Introduction

This document introduces the Proximetry cloud based Atmel® Smart Plug. It explains how to get the firmware code from Atmel Start, the source project structure and the APIs of Proximetry Cloud Agent Library. It also describes the setup procedure and basic operations for a Proximetry cloud based smart plug.

Features

- Proximetry connectivity solutions with low footprint Agent library and SDK
- Getting started and setup procedure for Proximetry cloud based smart plug
- Remote control and scheduled control with the Proximetry cloud
- Device sensors data collection and UI for browsing historical data on graphs
- The Proximetry Cloud Agent Main APIs

Figure 1. Atmel Smart Plug with Proximetry Cloud
Table of Contents

Introduction ... 1
Features .. 1
1 Overview... 3
 1.1 Smart Plug Block Diagram ... 3
2 Proximetry Cloud Account Registration and Activation 4
 2.1 Proximetry Cloud Account Registration .. 5
 2.2 Active Proximetry Cloud Account .. 6
3 Development Tools .. 8
4 Getting Started with Proximetry Cloud Project 9
 4.1 Download Proximetry Cloud Project from Atmel Start 9
 4.2 Import Proximetry Cloud Project into Atmel Studio 7.0 10
5 Firmware Architecture ... 12
 5.1 Wi-Fi Connectivity ... 13
 5.2 Security .. 13
 5.2.1 Hardware Crypto Engine .. 13
 5.2.2 Software Crypto Library .. 14
 5.3 Sensor Control .. 14
 5.4 QTouch PTC Library .. 14
 5.5 Proximetry Cloud Agent ... 14
6 Source Code Structure .. 15
7 Proximity Cloud Connectivity Based on Smart Plug 16
 7.1 Register Smart Plug Device in Proximetry Cloud 16
 7.2 View Smart Plug Device Information through Proximetry Cloud Account ... 17
8 Proximetry Cloud Usage and Operations 18
 8.1 Device Activation Code Operations ... 18
 8.2 Proximetry Cloud Device List Operations .. 20
 8.3 Proximetry Could Device Group Operations 22
 8.4 Smart Plug ON/OFF Control ... 24
 8.5 Smart Plug Scheduled Control ... 25
9 Proximetry Cloud APIs introduction .. 26
10 Memory Footprint ... 27
11 Revision History .. 28
1 Overview

The Atmel smart plug is an IoT edge node from an IoT system level of view. It acts as a Wi-Fi® Access Point (AP) during initial setup and can be accessed and configured by the Android app, and will afterwards act as a connected node on the home Wi-Fi network.

In order to manage smart plug devices through Proximetry, the users should first register a Proximetry cloud account on the official Proximetry website and then register the smart plug devices in the Proximetry cloud.

After the smart plug has been assigned with a correct device activation code provided by Proximetry and successfully connected to a Wi-Fi network, the smart plug device node can be found on the Proximetry cloud account.

The smart plug work flow is shown in the figure below. This is a quite common setup for any IoT system design.

![Smart Plug Work Flow](image)

As shown in Figure 1-1, there are two working stages. The first one is adding new plug stage, which is also known as provisioning stage. The second one is data exchange stage, in which the plug has been added into an existing Wi-Fi network and can be operated via the Android App and Proximetry cloud. The Android App is mandatory in the Wi-Fi Provision stage. In the second stage, the users can either use the Android App or the Proximetry cloud to communicate with the smart plug device. In this application note we will only focus on the operation through Proximetry cloud.

1.1 Smart Plug Block Diagram

The smart plug usually works as an edge node in a typical IoT scenario. The block diagram of the smart plug is shown in Figure 1-2.
For more details about the smart plug operation, refer to the Atmel application note AT15736: Atmel Smart Plug Getting Started Guide.

For more details about the smart plug hardware design, refer to the Atmel application note AT16225: Atmel Smart Plug Hardware Design User Guide.

2 Proximetry Cloud Account Registration and Activation

In order to manage the smart plug devices through the Proximetry cloud, the users should first register an account for the Atmel cloud portal on the Proximetry website. The Proximetry cloud you registered must be linked to your smart plug devices, and will then allow controlling those device nodes from the cloud.

Open a Google Chrome* window and navigate to www.proximetry.com to start the registration process.

