB by using the standard lead or lead-free solder reflow profiles.

To avoid any damage to the BM70/71 module, follow these recommendations:

• Refer to the “AN233 Solder Reflow Recommendation” (DS00233) document for the soldering reflow recommendations
• Do not exceed the peak temperature (T_P) of +260°C
• Use no-clean flux solder paste
• Do not wash the BM70/71 module, as moisture can be trapped under the shield
• Use only one flow. If the PCB requires multiple flows, apply the BM70/71 module on the final flow

Figure 7-1 illustrates the reflow profile of the BM70/71 module.

FIGURE 7-1: REFLOW PROFILE
8.0 ORDERING GUIDE

Table 8-1 provides the ordering information for the BM70/71 module.

TABLE 8-1: BM70/71 MODULE ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
<th>Operating Temperature Range</th>
<th>Firmware Version</th>
<th>Antenna</th>
<th>Shield</th>
<th>Pin #</th>
<th>Regulatory Certification</th>
<th>Regulatory Model No. (see Note 3)</th>
<th>Orderable Part Number (see Note 1 and 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM70</td>
<td>Bluetooth BLE module, (12x15x1.6 mm)</td>
<td>-20°C to +70°C</td>
<td>V1.03</td>
<td>External</td>
<td>No</td>
<td>30</td>
<td>No</td>
<td>N/A</td>
<td>BM70BLE01FC2-0002AA</td>
</tr>
<tr>
<td>BM70</td>
<td>Bluetooth BLE module, (12x15x2.4 mm)</td>
<td>-20°C to +70°C</td>
<td>V1.03</td>
<td>On board</td>
<td>Yes</td>
<td>33</td>
<td>FCC, ISED, CE, MIC, KCC, NCC, SRRC</td>
<td>BM70BLES1FC2</td>
<td>BM70BLES1FC2-0002AA</td>
</tr>
<tr>
<td>BM71</td>
<td>Bluetooth BLE module, (6x8x1.6 mm)</td>
<td>-20°C to +70°C</td>
<td>V1.06</td>
<td>External</td>
<td>No</td>
<td>17</td>
<td>No</td>
<td>N/A</td>
<td>BM71BLE01FC2-0002AA</td>
</tr>
<tr>
<td>BM71</td>
<td>Bluetooth BLE module, (9x11.5x2.1 mm)</td>
<td>-20°C to +70°C</td>
<td>V1.06</td>
<td>On board</td>
<td>Yes</td>
<td>16</td>
<td>FCC, ISED, CE, MIC, KCC, NCC, SRRC</td>
<td>BM71BLES1FC2</td>
<td>BM71BLES1FC2-0002AA</td>
</tr>
<tr>
<td>BM70</td>
<td>Bluetooth BLE module, (12x15x1.6 mm)</td>
<td>-40°C to +85°C</td>
<td>V1.06</td>
<td>External</td>
<td>No</td>
<td>30</td>
<td>No</td>
<td>N/A</td>
<td>BM70BLE01FC2-0B03AA</td>
</tr>
<tr>
<td>BM70</td>
<td>Bluetooth BLE module, (12x15x2.4 mm)</td>
<td>-40°C to +85°C</td>
<td>V1.06</td>
<td>On board</td>
<td>Yes</td>
<td>33</td>
<td>FCC, ISED, CE, MIC, KCC, NCC, SRRC</td>
<td>BM70BLES1FC2</td>
<td>BM70BLES1FC2-0B03AA</td>
</tr>
<tr>
<td>BM71</td>
<td>Bluetooth BLE module, (6x8x1.6 mm)</td>
<td>-40°C to +85°C</td>
<td>V1.06</td>
<td>External</td>
<td>No</td>
<td>17</td>
<td>No</td>
<td>N/A</td>
<td>BM71BLE01FC2-0B02AA</td>
</tr>
<tr>
<td>BM71</td>
<td>Bluetooth BLE module, (9x11.5x2.1 mm)</td>
<td>-40°C to +85°C</td>
<td>V1.06</td>
<td>On board</td>
<td>Yes</td>
<td>16</td>
<td>FCC, ISED, CE, MIC, KCC, NCC, SRRC</td>
<td>BM71BLES1FC2</td>
<td>BM71BLES1FC2-0B02AA</td>
</tr>
</tbody>
</table>

Note 1: With the introduction of the IS187xSF-202 IC, the PC tools provided by Microchip which change/control Bluetooth operation have been revised. The correct tool version must be paired with the applicable module/IC part number. All module parts ending with BM7xBLEX1FC2-0BxxAA must use the PC tools ending with 0BxxAA. All module parts ending with BM7xBLEX1FC2-0002AA must use the PC tools ending with 0002AA.

