Preface

The AVR-IoT WG development board is a small and easily expandable demonstration and development platform for IoT solutions, based on the AVR® microcontroller architecture using Wi-Fi® technology. It was designed to demonstrate that the design of a typical IoT application can be simplified by partitioning the problem into three blocks:

- Smart - represented by the ATmega4808 microcontroller
- Secure - represented by the ATECC608A secure element
- Connected - represented by the WINC1510 Wi-Fi controller module

The AVR-IoT WG development board features a USB interface chip Nano Embedded Debugger (nEDBG) that provides access to a serial port interface (serial to USB bridge), a mass storage interface for easy ‘drag and drop’ programming, configuration and full access to the AVR microcontroller UPDI interface for programming and debugging directly from Microchip MPLAB® X IDE and the Atmel® Studio 7.0 IDE. The AVR-IoT WG development board comes preprogrammed and configured for demonstrating connectivity to the Google Cloud IoT Core.

The AVR-IoT WG development board features two sensors:

- A light sensor
- A high-accuracy temperature sensor - MCP9808

Additionally, a mikroBUS™ connector is provided to expand the board capabilities with 450+ sensors and actuators offered by MikroElektronika (www.mikroe.com) via a growing portfolio of Click boards™.
Table of Contents

Preface.. 1

1. Introduction ..4
 1.1. Features... 4
 1.2. Kit Overview... 4

2. Getting Started .. 6
 2.1. Quick Start.. 6
 2.2. Design Documentation and Relevant Links... 6

3. Application User Guide .. 7

4. Hardware User Guide.. 8
 4.1. nEDBG... 8
 4.2. Power... 11
 4.3. Connectors... 12
 4.4. Peripherals... 13

5. Mechanical Drawings.. 17

6. Regulatory Approval.. 18
 6.1. United States.. 18
 6.2. Canada... 19
 6.3. Taiwan.. 19
 6.4. List of Antenna Types... 19

7. Hardware Revision History.. 20
 7.1. Identifying Product ID and Revision... 20
 7.2. Revision 8... 20
 7.3. Revision 7... 20
 7.4. Revision 6... 20

8. Document Revision History ... 21

The Microchip Web Site.. 22

Customer Change Notification Service.. 22

Customer Support... 22

Microchip Devices Code Protection Feature... 22

Legal Notice... 23

Trademarks... 23
AVR-IoT WG Technical Summary

Quality Management System Certified by DNV...24
Worldwide Sales and Service..25
1. **Introduction**

1.1 **Features**

- ATmega4808-MFR Microcontroller
- Four User LED's
- Two Mechanical Buttons
- WINC1510 Wi-Fi Module
- TEMT6000 Light Sensor
- MCP9808 Temperature Sensor
- ATECC608A CryptoAuthentication™ Device
- mikroBUS Header Footprint
- nEDBG
 - Board identification in Atmel Studio and Microchip MPLAB X
 - One green board power and status LED
 - Programming and debugging
 - Virtual COM port (CDC)
 - Two logic analyzer channels (DGI GPIO)
- USB and Battery Powered
- Li-Ion/LiPo Battery Charger
- Fixed 3.3V

1.2 **Kit Overview**

The AVR-IoT WG development kit is a hardware platform to evaluate the ATmega4808 and WINC1510 Wi-Fi module. The figure below show the main features and pinout of the kit.
Figure 1-1. AVR-IoT WG Development Kit Overview
2. Getting Started

2.1 Quick Start
Steps to start exploring the kit:

1. Connect the kit to your computer.
2. Open the “CLICK-ME.HTM” file on the “CURIOSITY” mass storage disk and follow the instructions.
3. Drag and drop the “WIFI.cfg” configuration file on the “CURIOSITY” drive.
 The device will now connect to your Wi-Fi network and send data to the Google Cloud IoT Core.

2.2 Design Documentation and Relevant Links
The following list contains links to the most relevant documents and software for the AVR-IoT WG.