Note: *) Google Chrome is the only supported web browsers by Proximetry cloud.
2.1 **Proximetry Cloud Account Registration**

It just need to take a few steps to register a Proximetry cloud account. First of all, users should get a valid e-mail address which it will be used to receive e-mail information sent from Proximetry and validate the Proximetry cloud account.

- On the Proximetry website, go to Proximetry Atmel Cloud login entrance to enter the account registration page

Figure 2-2. Proximetry Atmel Cloud Login Entrance

- Click on “Create an Account” to create a new Proximetry cloud account

Figure 2-3. Proximetry Cloud Login Page

- Fill in the blanks with all the necessary information especially a valid e-mail address
Click on “Sign Up” button to finish the account registration process. You should receive an e-mail from Proximetry shortly after and in the next section we will describe how to activate the registered Proximetry cloud account.

2.2 **Activate the Proximetry Cloud Account**

After you have created an account through Proximetry website, you should receive a confirmation e-mail.

- Open your e-mail to check the Proximetry cloud account status. You should receive a confirmation e-mail as shown in **Figure 2-5**.
Figure 2-5. Confirmation E-mail from Proximetry

Thank you for signing up for the Proximetry Portal!
Your account is awaiting for authorization. You will receive an account activation email soon.
If you haven't received an activation email within 24 hours of your registration please contact us.

Sincerely,
The Proximetry Team

Copyright © 2015 Proximetry, Inc. All rights reserved.

- You should receive another e-mail some hours later with a Device Activation Code provided by Proximetry

Figure 2-6. Authorization Pass E-mail from Proximetry

Thank you for activating your account, and welcome to the Atmel Cloud!

Login/Email: jiao223@126.com

Your Device Activation Code: 000001d7da504e0029de656eb1365bd74543a56a2dee03253f0397a7fee2a4fbb5e9844329

Looking for more information? For any questions please contact us.

Sincerely,
The Proximetry Team

Copyright © 2015 Proximetry, Inc. All rights reserved.

Note: The Device Activation Code is used to connect Atmel Smart Plug device to your Proximetry cloud account. Users should program the device activation code in the smart plug firmware. Each smart plug device should also contain a unique device activation code. For other device activation codes, you should create them through your Proximetry cloud account.

- Login in to the Proximetry cloud with your Proximetry cloud account
Now you have successfully registered and activated your Proximetry cloud account. Just close the popup window in the above figure and you are now on the Proximetry cloud account dashboard page. As you haven't registered any smart plug device, you can't find any smart plug device information on this page.

3 Development Tools

The Proximetry Cloud firmware for smart plug is based on Atmel Start ASFv4 instead of Atmel Studio ASFv3. Users can download the Proximetry Cloud project source files from the Atmel Start website: http://start.atmel.com/.

To download or debug the firmware, the following development toolchain is used:

- **Atmel Studio 7**: Version: 7.0.634 - or above.
- **Atmel Start**: Users need to download the Proximetry Cloud project from Atmel Start and then import it into Atmel Studio based project.
- Programming and debugging tool: Atmel SAM-ICE™.
- SAM-ICE Adaptor: a minimized (1.27mm pitch 10-pin header) adaptor for Atmel SAM-ICE. For more details, refer to Atmel AVR®2033: SAM-ICE Adapter - Hardware User Manual.

WARNING

The Atmel smart plug is designed as a real product reference design. To avoid electrical hazard, opening the case while powered by the AC input is strictly prohibited. Make sure that all connections are safe before connecting any development tools to the plug.
4 **Getting Started with Proximetry Cloud Project**

The Proximetry cloud project for smart plug is already integrated in Atmel Start. Users just need to follow a few steps to download the Proximetry cloud project from Atmel Start website. The Proximetry cloud project is an .atzip file and can be imported into Atmel Studio 7.0. An Atmel Studio project will be created after the importing process finishes.

4.1 **Download Proximetry Cloud Project from Atmel Start**

The Proximetry cloud project for Atmel Smart Plug can be downloaded from the Atmel Start website. Follow the steps below to get the Proximetry Cloud project source code.