Note 2: The numbers listed under “Orderable Part Number” must be used when purchasing a specific module from Microchip.

Note 3: “Regulatory Model No.” column represents the Model No. listed in Microchip's regulatory notices. The extensions used to order/buy a specific version of the module are listed in the “Orderable Part Number”.
APPENDIX A: CERTIFICATION NOTICES

The BM70 module (BM70BLES1FC2) has received the regulatory approval for the following countries:

- BT SIG/QDID: 74246
- United States/FCC ID: A8TBM70ABCDEFGH
- Canada/ISED
 - IC: 12246A-BM70BLES1F2
 - HVIN: BM70BLES1F2
- Europe/CE
- Japan/MIC: 202-SMD069
- Korea/KCC: MSIP-CRM-mcp-BM70BLES1FC2
- Taiwan/NCC No: CCAN15LP0500T1
- China/SRRC: CMIIT ID: 2015DJ7135

The BM71 module (BM71BLES1FC2) has received the regulatory approval for the following countries:

- BT SIG/QDID: 74246
- United States/FCC ID: A8TBM71S2
- Canada/ISED
 - IC: 12246A-BM71S2
 - HVIN: BM71BLES1FC2
- Europe/CE
- Japan/MIC: 005-101150
- Korea/KCC: MSIP-CRM-mcp-BM71BLES1FC2
- Taiwan/NCC No: CCAN16LP0010T5
- China/SRRC: CMIIT ID: 2016DJ2787

A.1 United States

The BM70/71 Module has received Federal Communications Commission (FCC) CFR47 Telecommunications, Part 15 Subpart C “Intentional Radiators” single-modular approval in accordance with Part 15.212 Modular Transmitter approval. Single-modular transmitter approval is defined as a complete RF transmission sub-assembly, designed to be incorporated into another device, that must demonstrate compliance with FCC rules and policies independent of any host. A transmitter with a modular grant can be installed in different end-use products (referred to as a host, host product, or host device) by the grantee or other equipment manufacturer, then the host product may not require additional testing or equipment authorization for the transmitter function provided by that specific module or limited module device.

The user must comply with all of the instructions provided by the Grantee, which indicate installation and/or operating conditions necessary for compliance.

The host product itself is required to comply with all other applicable FCC equipment authorizations, regulations, requirements and equipment functions that are not associated with the transmitter module portion. For example, compliance must be demonstrated: to regulate-

A.1.1 LABELING AND USER INFORMATION REQUIREMENTS

The BM70 module has been labeled with its own FCC ID number, and if the FCC ID is not visible when the module is installed inside another device, then the outside of the finished product into which the module is installed must also display a label referring to the enclosed module. This exterior label should use the following wording:

For the BM70 module:

Contains Transmitter Module
FCC ID: A8TBM70ABCDEFGH

or

Contains FCC ID: A8TBM70ABCDEFGH

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation

Due to the limited size of the BM71, the FCC Identifier (FCC ID) is displayed in the datasheet only and it cannot be displayed on the module. Therefore, the FCC ID must be placed on the outside of the finished product into which the module is installed must also display a label referring to the enclosed module.

This exterior label can use wording as follows:

For the BM71 module:

Contains Transmitter Module FCC ID: A8TBM71S2

or

Contains FCC ID: A8TBM71S2

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation
The user's manual for the product must include the following statement:

```plaintext
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help
```

Additional information on labeling and user information requirements for Part 15 devices can be found in KDB Publication 784748, which is available at the FCC Office of Engineering and Technology (OET) Laboratory Division Knowledge Database (KDB):

A.2 Canada

The BM70/71 module has been certified for use in Canada under Innovation, Science and Economic Development Canada (ISED, formerly Industry Canada) Radio Standards Procedure (RSP) RSP-100, Radio Standards Specification (RSS) RSS-247 and RSS-Gen. Modular approval permits the installation of a module in a host device without the need to recertify the device.

