Introduction

This application note demonstrates execution of the demo iPerf application available for the SAM4S Xplained Pro evaluation kit and ATWINC15x0. The iPerf application is a tool which is used for measuring Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) bandwidth performance. This iPerf tool is built on a client/server model and can be used to measure maximum UDP and TCP throughput between the client and the server station.

Prerequisites

The following are the hardware and software prerequisites to test the TCP and UDP throughput using the iPerf application for the ATWINC15x0.

Hardware Prerequisites
- ATSAM4S XPRO Board
- ATWINC15x0
- Access Point (AP)
- PC/Laptop

Software Prerequisites
- iPerf application 2.0.5 for iPerf client running on PC/Laptop
- Serial console software (Tera Term)
- ATWINC1500 iPerf Example
Table of Contents

Introduction..1

Prerequisites..1

1. ATWINC15x0 iPerf Setup ... 3
 1.1. SAM4S Xplained Pro..3
 1.2. Hardware Setup... 4

2. Creating ATWINC15x0 iPerf Project in Atmel Studio...5

3. Configuring and Loading the iPerf Application.. 7

4. Installing iPerf Application .. 9
 4.1. iPerf Commands...9

5. Executing iPerf Application ...10

6. Test Setup..12
 6.1. Throughput Test Result Dependency Parameters .. 13

7. Test Results... 15

8. Appendix - Updating Firmware.. 17

9. Document Revision History... 18

The Microchip Web Site.. 19

Customer Change Notification Service..19

Customer Support... 19

Microchip Devices Code Protection Feature... 19

Legal Notice...20

Trademarks... 20

Quality Management System Certified by DNV...21

Worldwide Sales and Service.. 22
1. ATWINC15x0 iPerf Setup

The user can run the iPerf application using the command prompt on a computer and the customized iPerf implementation on the wireless board to measure the throughput performance. The iPerf application contains both client and server functionality. Typically, one acts as server and the other as client, where the iPerf application in the client side launches the test session.

The iPerf application running in the ATSAM4S XPRO board operates in the Server mode and waits to accept the client’s connection before it initiates the bandwidth test.

1.1 SAM4S Xplained Pro

The SAM4S Xplained Pro evaluation kit is a hardware platform to evaluate the ATSAM4SD32C microcontroller, supported by the Atmel Studio integrated development platform. The SAM4S Xplained Pro evaluation kit is ideal for evaluation and prototyping with the SAM4S Cortex®-M4 processor-based microcontroller. The Xplained Pro MCU series evaluation kits include an on-board Embedded Debugger, and no external tools are necessary to program or debug the SAM4SD32C. The Xplained Pro extension series evaluation kit offers additional peripherals to extend the features of the board and ease the development of custom designs.
1.2 Hardware Setup

Perform the following steps to create the iPerf setup.

1. Plug the ATWINC15x0 module to the EXT1 of the SAM4S Xplained Pro evaluation kit.
2. Power-up the SAM4S Xplained Pro evaluation kit by connecting the USB cable to the DEBUG USB port.
2. Creating ATWINC15x0 iPerf Project in Atmel Studio

The demo iPerf application for the SAM4S Xplained Pro with the ATWINC15x0 is available in ASF Version 3.42 and all upcoming versions. Before creating a new iPerf project, verify the version of both the ATWINC1500 driver and firmware being used. The ATWINC1500 firmware version needs to be equal or higher to its driver version. The firmware upgrade details are detailed in the Appendix.

This section explains the steps for demonstrating ATWINC15x0 projects using Atmel Studio ASF example applications.

Note: The iPerf application for SAM4S, SAMG55, SAMG53, and SAMD21 is available in ASF. In this Application Note, iPerf application for the SAM4S is used as a reference.

1. Open Atmel Studio 7.
2. Navigate to *File>New>Example Projects*.
3. Search for iperf sample application for other MCU's.
4. Select the WINC1500 Iperf Example – SAM4S Xplained Pro.