- Go to the start.atmel.com and double click on “Brower all Examples” button to get all the smart plug related project list

![Atmel Start Main Page](image)

Figure 4-1. Atmel Start Main Page

- All the smart plug examples will be listed by typing “plug” in the search box
There are three projects related with smart plug devices: Smart Plug, Smart Plug with JD Cloud, and Smart Plug with Proximetry Cloud. As we are using the Proximetry cloud we will choose the Smart Plug with Proximetry Cloud project. You can either download the project as an .atzip file by clicking on “DOWNLOAD SELECTED EXAMPLE” button or reconfigure the project by clicking on the “CONFIGURE SELECTED EXAMPLE” button.

- Download the project by clicking on “DOWNLOAD SELECTED EXAMPLE” and save it on your computer

Figure 4-3. Proximetry Cloud .atzip Project Downloaded from Atmel Start

Now you get the Proximetry cloud project from Atmel Start website and the default project name is "Smart Plug with Proximetry Cloud.atzip".

4.2 Import Proximetry Cloud Project into Atmel Studio 7.0

The Proximetry Cloud project downloaded from Atmel Start can be imported into Atmel Studio 7.0 seamlessly. The users just need to open Atmel studio 7.0 and import the “Smart Plug with Proximetry Cloud.atzip” into Atmel studio 7.0. The Atmel Studio will automatically extract all the project source files from the .atzip package and generate an Atmel Studio project.

- Open Atmel Studio 7.0 and go to File -> Import -> Atmel Start Project menu
Figure 4-4. Import Menu on Atmel Studio 7.0

Figure 4-5. Import Atmel Start Project Wizard

- Click on the “Browse” button to select the Smart Plug with Proximetry Cloud.atzip file on your computer
You can modify the project name accordingly to replace the default project name.

- Click on the “OK” button to create an Atmel Studio project from the .atzip file

Figure 4-6. Atmel Studio Project Created from .atzip File

Now the Proximetry cloud project from Atmel Start has successfully imported in Atmel studio 7.0 and the Atmel Studio project is created.

5 Firmware Architecture

The reference design firmware runs on the ATSAMD21G18 MCU embedded in the ATSAMW25 module - performing the following tasks:

- Wi-Fi connectivity – ATWINC1500 driver
- Security – ATECC508A driver and software AES
- Communication protocol and logical control
- Sensor control:
 - Energy measurement – ATM90E26 driver
 - MCU internal temperature sensor
- Touch Button - QTouch® PTC library
- LED indicator – Wi-Fi status and On/Off status
- Proximetry Cloud Agent – Communicating with Proximetry Cloud

As the firmware does not use an RTOS, all these function blocks are running in an endless loop after the initialization functions have been called. Depending on different requirement, the function blocks are called at predefined intervals.

The application layer timer is based on the ARM® Cortex®-M0+ SysTick timer. It's initialized to generate a 1ms interrupt and a millisecond tick is incremented in its interrupt handler. The other application layer timers are derived from this tick.
The low level drivers are based on Atmel Start and users need to be familiar with Atmel Start code styles. A quick understanding of Atmel Start can be found on this Link:
http://start.atmel.com/static/help/index.html?GUID-0E128A71-D76F-4FFC-8049-6D31238B672D.

Figure 5-1. Smart Plug Firmware Structure

5.1 **Wi-Fi Connectivity**

The smart plug Wi-Fi function is based on the Atmel industry-leading low-power 2.4GHz IEEE® 802.11 b/g/n Wi-Fi ATWINC1500 SoC (embedded inside the ATSAMW25 module). It provides an integrated software solution with application and network services (integrated TCP/IP stack).

For more details about the Wi-Fi firmware development, refer to Software Programming Guide for SAM W25 Xplained Pro and ATWINC1500 Wi-Fi Network Controller - Software Design Guide.

5.2 **Security**

Security is an integrated part of the smart plug reference design, as it is a key design factor for any IoT application. Both a hardware crypto device and software crypto library are used to achieve the desired security features. The same security functions are also implemented on the Android app side (provisioning stage) to allow them to communicate with each other.