A.2.1 LABELING AND USER INFORMATION REQUIREMENTS

Labeling Requirements for the Host product (from RSP-100-Issue 11, Section 3): The host product shall be properly labeled to identify the module within the host device.

On the BM71, due to the limited module size, the IC identifier is displayed in the data sheet only and it cannot be displayed on the module label.

The Innovation, Science and Economic Development Canada certification label of a module shall be clearly visible at all times when installed in the host device; otherwise, the host device must be labeled to display the Innovation, Science and Economic Development Canada certification number of the module, preceded by the word “Contains”, or similar wording expressing the same meaning, as follows:

For the BM70 module:

| Contains IC: 12246A-BM70BLES1F2 |

For the BM71 module:

| Contains IC: 12246A-BM71S2 |

User Manual Notice for License-Exempt Radio Apparatus (from Section 8.4, RSS-Gen, Issue 4, November 2014): User manuals for license-exempt radio appara-
tus shall contain the following or equivalent notice in a conspicuous location in the user manual or alternatively on the device or both:

This device complies with Industry Canada’s license-exempt RSS standard(s). Operation is subject to the following two conditions:

1. This device may not cause interference, and
2. This device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de licence. L’exploitation est autorisée aux deux conditions suivantes:

1. l’appareil ne doit pas produire de brouillage, et
2. l’utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonctionnement.

Guidelines on Transmitter Antenna for License Exempt Radio Apparatus:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain must be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

Conformément à la réglementation d’Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d’un type et d’un gain maximal (ou inférieur) approuvé pour l’émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l’intention des autres utilisateurs, il faut choisir le type d’antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l’intensité nécessaire à l’établissement d’une communication satisfaisante.

A.2.2 RF EXPOSURE

All transmitters regulated by the Innovation, Science and Economic Development Canada (ISED) must comply with RF exposure requirements listed in RSS-102 - Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands).

This transmitter is restricted for use with a specific antenna tested in this application for certification, and must not be co-located or operating in conjunction with any other antenna or transmitters within a host device, except in accordance with Innovation, Science and Economic Development Canada multi-transmitter guidelines.

The installation of the transmitter must ensure compliance is demonstrated according to the ISED SAR procedures.

A.2.3 HELPFUL WEB SITES

A.3 Europe

The BM70/71 module is an Radio Equipment Directive (RED) assessed radio module that is CE marked and has been manufactured and tested with the intention of being integrated into a final product.

The BM70/71 module has been tested to RED 2004/53/EC Essential Requirements for Health and Safety (Article (3.1(a)), Electromagnetic Compatibility (EMC) (Article 3.1(b)), and Radio (Article 3.2), which are summarized in the following European Compliance Testing tables.

The ETSI provides guidance on modular devices in the “Guide to the application of harmonised standards covering Article 3.1(b) and Article 3.2 of the Directive 2014/53/EU RED to multi-radio and combined radio and non-radio equipment” document available at http://www.etsi.org/deliver/etsi_eg/203300_203399/2033367/01.01.01_60/eg_203367v010101p.pdf.

Note: To maintain conformance to the testing listed in Table A-1/Table A-2, the module shall be installed in accordance with the installation instructions in this data sheet and shall not be modified. When integrating a radio module into a completed product, the integrator becomes the manufacturer of the final product and is therefore responsible for demonstrating compliance of the final product with the essential requirements against the RED.

A.3.1 LABELING AND USER INFORMATION REQUIREMENTS

The label on the final product which contains the BM70/71 module must follow CE marking requirements.
A.3.2 CONFORMITY ASSESSMENT

From ETSI Guidance Note EG 203367, section 6.1
Non-radio products are combined with a radio product:
If the manufacturer of the combined equipment installs
the radio product in a host non-radio product in equivalent
assessment conditions (i.e. host equivalent to the
one used for the assessment of the radio product) and
according to the installation instructions for the radio
product, then no additional assessment of the com-
bined equipment against article 3.2 of the RED is
required.

The European Compliance Testing listed in Table A-1
and Table A-2 are performed using the integral ceramic
chip antenna.