Figure 2-1. Atmel Studio ATWINC1500 Project Creation

The directory structure for iPerf application is illustrated in following figure.
Figure 2-2. iPerf Application Directory Structure
3. Configuring and Loading the iPerf Application

To connect to the access point, the Station mode requires the Wi-Fi credentials, such as SSID and Security type. For this demo, WPA-PSK is used as an example. The following are the steps to configure and load the iPerf application.

1. Open the WINC1500_IPERF_SERVER_EXAMPLE1 project.
2. Configure the AP credentials; SSID and password in the iperf.h file.
 Configure the AP based on the supported security methods.

 To set a security type, in the iperf.h file configure IPERF_WIFI_M2M_WLAN_AUTH macro as mentioned. The corresponding AP’s SSID must be filled with IPERF_WIFI_M2M_WLAN_SSID macro as given.

 /* AP configuration parameters*/
 #define IPERF_WIFI_M2M_WLAN_SSID "DEMO_APP" /**< Destination SSID */
 #define IPERF_WIFI_M2M_WLAN_AUTH M2M_WIFI_SEC_WPA_PSK /**< Security manner */
 #define IPERF_WIFI_M2M_WLAN_PSK "12345678" /**< Password for Destination SSID */

3. Save the project.
4. Compile and download the image into the SAM4S board.
5. Open the serial port terminal application, and set the COM port configuration as follows:
 – Set Baudrate as 115200
 – Set Data Bits as 8 bit
 – Set Parity as none
 – Set Stop Bits as 1 bit
 – Set Flow control as none
6. Run the application. The serial port terminal displays the following log output.
Figure 3-1. iPerf Serial Console Initial Log Output

Note: iPerf initializes as UDP/TCP iPerf server.

The IP address assigned to the ATWINC15x0 is available in the serial terminal.
4. Installing iPerf Application

The iPerf application is available as an open source or executable binaries for many operating systems. The following are the steps to install the iPerf application.

1. Download the iPerf 2.0.5 application from https://iperf.fr/ and save in the desired location.
2. Unzip the downloaded file to get the executable file.
3. Open command prompt in the folder path where this executable file is located.

4.1 iPerf Commands

By default, iPerf clients open a connection with the iPerf server which is typically listening at port 5001 at specified destination. The commonly used iPerf commands are listed in the following table. For additional commands, see https://iperf.fr/ipperf-doc.php.

Table 4-1. iPerf Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-f</td>
<td>Format to report; Kbits, Mbits, KBytes, and MBytes.</td>
</tr>
<tr>
<td>-i</td>
<td>Interval between periodic bandwidth reports in seconds.</td>
</tr>
<tr>
<td>-s</td>
<td>Runs in the Server mode.</td>
</tr>
<tr>
<td>-u</td>
<td>Runs in the single threaded UDP mode and specific to client.</td>
</tr>
<tr>
<td>-b</td>
<td>Bandwidth to send in bits/sec. -u indicates the default value as 1 Mbit/sec.</td>
</tr>
<tr>
<td>-c</td>
<td>Runs in the client mode, connecting to host.</td>
</tr>
<tr>
<td>-r</td>
<td>Individual bidirectional test.</td>
</tr>
<tr>
<td>-t</td>
<td>Time in seconds to transmit. The default value is 10 secs.</td>
</tr>
</tbody>
</table>
5. Executing iPerf Application

The iPerf application can be executed by configuring one system as client and the other as server. The iPerf application in ASF can work both as server and client. The demo application running in the SAM4S Xplained Pro evaluation kit works in the Server mode and waits to accept the client’s connection before initiating the bandwidth test. The client needs to know the IP address of the target server and communicates with the iPerf server located at the specified IP address.