5.2.1 **Hardware Crypto Engine**

Atmel CryptoAuthentication™ device ATECC508A is used to perform high-speed public key (PKI) algorithms: ECDH (Elliptic Curve Diffie-Hellman) key agreement and ECDSA (Elliptic Curve Digital Signature Algorithm). This offloads many heavy operations from the MCU, leaving more cycles for the application. The ATECC508A crypto device also has a secure hardware-based cryptographic key storage and cryptographic countermeasures, which are more secure than software-based key storage. For more information about ATECC508A driver support, refer to http://www.atmel.com/tools/CryptoAuthLib.aspx.
Also note that the ATECC508A should be provisioned and/or personalized in production before it’s used in a final product. For more detail, refer to the application notes below:

- ATECC Production Provisioning Guide
- ATSHA204A and ATECC508A Personalization Guide

Note: The SN of the ATECC508A included in the SAMW25 module is different with normal commercial devices. Contact Atmel technical support channel for more information.

5.2.2 Software Crypto Library

Besides the hardware crypto engine, a software crypto library is also included to perform the AES algorithm. In the smart plug reference design, the AES-128 CBC mode is used to encrypt and decrypt the data. A third-party library LibTomCrypt from http://www.libtom.net/ is used for this purpose.

5.3 Sensor Control

The smart plug includes two sensors; one is an energy measurement sensor (ATME90E26), while the other is the internal temperature sensor of the SAM D21 MCU.

The ATM90E26 is a high-performance energy metering device that is accessed by the MCU via a UART interface. It is used to measure real-time output current, voltage, power, and accumulated electrical energy output by the smart plug. Check more about ATM90E26 usage in application note: http://www.atmel.com/Images/Atmel-46102-SE-M90E26-ApplicationNote.pdf.

The temperature sensor is integrated with the MCU ADC peripheral. It is easy to read the ADC result and calculate the temperature. Read more about this temperature sensor in the ATSAMD21G18 datasheet.

5.4 QTouch PTC Library

The MCU (ATSAMD21G18) embedded in the ATSAMW25 module is equipped with a PTC (peripheral touch controller) module. Due to the autonomous operation, the PTC uses very little CPU resources and provides high quality touch performance. Atmel provides the QTouch PTC library to support code development, making it easy to add a touch button to the smart plug design.

For more about touch application based on the PTC, refer to:

5.5 Proximetry Cloud Agent

Proximetry provides a library named libampagent.a to access Proximetry Cloud. The library implements a lot of interfaces that can be used to initialize and set up communication with the Proximetry cloud. The users can use the related interfaces to register the smart plug device with a valid device activation code in Proximetry cloud. After the communication channel is successfully set up, the smart plug device can write to or read from Proximetry cloud through the Proximetry Could Agent.
6 Source Code Structure

From Section 0 of this user guide, the .atzip Proximetry Cloud project downloaded from Atmel Start can be imported in Atmel Studio 7.0 and finally an Atmel Studio project will be created as shown in Figure 6-1.

Figure 6-1. Proximetry Cloud Project on Atmel Studio

The source code structure of Proximetry cloud project is as below:

- **Libraries**: The Proximetry Could Project Library. There are three libraries in the Proximetry cloud Project: libm, libsamd21_touch_gcc.a, and libampagent.a.
 - `libm`: default math library for each Atmel Start project
 - `libsamd21_qtouch_gcc.a`: library for QT Touch operation, provided by Atmel
 - `libampagent.a`: library for communicating with Proximetry Cloud, provided by Proximetry

- **Config**: Configuration files for different peripherals and components. Users can find all the MCU peripheral configuration files under the “Config” directory. Take the hpl_adc1_v120_config.h as an example, it represents the configuration file for ADC peripheral.

- **Device Startup**: The samd21g18a_flash.ld is the default device link file for the samd21g18a chip. By default, the firmware will be downloaded into the flash address with offset at 0x0.

- **hal**: Hardware Abstraction Layer for Different Peripherals. The `hal` directories contain four sub-directories; `hpl`, `hri`, `include`, and `src`. The directories and files are auto generated if the users try to create an Atmel Start based project. Once a peripheral is selected and configured properly through Atmel Start webpage, the corresponding `hpl` and `hri` files and directories will also be created automatically.
 - **hpl**: hal proxy layer
 - **hri**: hal register interface
 - **include**: include files for hal
 - **src**: source files for hal
• **prox_agent_0_0_3**: Proximetry Cloud Agent Library and Interfaces.
 - **libampagent.a**: Proximetry Cloud Agent Library
 - **amp_agent.h**: This file exposes all the interfaces to communicate with the Proximetry cloud
 - **prox_agent_config.h**: This file mainly defines the cloud server address and port information and pre-defined activation code

• **smart plug**: The smart plug main directory contains main source files needed for UI, crypto, energy sensor, QTouch, Proximetry Agent, etc. The main function is contained in file main_samd21_prox.c.