A.3.2.1 SIMPLIFIED EU DECLARATION OF
CONFORMITY

Hereby, Microchip Technology Inc. declares that the
radio equipment type BM70/71 is in compliance with

The full text of the EU declaration of conformity, for this
product, is available at: http://www.micro-
chip.com/design-centers/wireless-connectivity

A.3.3 HELPFUL WEB SITES

A document that can be used as a starting point in
understanding the use of Short Range Devices (SRD)
in Europe is the European Radio Communications
Committee (ERC) Recommendation 70-03 E, which

TABLE A-1: EUROPEAN COMPLIANCE TESTING (BM70 MODULE)

<table>
<thead>
<tr>
<th>Certification</th>
<th>Standards</th>
<th>Article</th>
<th>Laboratory</th>
<th>Report Number</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health</td>
<td>EN300328 V1.9.1/EN62479:2010</td>
<td></td>
<td></td>
<td>10053580 001</td>
<td>2015-12-10</td>
</tr>
<tr>
<td>EMC</td>
<td>EN301489-1 V1.9.2</td>
<td>[3.1(b)]</td>
<td>TUV</td>
<td>10051137 002</td>
<td>2016-01-08</td>
</tr>
<tr>
<td></td>
<td>EN301489-17 V2.2.1</td>
<td></td>
<td>Rheinland</td>
<td>10051137 003</td>
<td>2017-05-26</td>
</tr>
<tr>
<td></td>
<td>EN301489-17 V2.1.1</td>
<td></td>
<td>Taiwan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN301489-17 V2.2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN301489-17 V3.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN301489-17 V3.2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio</td>
<td>EN300328 V1.9.1</td>
<td>(3.2)</td>
<td></td>
<td>10053580 001</td>
<td>2015-12-10</td>
</tr>
<tr>
<td></td>
<td>EN300328 V2.1.1</td>
<td></td>
<td></td>
<td>50067510 001(1)</td>
<td>2017-10-04</td>
</tr>
</tbody>
</table>

Note 1: RF reports apply only to modules using the part IS1870SF-202.

TABLE A-2: EUROPEAN COMPLIANCE TESTING (BM71 MODULE)

<table>
<thead>
<tr>
<th>Certification</th>
<th>Standards</th>
<th>Article</th>
<th>Laboratory</th>
<th>Report Number</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health</td>
<td>EN62479:2010</td>
<td></td>
<td></td>
<td>10053433 001</td>
<td>2015-12-29</td>
</tr>
<tr>
<td>EMC</td>
<td>EN301489-1 V1.9.2</td>
<td>[3.1(b)]</td>
<td>TUV</td>
<td>10052964 001</td>
<td>2015-10-22</td>
</tr>
<tr>
<td></td>
<td>EN301489-17 V2.2.1</td>
<td></td>
<td>Rheinland</td>
<td>10052964 002</td>
<td>2017-05-26</td>
</tr>
<tr>
<td></td>
<td>EN301489-17 V2.1.1</td>
<td></td>
<td>Taiwan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN301489-17 V2.2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN301489-17 V3.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN301489-17 V3.2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio</td>
<td>EN300328 V1.9.1</td>
<td>(3.2)</td>
<td></td>
<td>10053433 001</td>
<td>2015-12-29</td>
</tr>
<tr>
<td></td>
<td>EN300328 V2.1.1</td>
<td></td>
<td></td>
<td>50067509 001(1)</td>
<td>2017-04-10</td>
</tr>
</tbody>
</table>

Note 1: RF reports apply only to modules using the part IS1871SF-202.
can be downloaded from the European Radio Communications Committee (ECC) at: http://www.ecodcdb.dk/.

Additional helpful web sites are:

• European Conference of Postal and Telecommunications Administrations (CEPT): http://www.cept.org
• European Telecommunications Standards Institute (ETSI): http://www.etsi.org

A.4 Japan

The BM70/71 module has received type certification and is labeled with its own technical conformity mark and certification number as required to conform to the technical standards regulated by the Ministry of Internal Affairs and Communications (MIC) of Japan pursuant to the Radio Act of Japan.

Integration of this module into a final product does not require additional radio certification provided installation instructions are followed and no modifications of the module are allowed. Additional testing may be required:

• If the host product is subject to electrical appliance safety (for example, powered from an AC mains), the host product may require Product Safety Electrical Appliance and Material (PSE) testing. The integrator should contact their conformance laboratory to determine if this testing is required.
• There is an voluntary Electromagnetic Compatibility (EMC) test for the host product administered by VCCI: http://www.vcci.jp/vcci_e/index.html

A.4.1 LABELING AND USER INFORMATION REQUIREMENTS

The label on the final product which contains the BM70/71 module must follow Japan marking requirements. The integrator of the module should refer to the labeling requirements for Japan available at the Ministry of Internal Affairs and Communications (MIC) website.