- **AVR-IoT WG website** - Kit information, latest user guide and design documentation.
- **AVR-IoT WG on microchipDIRECT** - Purchase this kit on microchipDIRECT.
- **Data Visualizer** - Data Visualizer is a program used for processing and visualizing data. The Data Visualizer can receive data from various sources such as the EDBG Data Gateway Interface found on Curiosity Nano and Xplained Pro boards and COM Ports.
- **Atmel Studio** - Free IDE for the development of C/C++ and assembler code for microcontrollers.
- **MPLAB® X IDE** - MPLAB X IDE is a software program that runs on a PC (Windows®, Mac OS®, Linux®) to develop applications for Microchip microcontrollers and digital signal controllers. It is called an Integrated Development Environment (IDE) because it provides a single integrated "environment" to develop code for embedded microcontrollers.
- **IAR Embedded Workbench® for AVR®** - This is a commercial C/C++ compiler that is available for 8-bit AVR. There is a 30-day evaluation version as well as a 4 KB code-size-limited kick-start version available from their website.
- **http://microchip.com/start** - Atmel START is an online tool that helps the user to select and configure software components and tailor your embedded application in a usable and optimized manner.
- **Microchip Sample Store** - Microchip sample store where you can order samples of devices.
3. **Application User Guide**

The ATmega4808-MFR mounted on AVR-IoT WG is preprogrammed with an application ready to connect to Google Cloud IoT Core. The ATECC608 is preregistered with Google Cloud IoT Core, and the application only needs a Wi-Fi network with an internet connection to stream data to Google Cloud IoT Core. Scan the QR-code on the back of the board, or with instructions on how to connect to a Wi-Fi network open CLICK-ME.HTM in the mass storage USB drive, which opens a page on Google Cloud ready to receive data from your board.

For in-depth information about the preprogrammed demo application and how to develop your own application, see the *AVR-IoT WG Development Board User Guide.*
4. Hardware User Guide

4.1 nEDBG

AVR-IoT WG contains an Embedded Debugger (nEDBG) for on-board programming and debugging. The nEDBG is a composite USB device of several interfaces: a debugger, a mass storage device, a data gateway and a Virtual COM port (CDC).

Together with Atmel Studio/MPLAB X, the nEDBG debugger interface can program and debug the ATmega4808.

A Data Gateway Interface (DGI) is available for use with the logic analyzer channels for code instrumentation, to visualize program flow. DGI GPIO’s can be graphed using the Data Visualizer.

The Virtual COM port is connected to a UART on the ATmega4808 and provides an easy way to communicate with the target application through terminal software.

The nEDBG controls one Power and Status LED (marked PS) on the AVR-IoT WG board. The table below shows how the LED is controlled in different operation modes.

<table>
<thead>
<tr>
<th>Operation mode</th>
<th>Status LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot loader mode</td>
<td>LED blink at 1 Hz during power up.</td>
</tr>
<tr>
<td>Power-up</td>
<td>LED is lit - constant.</td>
</tr>
<tr>
<td>Normal operation</td>
<td>LED is lit - constant.</td>
</tr>
<tr>
<td>Programming</td>
<td>Activity indicator; the LED flashes slowly during programming/debugging with the nEDBG.</td>
</tr>
<tr>
<td>Fault</td>
<td>The LED flashes fast if a power fault is detected.</td>
</tr>
<tr>
<td>Sleep/Off</td>
<td>LED is off. The nEDBG is either in Sleep mode or powered down. This can occur if the kit is externally powered.</td>
</tr>
</tbody>
</table>

4.1.1 Virtual COM Port

A general purpose USB serial bridge between a host PC and a target device.

4.1.1.1 Overview

nEDBG implements a composite USB device that includes a standard Communications Device Class (CDC) interface, which appears on the host as a Virtual COM Port. The CDC can be used to stream arbitrary data in both directions between the host and the target: characters sent from the host will appear in UART form on the CDC TX pin, and UART characters sent into the CDC RX pin will be sent back to the host.

On Windows machines, the CDC will enumerate as Curiosity Virtual COM Port, and will appear in the Ports section of the device manager. The COM port number is usually shown here.

Info: On older Windows systems a USB driver is required for CDC. This driver is included in Atmel Studio and MPLAB X installations.

On Linux machines, the CDC will enumerate and appear as /dev/ttyACM#.
On MAC machines, the CDC will enumerate and appear as /dev/tty.usbmodem#. Depending on which terminal program is used, it will appear in the available list of modems as usbmodem#.

4.1.1.2 Limitations

Not all UART features are implemented in the nEDBG CDC - the constraints are outlined here:

- **Baud rate** must be in the range 1200 bps to 500 kbps. Values outside this range will be capped to these values, without warning. Baud rate can be changed on-the-fly.
- **Character format**: only 8-bit characters are supported
- **Parity**: can be odd, even or none.
- **Hardware flow control**: not supported.
- **Stop bits**: one or two bits are supported

4.1.1.3 Signaling

During USB enumeration, the host OS will start both communication and data pipes of the CDC interface. At this point it is possible to set and read back baud rate and other UART parameters of the CDC, but data sending and receiving will not be enabled.