• **winc1500**: ATWINC1500 Wi-Fi BSP. The ATWINC1500 Wi-Fi BSP is located in the directory winc1500. It contains all interfaces/drivers to communicate with the ATWINC1500 from the SAM D21.

7 Proximity Cloud Connectivity Based on Smart Plug

There are several steps to register a smart plug device in Proximetry cloud. After the smart plug firmware has been programmed with a valid device activation code and configured by Android App to connect with a Wi-Fi router, the users can view the registered smart plug device information through the Proximetry cloud.

Follow the steps below to register a smart plug device in Proximetry cloud.

7.1 Register Smart Plug Device in Proximetry Cloud

- On the Smart_Plug_with_Proximetry_Cloud project, open the prox_agent_config.h file and replace the device activation code received in your e-mail

Figure 7-1. Programming Device Activation Code in Smart Plug Firmware

- Save the file, recompile the project, and program the firmware into the smart plug device
- Power on the smart plug and configure the smart plug device to connect to a Wi-Fi router through the android smart plug app
Now the smart plug device has registered into the Proximetry cloud.

Note: Users should refer to AT15736: Atmel Smart Plug Getting Started Guide to setup the smart plug to connect to a Wi-Fi router.

7.2 View Smart Plug Device Information through Proximetry Cloud Account

- Wait until the smart plug connects to a Wi-Fi router, log in to the Proximetry cloud with your account through: www.proximetry.com.

Figure 7-2. Proximetry Cloud Account Dashboard

- Select DEVICES->DEVICE LIST to view the registered smart plug device

Figure 7-3. Smart Plug Device List

- Double click “SAMD21 PROX EXAMPLE” to get more detailed information about this device node
8 Proximetry Cloud Usage and Operations

The Proximetry cloud provides several ways to manage and operate the registered smart plug devices. We will introduce Proximetry cloud operations and usage and show how to manage the registered smart plug devices.

Proximetry cloud operations Include:

- Device activation code operations
- Device List operations
- Device Group operations

Proximetry cloud device control:

- Smart Plug device On/Off control
- Smart Plug device scheduled control

8.1 Device Activation Code Operations

The device activation code provides the only connection between your Proximetry cloud account and the smart plug device. You need to program a correct device activation code in the smart plug firmware in order to connect to your Proximetry cloud. Log in to the Proximetry cloud with your registered account, and then navigate to DEVICES -> DEVICE ACTIVATION CODES to get the device activation code list as shown in Figure 8-1.
A device activation code list will show up. Note that there is a default device active code created by Proximetry when your Proximetry account was created for the first time.

- Click on the “+” icon on the top right to add a new device activation code.

- Click on the “X” icon on the top right to delete a device activation code. Once it is deleted, it can’t be recovered and the deleted device activation code can’t be used any more.

- Click on the export icon as shown in Figure 8-4 to export all the device activation code to a file.
In mass production, each device will need a unique device activation code. Figure 8-4 provides a convenient way to export all the device activation codes in batch to a file. Note that you should click the “+” to create enough device activation codes first.

8.2 Proximetry Cloud Device List Operations

The users can get the smart plug device list under the Proximetry Cloud Account by clicking on menu “DEVICE -> DEVICE LIST”. Go to “DEVICE -> DEVICE LIST”.

In Figure 8-5 there are two smart plug devices in the list. Each device is assigned with a Device UUID. This UUID is automatically created by Proximetry Cloud when a device is registered.

- Double click on the Device UUID or Device Name to view the device’s detailed information
The user can also check a specific device node and click on the delete icon on the top right to delete a specific device.

Select the device nodes you want to operate and click on the configuration icon on the top right to perform a specific task based on the selected nodes.
One or more device node can be selected each time. A new window will pop up as shown in Figure 8-9.

The users can see the Wi-Fi configuration information, perform the ON/OFF operation, and set some schedule on the smart plug device, etc. We will introduce the ON/OFF and schedule operation later.