For the BM70 module, due to a limited module size, the technical conformity logo and ID are displayed in the data sheet and/or packaging and cannot be displayed on the module label. The final product in which this module is being used must have a label referring to the type certified module inside:

For the BM71 module, due to the limited module size, the technical conformity logo and ID are displayed in the data sheet only and cannot be displayed on the module label. The final product in which this module is being used must have a label referring to the type certified module inside:

A.4.2 HELPFUL WEB SITES

Ministry of Internal Affairs and Communications (MIC): http://www.tele.soumu.go.jp/e/index.htm
Association of Radio Industries and Businesses (ARIB): http://www.arib.or.jp/english/

A.5 Korea

The BM70/71 module has received certification of conformance in accordance with the Radio Waves Act. Integration of this module into a final product does not require additional radio certification provided installation instructions are followed and no modifications of the module are allowed.

A.5.1 LABELING AND USER INFORMATION REQUIREMENTS

The label on the final product which contains the BM70/71 module must follow KC marking requirements. The integrator of the module should refer to the labeling requirements for Korea available on the Korea Communications Commission (KCC) website.

The BM70 module is labeled with its own KC mark. The final product requires the KC mark and certificate number of the module:
On the BM71 module, due to the limited module size (9.0 mm x 11.5 mm) the KC mark and identifier is displayed in the data sheet only and cannot be displayed on the module label. The final product requires the KC mark and certificate number of the module:

![KC Mark](image)

A.5.2 HELPFUL WEB SITES
Korea Communications Commission (KCC):
http://www.kcc.go.kr
National Radio Research Agency (RRA):
http://rra.go.kr

A.6 Taiwan
The BM70/71 module has received compliance approval in accordance with the Telecommunications Act. Customers seeking to use the compliance approval in their product should contact Microchip Technology sales or distribution partners to obtain a Letter of Authority.

Integration of this module into a final product does not require additional radio certification provided installation instructions are followed and no modifications of the module are allowed.

A.6.1 LABELING AND USER INFORMATION REQUIREMENTS
For the BM70 module, due to the limited module size, the NCC mark and ID are displayed in the data sheet only and cannot be displayed on the module label:

![NCC Label](image)

On the BM71 module, due to the limited module size (9.0 mm x 11.5 mm) the NCC mark and identifier is displayed in the data sheet only and cannot be displayed on the module label:

![NCC Label](image)

The user's manual should contain following warning (for RF device) in traditional Chinese:

注意！

A.7 China
The BM70/71 module has received certification of conformity in accordance with the China MIIT Notice 2014-01 of State Radio Regulation Committee (SRRC) certification scheme. Integration of this module into a final product does not require additional radio certification, provided installation instructions are followed and no modifications of the module are allowed.

A.7.1 LABELING AND USER INFORMATION REQUIREMENTS
The BM70 module is labeled with its own CMIIT ID as follows:

![CMIIT ID](image) When Host system is using an approved Full Modular Approval (FMA) radio: The host must bear a label containing the statement “This device contains SRRC approved Radio module CMIIT ID: 2015DJ7135”.

On the BM71 module, due to the limited module size (9.0 mm x 11.5 mm) the CMIIT ID is displayed in the data sheet only and cannot be displayed on the module label:

![CMIIT ID](image) When Host system is using an approved Full Modular Approval (FMA) radio: The host must bear a label containing the statement “This device contains SRRC approved Radio module CMIIT ID: 2016DJ2787”.

The BM70/71 module has received certification of conformity in accordance with the China MIIT Notice 2014-01 of State Radio Regulation Committee (SRRC) certification scheme. Integration of this module into a final product does not require additional radio certification, provided installation instructions are followed and no modifications of the module are allowed.

A.7.1 LABELING AND USER INFORMATION REQUIREMENTS
The BM70 module is labeled with its own CMIIT ID as follows:

![CMIIT ID](image) When Host system is using an approved Full Modular Approval (FMA) radio: The host must bear a label containing the statement “This device contains SRRC approved Radio module CMIIT ID: 2015DJ7135”.