When a terminal connects on the host, it must assert the **DTR signal**. This is a virtual control signal that is implemented on the USB interface but not in hardware on the nEDBG. Asserting DTR from the host will indicate to the nEDBG that a CDC session is active, and it will enable its level shifters (if available), and start the CDC data send and receive mechanisms.

Deasserting the **DTR signal** will **not** disable the level shifters, but it will disable the receiver, so no further data will be streamed to the host. Data packets that are already queued up for sending to the target will continue to be sent out, but no further data will be accepted.

4.1.1.4 Advanced Use

CDC Override Mode

In normal operation the nEDBG is a true UART bridge between the host and device. However, under certain use cases the nEDBG can override the Basic Operating mode and use the CDC pins for other purposes.

Dropping a text file (with extension .txt) into the nEDBG’s mass storage drive can be used to send characters out of the CDC TX pin. The text file must start with the characters:

```
CMD:SEND_UART=
```

The maximum message length is 50 characters - all remaining data in the frame is ignored.

The default baud rate used in this mode is 9600bps, but if the CDC is already active or has been configured, the baud rate last used still applies.

USB-level Framing Considerations

Sending data from the host to the CDC can be done byte-wise or in blocks, which will be chunked into 64-byte USB frames. Each such frame will be queued up for sending to the CDC TX pin. Sending a small amount of data per frame can be inefficient, particularly at low baud rates, since the nEDBG buffers frames, not bytes. A maximum of 4 x 64-byte frames can be active at any one time, the nEDBG will throttle the incoming frames accordingly. Sending full 64-byte frames containing data is most efficient.

When **receiving data** from the target, the nEDBG will queue up incoming bytes into 64-byte frames, which are sent to the USB queue for transmission to the host when they are full. Incomplete frames are also pushed to the USB queue at approximately 100ms intervals, triggered by USB start-of-frame tokens.
Up to 8 x 64-byte frames can be active at any one time. If the host, or software running on it, fails to receive data fast enough, an overrun will occur. When this happens the last-filled buffer frame will be recycled instead of being sent to the USB queue, and a full frame of data will be lost. To prevent this occurrence, the user must ensure that CDC data pipe is being read continuously, or the incoming data rate must be reduced.

4.1.2 Mass Storage Disk

A simple way to program the target device through drag and drop with .hex-files.

4.1.2.1 Mass Storage Device

nEDBG implements a highly optimized variant of the FAT12 file-system that has a number of limitations, partly due to the nature of FAT12 itself, and partly due to optimizations made to fulfill its purpose in this development kit.

The CURIOSITY drive is USB Chapter 9 compliant as a mass storage device, but does not in any way fulfill the expectations of a general purpose mass storage device. This behavior is intentional.

The nEDBG enumerates as a Curiosity Nano USB device that can be found in the disk drives section of the Windows device manager. The CURIOSITY drive appears in the file manager and claims the next available drive letter in the system.

The CURIOSITY drive contains approximately 1MB of free space. This does not reflect the size of the target device's flash in any way. When programming a HEX file, the binary data is encoded in ASCII with meta data providing a large overhead, so 1MB is a trivially chosen value for disk size.

It is not possible to format the CURIOSITY drive. When programming a file to the target, the file name may appear in the disk directory listing - this is merely the operating system's view of the directory, which in reality has not been updated. It is not possible to read out the file contents. Removing and replugging the kit will return the file system to its original state, but the target will still contain the application that has been previously programmed.

To erase the target device, simply copy a text file starting with "CMD:ERASE" onto the disk.

By default the CURIOSITY drive contains several read-only files for generating icons as well as reporting status and linking to further information:

- AUTORUN.ICO - Icon file for the Microchip logo.
- AUTORUN.INF - System file required for Windows Explorer to show the icon file.
- CLICK-ME.HTM - Redirect to the AVR-IoT WG web demo application.
- KIT-INFO.HTM - Redirect to the development board web site.
- KIT-INFO.TXT - Text file containing details about the kit firmware, name, serial number, and device.
- PUBKEY.TXT - Text file containing the public key for data encryption.
- STATUS.TXT - Text file containing the programming status of the board.

Info: When STATUS.TXT is updated by the nEDBG dynamically, the contents may be cached by the OS and not reflect the correct status.