For example, the server with IP address 192.168.1.100 can be run with the TCP test, using the following command:

```
iperf -c 192.168.1.100 -t 20 -i 1 -r
```

- `-t` is time in seconds to transmit (default 10 secs)
- `-i` is the interval between periodic bandwidth reports in seconds
- `-r` on the client’s command line instructs iPerf to measure bi-directional throughput sequentially, that is, upstream and downstream

Figure 5-1. Log Output

```
C:\Users\Desktop\iperf-2.0.5\iperf -c 192.168.5.102 -t 25 -i 5 -r

Server listening on TCP port 5001
TCP window size: 64.0 KByte (default)

Client connecting to 192.168.5.102, TCP port 5001
TCP window size: 64.0 KByte (default)

[ 4] local 192.168.5.100 port 65526 connected with 192.168.5.102 port 5001
[ 4] INTERVAL Transfer Bandwidth
[ 4] 0.0- 5.0 sec 6.00 MBytes 10.1 Mbits/sec
[ 4] 5.0-10.0 sec 5.12 MBytes 8.60 Mbits/sec
[ 4] 15.0-20.0 sec 6.00 MBytes 10.1 Mbits/sec
[ 4] local 192.168.5.102 port 5001 connected with 192.168.5.102 port 50005
[ 4] 0.0- 5.0 sec 7.07 MBytes 11.9 Mbits/sec
[ 4] 5.0-10.0 sec 7.16 MBytes 12.0 Mbits/sec
[ 4] 10.0-12.1 sec 17.1 MBytes 11.8 Mbits/sec
```

To run the UDP test, add two additional arguments as shown in the following:

```
iperf -c 192.168.1.100 -t 20 -i 1 -u -b 1G
```

- `-u` indicates single_udp run in single threaded UDP mode
- `-b` indicates bandwidth to send in bits/sec
Figure 5-2. Log Output

```
\[\text{Command Prompt}\]
C:\Users\desktop\iperf-2.0.5>iperf -c 192.168.5.102 -t 20 -i 5 -r -u -b 1G

Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 64.0 KByte (default)

Client connecting to 192.168.5.102, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 64.0 KByte (default)

[ 4] local 192.168.5.101 port 57187 connected with 192.168.5.102 port 5001
[ ID] Interval        Transfer  Bandwidth
[ 4]  0.0-  5.0 sec  4.58 MBytes  7.68 Mbits/sec
[ 4]  5.0- 10.0 sec  5.59 MBytes  9.38 Mbits/sec
[ 4] 15.0-20.0 sec  4.43 MBytes  7.43 Mbits/sec
[ 4] 20.0-25.0 sec  20.1 MBytes  8.41 Mbits/sec
[ 4] 25.0-30.0 sec  20.1 MBytes  8.41 Mbits/sec
[ 4] Sent 14307 datagrams
[ 4] Server Report:
[ 4]  0.0-  5.0 sec  5.00 MBytes  8.39 Mbits/sec  1.428 ms 3194/6939 (46%)
[ 4]  5.0-10.0 sec  5.63 MBytes  9.45 Mbits/sec  0.893 ms 3223/7442 (43%)
[ 4] 10.0-15.0 sec  5.00 MBytes  8.39 Mbits/sec  1.041 ms 9153/20538 (45%)
```

C:\Users\desktop\iperf-2.0.5>
Test Setup

The iPerf application testing is not limited to any specific test setup. To observe the variation in throughput results, tests are carried out in different test setups and results are captured as following.

- Setup 1 – PC is connected via Ethernet to AP and ATWINC15x0 is connected via Wi-Fi to AP.

 ![Figure 6-1. Setup 1](image)

 For test result, see 7. Test Results.

- Setup 2 – Both PC and ATWINC15x0 are connected to AP via Wi-Fi.

 ![Figure 6-2. Setup 2](image)

 For test result, see 7. Test Results.

 Note: The throughput results measured in setup 2 will be comparatively lower. The aim of this test setup is to show an alternate method to measure the throughput. To achieve better results, follow the setup 1.

- Setup 3 – AP mode.