On the BM71 module, due to the limited module size (9.0 mm x 11.5 mm) the CMIIT ID is displayed in the data sheet only and cannot be displayed on the module label:

![CMIIT ID](image) When Host system is using an approved Full Modular Approval (FMA) radio: The host must bear a label containing the statement “This device contains SRRC approved Radio module CMIIT ID: 2016DJ2787”.

The user's manual should contain following warning (for RF device) in traditional Chinese:

注意！
A.8 Other Regulatory Information

- For information about other countries' jurisdictions not covered here, refer to the http://www.microchip.com/design-centers/wireless-connectivity.
- Should other regulatory jurisdiction certification be required by the customer, or the customer needs to recertify the module for other reasons, contact Microchip for the required utilities and documentation.
APPENDIX B: REVISION HISTORY

Revision A (October 2015)
This is the initial released version of the document.

Revision B (October 2015)
This revision includes the following changes as well as minor updates to text and formatting, which were incorporated throughout the document.

TABLE B-1: MAJOR SECTION UPDATES

<table>
<thead>
<tr>
<th>Section</th>
<th>Update Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Features”</td>
<td>This section is updated with certification informations. The data from this section has been reformatted and distributed in other sections.</td>
</tr>
<tr>
<td>“MAC/Baseband/Higher Layer Features”, • “External antenna (BM7xBLE01FC2) connection through RF pad”, “Operating Conditions”, and FIGURE 2: “BM71 MODULE”</td>
<td>These sections are newly added.</td>
</tr>
<tr>
<td>“General Description”</td>
<td>This section was previously placed in chapter 1 and has been moved here.</td>
</tr>
<tr>
<td>1.0 “Device Overview”</td>
<td>Table 1-2, Table 1-4, and Table 1-5 are added.</td>
</tr>
<tr>
<td>2.0 “Application Information”</td>
<td>This chapter contains information that was previously located in Appendix A and Electrical Characteristics.</td>
</tr>
<tr>
<td>8.0 “Ordering Guide”</td>
<td>Table 8-1 is updated with Y-axis information and certification information.</td>
</tr>
<tr>
<td>Appendix A: “Certification Notices”</td>
<td>This section is updated with images for the Certification Marking and their numbers. The regulatory information is updated to be the latest.</td>
</tr>
<tr>
<td>5.0 “Electrical Characteristics”</td>
<td>Table 5-3 is added</td>
</tr>
</tbody>
</table>

Revision C (November 2015)
Updated Appendix A: “Certification Notices”.

Revision D (March 2016)
This revision includes the following changes as well as minor updates to text and formatting incorporated throughout the document.

TABLE D-1: MAJOR SECTION UPDATES

<table>
<thead>
<tr>
<th>Section</th>
<th>Update Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 “Interface Description”</td>
<td>This section is updated with a note. Updated Figure 1-1, Figure 1-2, Figure 1-6</td>
</tr>
<tr>
<td>2.1 “Reference Schematics”</td>
<td>Figure 2-1 through Figure 2-8, Figure 2-10, Figure 5-1, Figure 5-2, Figure 2-11, Figure 4-1 and Table 4-1, Table 8-1</td>
</tr>
<tr>
<td>“Absolute Maximum Ratings”</td>
<td>Updated this section.</td>
</tr>
<tr>
<td>5.1.1 “Tx/Rx current consumption details”</td>
<td>Updated this section with new content.</td>
</tr>
<tr>
<td>8.0 “Ordering Guide”</td>
<td>This section is updated with a note.</td>
</tr>
<tr>
<td>Appendix A: “Certification Notices”</td>
<td>Content has been updated</td>
</tr>
</tbody>
</table>
Revision E (January 2017)
This revision includes the following changes as well as minor updates to text and formatting, which were incorporated throughout the document.