4.1.2.2 Configuration Words / Fuse Bytes

Fuse Bytes (AVR targets)

nEDBG does not mask any fuse bits or combinations when writing fuses. It is not possible to disable UPDI by fuse setting on devices with a dedicated UPDI pin. For devices with a shared/configurable UPDI pin, be sure not to select an alternate pin function for UPDI either by fuse setting in Programming mode or by using the I/O view or memory views to modify the memory-mapped fuse values. Disabling UPDI will
render the nEDBG unable to contact the target device — an external programmer capable of 12V UPDI activation will be required.

4.1.3 Embedded Debugger Implementation

The AVR-IoT WG implementation of the Embedded Debugger (nEDBG) and the connections to the ATmega4808 device is shown in the table below.

Table 4-2. nEDBG Connections

<table>
<thead>
<tr>
<th>nEDBG Pin</th>
<th>ATmega4808 Pin</th>
<th>Function</th>
<th>Shared Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBG0</td>
<td>UPDI</td>
<td>Programming and Debugging</td>
<td>-</td>
</tr>
<tr>
<td>DBG1</td>
<td>PF6</td>
<td>DGI GPIO1</td>
<td>SW0</td>
</tr>
<tr>
<td>DBG2</td>
<td>PF5</td>
<td>DGI GPIO0</td>
<td>SW1</td>
</tr>
<tr>
<td>CDC TX</td>
<td>PF1</td>
<td>UART2 RX</td>
<td>-</td>
</tr>
<tr>
<td>CDC RX</td>
<td>PF0</td>
<td>UART2 TX</td>
<td>-</td>
</tr>
</tbody>
</table>

4.2 Power

4.2.1 Power Source

The kit can be powered through the USB port or by a Li-Ion/LiPo battery. The kit contains one buck converter for generating 3.3V for the debugger, target, and peripherals.

Maximum available current from the USB is limited to 500mA. The current will be shared between charging the battery (if connected) and the target application section.

Figure 4-1. Power Supply Block Diagram

```
USB   VUSB
  |   |   |   |   | |
  |   |   |   |   |
  | Power Source | Battery Charger | Power Converter | Power Consumer | Cut Strap |

MCP73871 Li-Ion / Li-Po Battery Charger

VMUX

MIC33050 (buck)

cut-strap

VCC_P3V3

nEDBG

cut-strap

Peripheral mBUS WINC1510

ATmega4808

Battery Connector (JST)
```

4.2.2 Battery Charger

AVR-IoT WG features a MCP73871 Li-Ion/LiPo charger and JST battery connector on board. The charger is configured to limit the charge current to 100mA to prevent overcharging of small capacity batteries. Minimum recommended battery capacity is 400mAh.
The MCP73871 has a battery charge voltage of 4.2V. Make sure your battery has the same charge voltage.

Table 4-3. Charger status LEDs

<table>
<thead>
<tr>
<th>LEDs</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red (charging)</td>
<td>The battery is being charged by USB.</td>
</tr>
<tr>
<td>Red (discharging)</td>
<td>The battery voltage is low. Triggers if the voltage is under 3.1V.</td>
</tr>
<tr>
<td>Green</td>
<td>Charge complete.</td>
</tr>
<tr>
<td>Red and Green</td>
<td>Timer Fault. The 6 hour charge cycle has timed out before complete charge.</td>
</tr>
</tbody>
</table>

4.2.3 Hardware Modifications

On the bottom side of the AVR-IoT WG board, there are two cut-straps as shown in the figure below. These are intended for current measurement purposes. Do not leave these unconnected as the microcontrollers might get powered through the I/O’s.

Figure 4-2. V\text{CC} Cut-straps

To be able to use mikroBUS Click modules that need a 5V supply, some hardware modifications are needed. The 5V supply to the mikroBUS header is not connected by default. To enable 5V to the header, solder in a 0-ohms resistor (0603) or a solder blob over the footprint shown in the figure below.

Figure 4-3. mikroBUS 5V footprint

4.3 Connectors

4.3.1 mikroBUS Socket

AVR-IoT WG features a mikroBUS Socket footprint for expanding functionality of the development kit using MikroElektronika Click Boards and other mikroBUS add-on boards. The footprint is not populated, so it is necessary to solder two 1x8 2.54mm pitch female headers to the kit to use the add-on boards.
Table 4-4. mikroBUS Socket Pinout