 In the AP mode, the ATWINC15x0 acts as a SoftAP and provides the provision for other device to connect to it and assigns IP address to the connected device.

 ![Figure 6-3. Setup 3](image)

 For test result, see 7. Test Results.

The iPerf throughput varies as per the configuration. To record the maximum achievable throughput, the test is conducted in different environments. To observe the variation in throughput, tests are carried out by varying configuration and security methods. This test setup is repeated with different wireless modes b/g/n.
To regulate the throughput value, configuration changes are made only with setup 1. This test results can be taken as a reference and similar changes in throughput can be expected in other modes which have different environments.

The ATWINC15x0 iPerf throughput performance is measured in the following conditions.

Table 6-1. Conditions to Measure ATWINC15x0 iPerf Throughput Performance

<table>
<thead>
<tr>
<th>Condition</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware configuration</td>
<td>• Security: Open, WPA, WPA2, and Enterprise</td>
</tr>
<tr>
<td></td>
<td>• DMA Enabled</td>
</tr>
<tr>
<td></td>
<td>• DMA Disabled</td>
</tr>
<tr>
<td></td>
<td>• SPI communication frequency 48 MHz/20MHz</td>
</tr>
<tr>
<td>Environment</td>
<td>• Inside shielded box</td>
</tr>
<tr>
<td></td>
<td>• Two setups in shield box (same frequency)</td>
</tr>
<tr>
<td></td>
<td>• Open air (Moderate, Extreme)</td>
</tr>
<tr>
<td>AP configuration</td>
<td>b/g/n</td>
</tr>
</tbody>
</table>

6.1 Throughput Test Result Dependency Parameters

6.1.1 Direct Memory Access

The Direct Memory Access (DMA) can transfer data between memories and peripherals, and off-load these tasks from the CPU. Therefore, DMA enables high data transfer rates with minimum CPU intervention and frees-up CPU time.

By default, Direct Memory Access (DMA) is enabled for the demo iPerf application. The DMA is implemented in the application using the macro defined in the `conf_winc_spi_dma_enable` macro. This macro is implemented in the `conf_winc` file in the configuration folder.

To disable the DMA, comment out the `CONF_WINC_SPI_DMA_ENABLE` macro definition.

6.1.2 SPI Communication Frequency

Varying the SPI communication frequency also has a direct impact in the throughput values. The SPI frequency can be changed using the macro defined in the `conf_winc.h`.

By default, the SPI frequency is set to 48 MHz.

```c
/** SPI clock. */
#define CONF_WINC_SPI_CLOCK (48000000)
```

6.1.3 Security Method

By default, the iPerf application is configured to be secured with WPA/WPA2 personal (PSK). The security method is configured in the `iperf.h` file.

6.1.3.1 Open

To change the security method to OPEN, perform the following.
1. In `iperf.h` file, assign `M2M_WIFI_SEC_OPEN` enum for the `IPERF_WIFI_M2M_WLAN_AUTH` macro instead of `M2M_WIFI_SEC_WPA_PSK` enum.

```c
/** Wi-Fi Settings */
#define IPERF_WIFI_M2M_WLAN_SSID            "DEMO_AP" /**< Destination SSID */
#define IPERF_WIFI_M2M_WLAN_AUTH            M2M_WIFI_SEC_OPEN /**< Security manner */
#define IPERF_WIFI_M2M_WLAN_PSK             "12345678" /**< Password for Destination SSID */
```

2. Call the `m2m_wifi_connect` API as follows.

```c
/* Connect to router. */
m2m_wifi_connect((char *)IPERF_WIFI_M2M_WLAN_SSID, sizeof(IPERF_WIFI_M2M_WLAN_SSID),
IPERF_WIFI_M2M_WLAN_AUTH, NULL, M2M_WIFI_CH_ALL);
```

3. Perform similar changes in the AP settings.

6.1.3.2 WPA/WPA2

To change the security method to WPA/WPA2, perform the following.