TABLE E-1: MAJOR SECTION UPDATES

<table>
<thead>
<tr>
<th>Section</th>
<th>Update Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Features”</td>
<td>Updated this section.</td>
</tr>
<tr>
<td>“MAC/Baseband/Higher Layer Features”</td>
<td>Updated this section.</td>
</tr>
<tr>
<td>• “External antenna (BM7xBLE01FC2) connection through RF pad”</td>
<td>Updated the average current details.</td>
</tr>
<tr>
<td>“Operating Conditions”</td>
<td>Updated the operating temperature details.</td>
</tr>
<tr>
<td>1.0 “Device Overview”</td>
<td>Updated Figure 1-1, Figure 1-2, Table 1-1 and Table 1-2</td>
</tr>
<tr>
<td></td>
<td>Deleted Table 1-4</td>
</tr>
<tr>
<td>2.0 “Application Information”</td>
<td>Updated Figure 2-9 through Figure 2-11 and Figure 2-14</td>
</tr>
<tr>
<td>3.0 “Module Configuration”</td>
<td>Added Table 3-2 and updated this section.</td>
</tr>
<tr>
<td>4.3 “Antenna Considerations”</td>
<td>Added new section.</td>
</tr>
<tr>
<td>5.0 “Electrical Characteristics”</td>
<td>Updated ambient temperature details for part numbers ending with 0002 and 0B0x.</td>
</tr>
<tr>
<td></td>
<td>Deleted Table 5-2. Updated Table 5-1, Table 5-3. Added Table 5-2</td>
</tr>
<tr>
<td>8.0 “Ordering Guide”</td>
<td>Updated Table 8-1</td>
</tr>
<tr>
<td>Appendix A: “Certification Notices”</td>
<td>Updated this section.</td>
</tr>
</tbody>
</table>

Revision F (May 2017)
This revision includes the following changes as well as minor updates to text and formatting were incorporated throughout the document.

TABLE F-1: MAJOR SECTION UPDATES

<table>
<thead>
<tr>
<th>Section</th>
<th>Update Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 “Device Overview”</td>
<td>Updated Table 1-1, Figure 1-6</td>
</tr>
<tr>
<td>6.0 “Physical dimensions”</td>
<td>Updated Figure 6-5 and Figure 6-6</td>
</tr>
<tr>
<td>8.0 “Ordering Guide”</td>
<td>Added Regulatory model information in Table 8-1</td>
</tr>
<tr>
<td>Appendix A: “Certification Notices”</td>
<td>Added the report number of “Radio” certification and notes in Table A-1 and Table A-2</td>
</tr>
</tbody>
</table>

Revision G (January 2018)
This revision includes the following changes as well as minor updates to text and formatting were incorporated throughout the document.

TABLE G-1: MAJOR SECTION UPDATES

<table>
<thead>
<tr>
<th>Section</th>
<th>Update Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Features”</td>
<td>Updated Canada certification information.</td>
</tr>
<tr>
<td>1.0 “Device Overview”</td>
<td>Updated the NOTE.</td>
</tr>
<tr>
<td>2.0 “Application Information”</td>
<td>Updated 2.1“Reference Schematics”, Figure 2-1, Figure 2-3, Figure 2-5 and Figure 2-7.</td>
</tr>
<tr>
<td>8.0 “Ordering Guide”</td>
<td>Updated Table 8-1 with Canada regulatory certification information and deleted Microchip IC information.</td>
</tr>
</tbody>
</table>
Revision H (July 2018)

This revision includes the following changes as well as minor updates to text and formatting were incorporated throughout the document.

TABLE H-1: MAJOR SECTION UPDATES

<table>
<thead>
<tr>
<th>Section</th>
<th>Update Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A: “Certification Notices”</td>
<td>Updated Regulatory Approval Section.</td>
</tr>
</tbody>
</table>

Revision J (January 2019)

This revision includes the following changes as well as minor updates to text and formatting were incorporated throughout the document.

TABLE I-1: MAJOR SECTION UPDATES

<table>
<thead>
<tr>
<th>Section</th>
<th>Update Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna</td>
<td>Added Antenna range values.</td>
</tr>
<tr>
<td>TABLE 1-1: “BM70/71 PIN Description”</td>
<td>Updated P1_6 pin.</td>
</tr>
</tbody>
</table>
THE MICROCHIP WEBSITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://microchip.com/support
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBloq, KeeLoq, Kleer, LANcheck, LINK MD, maxXtyleur, maxXTouch, MediabLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntellIMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-4097-0
Worldwide Sales and Service

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 508-799-8016
Fax: 508-767-7784

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9886-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-2323-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2386138
China - Zuhai
Tel: 86-756-3210040
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880-3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-031-4726286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenburg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

Total 136 entries