<table>
<thead>
<tr>
<th>mikroBUS Socket Pin</th>
<th>ATmega4808 Pin</th>
<th>Function</th>
<th>Shared Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN</td>
<td>PD7</td>
<td>ADC AIN7</td>
<td>-</td>
</tr>
<tr>
<td>RST</td>
<td>PA0</td>
<td>GPIO</td>
<td>-</td>
</tr>
<tr>
<td>CS</td>
<td>PC3</td>
<td>GPIO</td>
<td>-</td>
</tr>
<tr>
<td>SCK</td>
<td>PA6</td>
<td>SPI0 SCK</td>
<td>WINC1510 SPI</td>
</tr>
<tr>
<td>MISO</td>
<td>PA5</td>
<td>SPI0 MISO</td>
<td>WINC1510 SPI</td>
</tr>
<tr>
<td>MOSI</td>
<td>PA4</td>
<td>SPI0 MOSI</td>
<td>WINC1510 SPI</td>
</tr>
<tr>
<td>+3.3V</td>
<td>VDD</td>
<td>VCC_TARGET, 3.3V supply</td>
<td>-</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
<td>Ground</td>
<td>-</td>
</tr>
<tr>
<td>PWM</td>
<td>PD4</td>
<td>TCA0 WO4</td>
<td>-</td>
</tr>
<tr>
<td>INT</td>
<td>PD6</td>
<td>GPIO</td>
<td>-</td>
</tr>
<tr>
<td>RX</td>
<td>PC1</td>
<td>UART1 RX</td>
<td>-</td>
</tr>
<tr>
<td>TX</td>
<td>PC0</td>
<td>UART1 TX</td>
<td>-</td>
</tr>
<tr>
<td>SCL</td>
<td>PA3</td>
<td>TWI0 SCL</td>
<td>MCP9808 and ATECC608A</td>
</tr>
<tr>
<td>SDA</td>
<td>PA2</td>
<td>TWI0 SDA</td>
<td>MCP9808 and ATECC608A</td>
</tr>
<tr>
<td>+5V</td>
<td></td>
<td>VCC_MUX¹, MCP73871 output</td>
<td>-</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Info:
1) A 0-ohm resistor has to be soldered to connect the VCC_MUX pin to the mikroBUS socket. The pin is not supplied by default to prevent 5V from being connected to any I/O-pins by mistake. For more information see 4.2.3 Hardware Modifications.

4.4 Peripherals

4.4.1 WINC1510 Wi-Fi Module

Microchip’s WINC1510 is a low-power consumption 802.11 b/g/n IoT module, specifically optimized for low-power IoT applications. The module integrates Power Amplifier (PA), Low-Noise Amplifier (LNA), switch, power management, and a printed antenna or a micro co-ax (u.FL) connector for an external antenna resulting in a small form factor (21.7 x 14.7 x 2.1 mm) design. It is interoperable with various vendors’ 802.11 b/g/n access points. This module provides SPI ports to interface with a host controller.
The WINC1510 provides internal Flash memory as well as multiple peripheral interfaces including UART and SPI. The only external clock source needed for the WINC1510 is the built-in, high-speed crystal or oscillator (26 MHz). The WINC1510 is available in a QFN package or as a certified module.

The communication interface between the ATmega4808 and the WINC1510 Wi-Fi module is SPI, together with some enable signals and interrupt. The rest of the connections are left unconnected.

Table 4-5. WINC1510 Connections

<table>
<thead>
<tr>
<th>WINC1510 Pin</th>
<th>ATmega4808 Pin</th>
<th>Function</th>
<th>Shared Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 RESET_N</td>
<td>PA1</td>
<td>GPIO</td>
<td></td>
</tr>
<tr>
<td>9 GND</td>
<td></td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>10 SPI_CFG</td>
<td>VCC_TARGET</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>11 WAKE</td>
<td>PF4</td>
<td>GPIO</td>
<td>-</td>
</tr>
<tr>
<td>12 GND</td>
<td></td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>13 IRQN</td>
<td>PF2</td>
<td>ASYNC EXT INT</td>
<td>-</td>
</tr>
<tr>
<td>15 SPI_MOSI</td>
<td>PA4</td>
<td>SPI0 MOSI</td>
<td>mikroBUS</td>
</tr>
<tr>
<td>16 SPI_SSN</td>
<td>PA7</td>
<td>SPI0 SS</td>
<td></td>
</tr>
<tr>
<td>17 SPI_MISO</td>
<td>PA5</td>
<td>SPI0 MISO</td>
<td>mikroBUS</td>
</tr>
<tr>
<td>18 SPI_SCK</td>
<td>PA6</td>
<td>SPI0 SCK</td>
<td>mikroBUS</td>
</tr>
<tr>
<td>20 VBAT</td>
<td>VCC_TARGET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 CHIP_EN</td>
<td>PF3</td>
<td>GPIO</td>
<td></td>
</tr>
<tr>
<td>23 VDDIO</td>
<td>VCC_TARGET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 GND</td>
<td></td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>29 PADDLE</td>
<td></td>
<td>GND</td>
<td></td>
</tr>
</tbody>
</table>