1. In `iperf.h` file, assign `IPERF_WIFI_M2M_WLAN_AUTH` macro as `M2M_WIFI_SEC_WPA_PSK` enum.

```c
/** Wi-Fi Settings */
#define IPERF_WIFI_M2M_WLAN_SSID            "DEMO_AP" /**< Destination SSID */
#define IPERF_WIFI_M2M_WLAN_AUTH            M2M_WIFI_SEC_WPA_PSK /**< Security manner */
#define IPERF_WIFI_M2M_WLAN_PSK             "12345678" /**< Password for Destination SSID */
```

2. Call the `m2m_wifi_connect` API as follows.

```c
/* Connect to router. */
m2m_wifi_connect((char *)IPERF_WIFI_M2M_WLAN_SSID, sizeof(IPERF_WIFI_M2M_WLAN_SSID),
IPERF_WIFI_M2M_WLAN_AUTH, (char *)IPERF_WIFI_M2M_WLAN_PSK, M2M_WIFI_CH_ALL);
```

3. Perform similar changes in the AP settings.

6.1.3.3 Enterprise

To change the security method to Enterprise, perform the following.

1. Modify `MAIN_WLAN_802_1X_USR_NAME`, `MAIN_WLAN_802_1X_PWD` to the name and password, respectively.

2. Modify `MAIN_WLAN_DEVICE_NAME` to wireless network name.

3. Call the `m2m_wifi_connect` API as follows.

```c
/* Enterprise Network */
m2m_wifi_connect((char *)IPERF_WIFI_M2M_WLAN_SSID, sizeof(IPERF_WIFI_M2M_WLAN_SSID),
M2M_WIFI_SEC_802_1X,(char *)&gstrCred1x, M2M_WIFI_CH_ALL);
```

4. Perform similar changes in the AP settings.
Test Results

A reference of the iperf throughput performance based on the ATWINC15x0 for the different test setups are as follows.

- Setup 1 – One side on Ethernet and ATWINC15x0 on Wi-Fi (Inside shielded room)
- Setup 2 – Both PC and ATWINC15x0 are connected to AP via Wi-Fi
- Setup 3 – AP mode

Note: The values captured in the following table can vary with varying testing conditions.

Table 7-1. iPerf Throughput Performance for TCP and UDP - Setup 1

<table>
<thead>
<tr>
<th>Environment</th>
<th>SPI Frequency (MHz)</th>
<th>DMA</th>
<th>Channel</th>
<th>Mode</th>
<th>Security</th>
<th>Protocol TCP</th>
<th>Protocol UDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shielded Room</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>Yes</td>
<td>6</td>
<td>n</td>
<td>Open</td>
<td>3.51</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>Yes</td>
<td>6</td>
<td>n</td>
<td>Open</td>
<td>9.71</td>
<td>11.8</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>No</td>
<td>6</td>
<td>n</td>
<td>Open</td>
<td>1.37</td>
<td>6.26</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>Yes</td>
<td>6</td>
<td>n</td>
<td>WPA</td>
<td>9.9</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.85</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.47</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>Yes</td>
<td>6</td>
<td>g</td>
<td>Open</td>
<td>9.54</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>Yes</td>
<td>6</td>
<td>g</td>
<td>WPA</td>
<td>10</td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>Yes</td>
<td>6</td>
<td>b</td>
<td>Open</td>
<td>4.42</td>
<td>5.01</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>Yes</td>
<td>6</td>
<td>b</td>
<td>WPA</td>
<td>10</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>Yes</td>
<td>6</td>
<td>n</td>
<td>Open</td>
<td>5.73</td>
<td>5.60</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>Yes</td>
<td>6</td>
<td>n</td>
<td>Open</td>
<td>7.75</td>
<td>8.28</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>Yes</td>
<td>6</td>
<td>n</td>
<td>Open</td>
<td>5.03</td>
<td>6.06</td>
</tr>
</tbody>
</table>