8.3 Proximetry Cloud Device Group Operations

Smart plug devices can be arranged as a device group in the Proximetry cloud for better management. Go to "DEVICES"->"DEVICE GROUPS" to create a device group and assign devices to a group.
Figure 8-10. Proximetry Cloud Group Operation Main Page

- Click on the “+” icon to add a new group. Enter the group name and click on “NEXT” button to continue.

Figure 8-11. Adding a New Device Group in Proximetry Cloud

- Click on the “+” button to define the Filter Condition
There are a lot of Atmel device models listed in the Proximetry cloud. The smart plug device model name is “Atmel Wifi Wall Plug”.

- Follow the wizard and click on the “NEXT” button and a new group will be created.

Now you have created a group containing two smart device nodes.

8.4 Smart Plug ON/OFF Control

Smart Plug devices can be controlled to be ON/OFF status through the Proximetry cloud. The following steps show how to control the ON/OFF action on smart plug devices.

- Go to the device list table and double click on the name (SAMD21 PRO EXAMPLE) of the first smart plug device. A new window will pop up as shown in Figure 8-14.
Figure 8-14. Smart Plug Detail Information

- Click on Provisioning panel, then focus on “On/Off” sub-panel, click “EDIT” button to change the ON/OFF status, and click on “SAVE” button to make the ON/OFF action active.

Figure 8-15. Smart Plug ON/OFF Control through Proximetry Cloud

The smart plug device will be in ON/OFF status immediately according to the selection.

8.5 Smart Plug Scheduled Control

The scheduled control through the Proximetry cloud is similar with the ON/OFF control.

- Go to the device list table, double click on the name (SAMD21 PRO EXAMPLE) of the first smart plug device. A new window will pop up as shown in Figure 8-14.
- Click on Provisioning panel, then focus on “Schedule” sub-panel, click “EDIT” button to set the scheduling task, and click on “SAVE” button to make the schedule active.
As shown in Figure 8-16, totally four scheduled tasks can be set from Rule 1 to Rule 4. In each Rule, the status can be set to ON/OFF, and the time interval can refer to “Every” item from Monday to Sunday. The “Hour and Minute” decide the ON/OFF schedule time.

For example, if we set the “Set to” as “On”, “Every” as “Monday to Friday”, “Hour” and “Minute” are “16” and “40”, it means that the smart device plug will be in “On” status in time 16:40 from Monday to Friday.

9 Proximetry Cloud APIs introduction

The Proximetry Cloud Agent provides a lot of APIs to access the Proximetry Cloud. We will describe some basic Proximetry APIs which helps us to understanding the communication process between the smart plug device and the Proximetry Cloud.

- Proximetry Agent Initialization

 prox_agent_socket_init(void);//initialize a UDP socket to communicate with Proximetry Cloud
 prox_agent_init(void);//Proximetry Cloud Agent Initialization

 These two functions are invoked only when the smart plug is in station mode and connected to a Wi-Fi router. After the Android App has successfully configured the smart plug to connect to a Wi-Fi router, the Proximetry Agent can be initialized.

- Callback APIs to communicate with Proximetry Cloud

 prox_agent_param_changed(amp_param_t *param);//This function is invoked by the Proximetry Agent Library, as a callback, when a configuration parameter has been changed from the Cloud service.
 prox_agent_send_msg(uint8_t *data, uint16_t size);// Agent utilizes this routine to send message, Proximetry Cloud Server address and port number are defined in prox_agent_config.h
 prox_agent_time_ms(void);//get the current time in ms
 prox_agent_stats_update(void);// This routine is invoked periodically by the Proximetry Agent Library to send statistics to the Cloud

- Proximetry Sync task run every one second

 amp_agent_sync_task();//sync task run every one second to perform Agent functionality

For more Proximetry cloud related APIs, the users can refer to the smart plug project source codes.
10 Memory Footprint

Here is the Proximetry cloud smart plug project overall memory size generated in Atmel Studio 7 with GCC optimization option set to –o1.

- Program Memory Usage: 96840 bytes, 36.8% Full
- Data Memory Usage: 20004 bytes, 61.0% Full

Figure 10-1 and Figure 10-2 show the memory usage grouped by the smart plug function blocks.

Figure 10-1. Flash Memory Footprint [Byte]

Figure 10-2. SRAM Memory Footprint [Byte]
Revision History

<table>
<thead>
<tr>
<th>Doc Rev.</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
</table>