4.4.2 ATECC608A

The ATECC608A is a secure element from the Microchip CryptoAuthentication portfolio with advanced Elliptic Curve Cryptography (ECC) capabilities. With ECDH and ECDSA being built right in, this device is ideal for the rapidly growing IoT market by easily supplying the full range of security such as confidentiality, data integrity, and authentication to systems with MCU or MPUs running encryption/decryption algorithms. Similar to all Microchip CryptoAuthentication products, the new ATECC608A employs ultra-secure, hardware-based cryptographic key storage and cryptographic countermeasures that eliminate any potential backdoors linked to software weaknesses.

The ATECC608A CryptoAuthentication device on the AVR-IoT WG kit is used for storing the private and public key for use with the secure IoT communication.

Note: 7-bit I^2^C address: 0x58
Table 4-6. ATECC608A Connections

<table>
<thead>
<tr>
<th>ATECC608A Pin</th>
<th>ATmega4808 Pin</th>
<th>Function</th>
<th>Shared Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDA</td>
<td>PA2</td>
<td>TWI0 SDA</td>
<td>MCP9808 and mikroBUS</td>
</tr>
<tr>
<td>SCL</td>
<td>PA3</td>
<td>TWI0 SCL</td>
<td>MCP9808 and mikroBUS</td>
</tr>
</tbody>
</table>

4.4.3 Temperature Sensor

The MCP9808 digital temperature sensor converts temperatures between -20°C and +100°C to a digital word with ±0.25°C/±0.5°C (typical/maximum) accuracy.

Additional Features:
- **Accuracy**:
 - ±0.25°C (typical) from -40°C to +125°C
 - ±0.5°C (maximum) from -20°C to +100°C
- **User Selectable Measurement Resolution**: 0.5°C, 0.25°C, 0.125°C, 0.0625°C
- **User Programmable Temperature Limits**:
 - Temperature Window Limit
 - Critical Temperature Limit
- **User Programmable Temperature Alert Output**
- **Operating Voltage Range**: 2.7V to 5.5V
- **Operating Current**: 200 μA (typical)
- **Shutdown Current**: 0.1 μA (typical)

The MCP9808 temperature sensor is connected to the ATmega4808 through I2C and a GPIO for the user configurable alert output.

Note: 7-bit I2C address: 0x18

Table 4-7. MCP9808

<table>
<thead>
<tr>
<th>MCP9808 Pin</th>
<th>ATmega4808 Pin</th>
<th>Function</th>
<th>Shared Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDA</td>
<td>PA2</td>
<td>TWI0 SDA</td>
<td>ATECC608A and mikroBUS</td>
</tr>
<tr>
<td>SCL</td>
<td>PA3</td>
<td>TWI0 SCL</td>
<td>ATECC608A and mikroBUS</td>
</tr>
<tr>
<td>ALERT</td>
<td>PC2</td>
<td>ASYNC External Interrupt</td>
<td>-</td>
</tr>
</tbody>
</table>

4.4.4 Light Sensor

A TEMT6000X01 light sensor is mounted on the AVR-IoT WG kit for measuring the light intensity. The sensor is a current source that will induce a voltage across the series resistor, which in turn can be measured by the ATmega4808 ADC. The current is exponentially relative to illuminance, from about 10uA@20lx to 50uA@100lx. The series resistor has a value of 10kΩ.

Table 4-8. Light Sensor Connection

<table>
<thead>
<tr>
<th>ATmega4808 Pin</th>
<th>Function</th>
<th>Shared Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD5</td>
<td>ADC AIN5</td>
<td>-</td>
</tr>
</tbody>
</table>
4.4.5 LED
There are four LED’s available on the AVR-IoT WG board that can be controlled with PWM or GPIO. The LED’s can be activated by driving the connected I/O line to GND.

Table 4-9. LED Connections

<table>
<thead>
<tr>
<th>ATmega4808 Pin</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD0</td>
<td>TCA0 WO0</td>
<td>Red LED</td>
</tr>
<tr>
<td>PD1</td>
<td>TCA0 WO1</td>
<td>Yellow LED</td>
</tr>
<tr>
<td>PD2</td>
<td>TCA0 WO2</td>
<td>Green LED</td>
</tr>
<tr>
<td>PD3</td>
<td>TCA0 WO3</td>
<td>Blue LED</td>
</tr>
</tbody>
</table>

4.4.6 Mechanical Buttons
AVR-IoT WG contains two mechanical buttons. These are generic user configurable buttons. When a button is pressed it will drive the I/O line to GND.