Table 7-2. iPerf Throughput Performance for TCP and UDP - Setup 2

<table>
<thead>
<tr>
<th>Environment</th>
<th>SPI Frequency (MHz)</th>
<th>DMA</th>
<th>Channel</th>
<th>Mode</th>
<th>Security</th>
<th>Protocol TCP</th>
<th>Protocol UDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shielded Room</td>
<td>48</td>
<td>Yes</td>
<td>6</td>
<td>n</td>
<td>Open</td>
<td>5.03</td>
<td>6.06</td>
</tr>
<tr>
<td>Environment</td>
<td>SPI Frequency (MHz)</td>
<td>DMA</td>
<td>Channel</td>
<td>Mode</td>
<td>Security</td>
<td>TCP Uplink (Mbits/sec)</td>
<td>TCP Downlink (Mbits/sec)</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------</td>
<td>-----</td>
<td>---------</td>
<td>------</td>
<td>----------</td>
<td>------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Shielded Room</td>
<td>48</td>
<td>Yes</td>
<td>6</td>
<td>n</td>
<td>Open</td>
<td>9.84</td>
<td>9.81</td>
</tr>
</tbody>
</table>
8. Appendix - Updating Firmware

The ATWINC15x0 firmware must be updated to 19.6.1 version or latest. When a version mismatch is detected at start-up, the Wi-Fi driver initialization fails and the `m2m_wifi_init()` function returns the firmware version mismatch error code.

Figure 8-1. Firmware Mismatch Error

To update the firmware in the ATWINC15x0 module, use the firmware upgrade project available in ASF. For more details on the firmware upgrade procedure, refer the Integrated Serial Flash and Memory Download Procedure Application Note.
9. Document Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12/2018</td>
<td>Document</td>
<td>Initial revision</td>
</tr>
</tbody>
</table>

Document Revision History

© 2018 Microchip Technology Inc.
The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXSylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS

<table>
<thead>
<tr>
<th>City</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Office</td>
<td>2355 West Chandler Blvd.</td>
<td>Chandler, AZ 85224-6199</td>
<td>480-792-7200</td>
</tr>
<tr>
<td>Technical Support</td>
<td>http://www.microchip.com/support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web Address:</td>
<td>www.microchip.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlanta</td>
<td>Duluth, GA</td>
<td>Tel: 678-957-9614</td>
<td>Fax: 678-957-1455</td>
</tr>
<tr>
<td>Boston</td>
<td>Westborough, MA</td>
<td>Tel: 774-760-0087</td>
<td>Fax: 774-760-0088</td>
</tr>
<tr>
<td>Chicago</td>
<td>Itasca, IL</td>
<td>Tel: 630-285-0071</td>
<td>Fax: 630-285-0075</td>
</tr>
<tr>
<td>Dallas</td>
<td>Addison, TX</td>
<td>Tel: 972-818-7423</td>
<td>Fax: 972-818-2924</td>
</tr>
<tr>
<td>Detroit</td>
<td>Novi, MI</td>
<td>Tel: 248-848-4000</td>
<td></td>
</tr>
<tr>
<td>Houston</td>
<td>TX</td>
<td>Tel: 281-894-5983</td>
<td></td>
</tr>
<tr>
<td>Indianapolis</td>
<td>Noblesville, IN</td>
<td>Tel: 317-773-8323</td>
<td>Fax: 317-773-5453</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>Mission Viejo, CA</td>
<td>Tel: 949-462-9523</td>
<td>Fax: 949-462-9608</td>
</tr>
<tr>
<td>Raleigh, NC</td>
<td>Tel: 919-844-7510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York, NY</td>
<td>Tel: 631-435-6000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Jose, CA</td>
<td>Tel: 408-735-9110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Toronto</td>
<td>Tel: 905-695-1980</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASIA/PACIFIC