Info: There are no pull-up resistors connected to the generic user buttons. Remember to enable the internal pull-up in the ATmega4808 to use the buttons.

Table 4-10. Mechanical Button

<table>
<thead>
<tr>
<th>ATmega4808 Pin</th>
<th>Description</th>
<th>Shared Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF6</td>
<td>User switch 0 (SW0)</td>
<td>EDBG DGI GPIO0</td>
</tr>
<tr>
<td>PF5</td>
<td>User switch 1 (SW1)</td>
<td>EDBG DGI GPIO1</td>
</tr>
</tbody>
</table>
5. Mechanical Drawings
The figures below shows the board mechanical drawing and connector placement.

Figure 5-1. Mechanical Drawing

Figure 5-2. Connector Placement
6. Regulatory Approval

The AVR-IoT WG development board has been tested in accordance with the following standards:

Emission:
- FCC Part 15 subpart B:2018 (Class B)
- EN55032:2015 (Class B)

Immunity:
- EN61000-4-2:2009 (contact: level 2 (±4kV), air: level 3 (±8kV))
- EN61000-4-3:2006+A2:2010 (80 - 1000 MHz, level 2 (3V/M))
- EN61000-4-8:2010 (level 2 (3A/m), continuous field)

The development board contains the wireless transmitter module ATWINC1510-MR210PB, which has the following approval and/or registrations:
- United States/FCC ID: 2ADHKATWINC1510
- Canada
 - IC: 20266-ATWINC1510
 - HVIN: ATWINC1510-MR210PB
 - PMN: ATWINC1510-MR210PB
- Europe - CE
- Japan/MIC: 005-101762
- Korea/KCC: R-CRM-mcp-WINC1510MR210P
- Taiwan/NCC: CCAN18LP0320T0
- China/SRRC: CMIIT ID: 2018DJ1310

6.1 United States

Contains Transmitter Module FCC ID: 2ADHKATWINC1510

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help
6.2 Canada
Contains IC: 20266-ATWINC1510

This device complies with Industry Canada's license exempt RSS standard(s). Operation is subject to the following two conditions:

(1) This device may not cause interference, and
(2) This device must accept any interference, including interference that may cause undesired operation of the device.

Guidelines on Transmitter Antenna for License Exempt Radio Apparatus:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

6.3 Taiwan
Contains module: CCAN18LP0320T0

注意！

依據低功率電波輻射性電機管理辦法

第十二條 經型式認證合格之低功率射頻電機，非經許可，公司、商號或使用者均不得擅自變更頻率、加大功率或变更原設計之特性及功能。

第十四條 低功率射頻電機之使用不得影響飛航安全及干擾合法通信；經發現有干擾現象時，應立即停用，並改善至無干擾時方得繼續使用。

前項合法通信，指依電信規定作業之無線電信。

低功率射頻電機須忍受合法通信或工業、科學及醫療用電波輻射性電機設備之干擾。

6.4 List of Antenna Types
ATWINC1510-MR210 does not allow use of external antennas, and is tested with the PCB antenna on the module.
7. **Hardware Revision History**

This user guide provides the latest available revision of the kit. This chapter contains information about known issues, a revision history of older revisions, and how older revisions differ from the latest revision.

7.1 **Identifying Product ID and Revision**

The revision and product identifier of Curiosity Nano boards can be found in two ways; either through Atmel Studio/MPLAB X or by looking at the sticker on the bottom side of the PCB.

By connecting a Curiosity Nano board to a computer with Atmel Studio/MPLAB X running, an information window will pop up. The first six digits of the serial number, which is listed under kit details, contain the product identifier and revision.

The same information can be found on the sticker on the bottom side of the PCB. Most kits will print the identifier and revision in plain text as A09-nnnn\rr, where nnnn is the identifier and rr is the revision. Boards with limited space have a sticker with only a QR-code, which contains a serial number string.

The serial number string has the following format:

```
"nnnnrrssssssssss"
```

- n = product identifier
- r = revision
- s = serial number

The product identifier for AVR-IoT WG is A09-3203.

7.2 **Revision 8**

The Wi-Fi module WINC1510 order code used on revision 8 is ATWINC1510-MR210PB1961 (firmware 19.6.1).

7.3 **Revision 7**

Revision 7 is the initial revision available on microchipDIRECT.

The Wi-Fi module WINC1510 order code used on revision 7 is ATWINC1510-MR210PB1952 (firmware 19.5.2). The firmware was upgraded to version 19.6.1 in production.

7.4 **Revision 6**

Revision 6 is the early adopter revision. It does not have the MCP73871 Li-Ion/LiPo charger or battery connector components mounted, and can only be powered through USB.

The Wi-Fi module WINC1510 order code used on revision 6 is ATWINC1510-MR210PB1952 (firmware 19.5.2). The firmware was upgraded to version 19.6.1 in production.

Related Links

4.2.2 Battery Charger
8. Document Revision History

<table>
<thead>
<tr>
<th>Doc. rev.</th>
<th>Date</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>010/2018</td>
<td>Initial document release.</td>
</tr>
</tbody>
</table>
The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXSylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntellIMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
</table>
| Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com |
| Australia - Sydney
Tel: 61-2-9868-6733 |
| China - Beijing
Tel: 86-10-8569-7000 |
| China - Chengdu
Tel: 86-28-8665-5511 |
| China - Chongqing
Tel: 86-23-8980-9588 |
| China - Dongguan
Tel: 86-769-8702-9880 |
| China - Guangzhou
Tel: 86-20-8755-8029 |
| China - Hangzhou
Tel: 86-571-8792-8115 |
| China - Hong Kong SAR
Tel: 852-2943-5100 |
| China - Nanjing
Tel: 86-25-8473-2460 |
| China - Qingdao
Tel: 86-632-8502-7355 |
| China - Shanghai
Tel: 86-21-3326-8000 |
| China - Shenyang
Tel: 86-24-2334-2829 |
| China - Shenzhen
Tel: 86-755-8864-2200 |
| China - Suzhou
Tel: 86-186-6233-1526 |
| China - Wuhan
Tel: 86-27-5980-5300 |
| China - Xiamen
Tel: 86-952-2388138 |
| China - Zhuhai
Tel: 86-756-32100040 |
| India - Bangalore
Tel: 91-80-3090-4444 |
| India - New Delhi
Tel: 91-11-4160-8631 |
| India - Pune
Tel: 91-20-4121-0141 |
| Japan - Osaka
Tel: 81-6-6152-7160 |
| Japan - Tokyo
Tel: 81-3-6880-3770 |
| Korea - Daegu
Tel: 82-53-744-4301 |
| Korea - Seoul
Tel: 82-2-554-7200 |
| Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906 |
| Malaysia - Penang
Tel: 60-4-227-8870 |
| Philippines - Manila
Tel: 63-2-634-9065 |
| Singapore
Tel: 65-6334-8870 |
| Taiwan - Hsin Chu
Tel: 886-3-577-8366 |
| Taiwan - Kaohsiung
Tel: 886-7-213-7830 |
| Taiwan - Taipei
Tel: 886-2-2508-8600 |
| Thailand - Bangkok
Tel: 66-2-694-1351 |
| Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100 |
| Austria - Wels
Tel: 43-7242-2244-39 |
| Denmark - Copenhagen
Tel: 45-4450-2828 |
| Finland - Espoo
Tel: 358-9-4520-820 |
| France - Paris
Tel: 33-1-69-53-63-20 |
| Germany - Garching
Tel: 49-8931-9700 |
| Germany - Haan
Tel: 49-2129-3766400 |
| Germany - Heilbronn
Tel: 49-7131-87-3636 |
| Germany - Karlsruhe
Tel: 49-721-625370 |
| Germany - Munich
Tel: 49-89-627-144-0 |
| Germany - Rosenheim
Tel: 49-881-354-560 |
| Israel - Ra’anana
Tel: 972-9-744-7705 |
| Italy - Milan
Tel: 39-0331-742611 |
| Italy - Padova
Tel: 39-049-7625286 |
| Netherlands - Drunen
Tel: 31-416-690399 |
| Norway - Trondheim
Tel: 47-72884388 |
| Poland - Warsaw
Tel: 48-22-3325737 |
| Romania - Bucharest
Tel: 40-21-407-87-50 |
| Spain - Madrid
Tel: 34-91-708-08-90 |
| Sweden - Gothenberg
Tel: 46-31-704-60-40 |
| Sweden - Stockholm
Tel: 46-8-5090-4654 |
| UK - Wokingham
Tel: 44-118-921-5800 |
| Fax: 44-118-921-5820 |