<table>
<thead>
<tr>
<th>Country</th>
<th>City</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Sydney</td>
<td>Tel: 61-2-9868-6733</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Beijing</td>
<td>Tel: 86-10-8569-7000</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Chengdu</td>
<td>Tel: 86-28-8665-5511</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Chongqing</td>
<td>Tel: 86-23-8980-9588</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Dongguan</td>
<td>Tel: 86-769-8702-9880</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Guangzhou</td>
<td>Tel: 86-20-8755-8029</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Hangzhou</td>
<td>Tel: 86-571-8792-8115</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Hong Kong SAR</td>
<td>Tel: 852-2943-5100</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Nanjing</td>
<td>Tel: 86-25-8473-2460</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Qingdao</td>
<td>Tel: 86-632-8502-7355</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Shanghai</td>
<td>Tel: 86-21-3326-8000</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Shenzhen</td>
<td>Tel: 86-24-2334-2829</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Suzhou</td>
<td>Tel: 86-186-6233-1526</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Wuhan</td>
<td>Tel: 86-27-5980-5300</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Xian</td>
<td>Tel: 86-29-8833-7252</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Xiamen</td>
<td>Tel: 86-992-2388138</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Zhuhai</td>
<td>Tel: 86-756-3210040</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>Bangalore</td>
<td>Tel: 91-80-3090-4444</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>New Delhi</td>
<td>Tel: 91-11-4160-8631</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>Pune</td>
<td>Tel: 91-20-4121-0141</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>Osaka</td>
<td>Tel: 81-6-6152-7160</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>Tokyo</td>
<td>Tel: 81-3-6880-3770</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>Daegu</td>
<td>Tel: 82-53-744-4301</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>Seoul</td>
<td>Tel: 82-2-554-7200</td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>Kuala Lumpur</td>
<td>Tel: 60-3-7651-7906</td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>Penang</td>
<td>Tel: 60-4-227-8870</td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td>Manila</td>
<td>Tel: 63-2-634-9065</td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td></td>
<td>Tel: 65-6334-8870</td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td>Hsin Chu</td>
<td>Tel: 886-3-577-8366</td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td>Kaohsiung</td>
<td>Tel: 886-7-213-7830</td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td>Taipei</td>
<td>Tel: 886-2-2508-8600</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>Bangkok</td>
<td>Tel: 66-2-694-1351</td>
<td></td>
</tr>
<tr>
<td>Vietnam</td>
<td>Ho Chi Minh</td>
<td>Tel: 84-28-5448-2100</td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>Wels</td>
<td>Tel: 43-7242-2244-39</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>Copenhagen</td>
<td>Tel: 45-4450-2828</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>Espoo</td>
<td>Tel: 358-9-4520-820</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>Paris</td>
<td>Tel: 33-1-69-53-63-20</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Garching</td>
<td>Tel: 49-8931-9700</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Haan</td>
<td>Tel: 49-2129-376640</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Heilbronn</td>
<td>Tel: 49-7131-67-3636</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Karlsruhe</td>
<td>Tel: 49-721-625370</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Munich</td>
<td>Tel: 49-89-627-144-0</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Rosenberg</td>
<td>Tel: 49-8031-354-560</td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>Ra’anan</td>
<td>Tel: 972-9-744-7705</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>Milan</td>
<td>Tel: 39-0331-742611</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>Drunen</td>
<td>Tel: 31-416-690399</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>Trondheim</td>
<td>Tel: 47-72884388</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>Warsaw</td>
<td>Tel: 48-22-3325737</td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td>Bucharest</td>
<td>Tel: 40-21-407-87-50</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>Madrid</td>
<td>Tel: 34-91-708-08-90</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>Gothenberg</td>
<td>Tel: 46-31-704-60-40</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>Stockholm</td>
<td>Tel: 46-8-5090-4654</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>Wokingham</td>
<td>Tel: 44-118-921-5800</td>
<td></td>
</tr>
</tbody>
</table>

© 2018 Microchip Technology Inc.