Introduction

The ATSAME54 100-Pin Motor Control Plug-in Module (PIM), MA320207, is designed to demonstrate the capabilities of the ATSAME54 128-pin Motor Control device (ATSAME54P20A) using external op amps with the following hardware:

- The dsPICDEM™ MCLV-2 development board (DM330021-2)
- The dsPICDEM™ MCHV-3 development board (DM330023-3)

Both development boards support 100-pin PIM interfaces. The ATSAME54 Motor Control PIM is designed to use on board external op amps for signal conditioning of analog feedback inputs.

For the dsPICDEM™ MCLV-2 development board, insert the external op amp configuration board (included with the development board) at header J14.

For the dsPICDEM™ MCHV-3 development board, insert the PFC–EXT-OPAMP configuration board (included with the development board) at header J4.

Figure 1. Op amp Configuration Board for dsPICDEM™ MCLV-2
Programming and Debugging

Use the following options to program and debug software on the ATSAME54 Motor Control PIM:

- **In-Circuit Debugger**: The ATSAME54 Motor Control PIM can be programmed and debugged using the following debugging tools, which are connected to the board using a CoreSight 10 connector:
 - MPLAB® ICD4 In-Circuit Debugger
 - ATMEL-ICE
 - SAM-ICE™

- **Isolated EDBG Interface (AC320202)**: This daughter board provides an isolated programming and debugging interface for the ATSAME54 Motor Control PIM. This daughter board is compatible with the dsPICDEM™ MCHV-2/ MCHV-3 boards. Refer to the information sheet of this daughter board for additional information.

WARNING

Do not connect non-isolated oscilloscope probes to probe any traces while using the PIM with the dsPICDEM MCHV-3 development boards. Instead, use a high-voltage differential probe, rated in excess of 600 VRMS (Common mode). Failure to heed this warning could result in hardware damage.
Table of Contents

Introduction...1

1. PIM to MCU Mapping..4

The Microchip Web Site...14

Customer Change Notification Service..14

Customer Support..14

Microchip Devices Code Protection Feature..14

Legal Notice...15

Trademarks..15

Quality Management System Certified by DNV...15

Worldwide Sales and Service...16
Table 1-1. PIM to MCU Mapping

<table>
<thead>
<tr>
<th>PIM Connector PIN</th>
<th>MCLV2 100-pin connection</th>
<th>MCHV3 100-pin connection</th>
<th>SAME54 MCU Pin</th>
<th>MCU Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pin Name</td>
<td>Functionality</td>
<td>Pin Name</td>
<td>Functionality</td>
</tr>
<tr>
<td>1</td>
<td>DBG_LED2</td>
<td>Debug LED 2</td>
<td>DBG_LED1</td>
<td>Debug LED 1</td>
</tr>
<tr>
<td>2</td>
<td>VDD</td>
<td>NC</td>
<td>VDD</td>
<td>NC</td>
</tr>
<tr>
<td>3</td>
<td>PWM1H3</td>
<td>PWM Output - 3H</td>
<td>PWM1H3</td>
<td>PWM Output - 3H</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>6</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>9</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>10</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>11</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>12</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>13</td>
<td>MCLR</td>
<td>Device Master Clear</td>
<td>MCLR</td>
<td>Device Master Clear</td>
</tr>
<tr>
<td>14</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>15</td>
<td>VSS</td>
<td>NC</td>
<td>VSS</td>
<td>NC</td>
</tr>
<tr>
<td>16</td>
<td>VDD</td>
<td>NC</td>
<td>VDD</td>
<td>NC</td>
</tr>
<tr>
<td>17</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>18</td>
<td>FAULT</td>
<td>DC bus Current Fault (active low logic)</td>
<td>FAULT</td>
<td>DC bus Current Fault (active low logic)</td>
</tr>
<tr>
<td>19</td>
<td>TX</td>
<td>UART Transmit</td>
<td>PFC_FLT</td>
<td>IAPC Fault (overvoltage or overcurrent)</td>
</tr>
<tr>
<td>20</td>
<td>PIM_V_M3</td>
<td>Voltage feedback signal</td>
<td>PIM_INDEX/INDEX/V_M3</td>
<td>Hall Sensor/Current Sense Voltage Feedback Signal</td>
</tr>
<tr>
<td>21</td>
<td>PIM_V_M2</td>
<td>Voltage feedback signal</td>
<td>PIM_QEB/IB/V_M2</td>
<td>Hall Sensor/Current Sense Voltage Feedback Signal</td>
</tr>
<tr>
<td>22</td>
<td>PIM_V_M1</td>
<td>Voltage feedback signal</td>
<td>PIM_QEA/IA/V_M1</td>
<td>Hall Sensor/Current Sense Voltage Feedback Signal</td>
</tr>
<tr>
<td>23</td>
<td>PIM_MOTOR_SUM</td>
<td>DC bus current signal</td>
<td>PIM_IBUS/VBUS</td>
<td>DC Bus Voltage (downscaled)</td>
</tr>
<tr>
<td>PIM Connector PIN</td>
<td>MCLV2 100-pin connection</td>
<td>MCHV3 100-pin connection</td>
<td>SAME54 MCU Pins</td>
<td>MCU Pin</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Pin Name</td>
<td>Functionality</td>
<td>Pin Name</td>
<td>Functionality</td>
</tr>
<tr>
<td>24</td>
<td>PIM_IMOTOR2</td>
<td>Phase current signal</td>
<td>PIM_IB/POT</td>
<td>AC Input Zero</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cross/AC Input Voltage (downscaled)/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Potentiometer</td>
</tr>
<tr>
<td>25</td>
<td>PIM_IMOTOR1</td>
<td>Phase current signal</td>
<td>PIM_IAP/PFC</td>
<td>PFC Current (buffered)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>PGC</td>
<td>Device programming clock line</td>
<td>PGC</td>
<td>Device programming clock line</td>
</tr>
<tr>
<td>27</td>
<td>PGD</td>
<td>Device programming data line</td>
<td>PGD</td>
<td>Device programming data line</td>
</tr>
<tr>
<td>28</td>
<td>VREF</td>
<td>Reference voltage</td>
<td>AVDD/2</td>
<td>Reference voltage (half of AVDD voltage)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(half of AVDD voltage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>PIM_REC_NEUTR</td>
<td>Reconstructed motor neutral line voltage</td>
<td>PIM_REC_NEUTR</td>
<td>Reconstructed motor neutral line voltage</td>
</tr>
<tr>
<td>30</td>
<td>AVDD</td>
<td>Analog supply</td>
<td>AVDD</td>
<td>Analog supply</td>
</tr>
<tr>
<td>31</td>
<td>AVSS</td>
<td>Analog supply</td>
<td>AVSS</td>
<td>Analog supply</td>
</tr>
<tr>
<td>32</td>
<td>PIM_POT</td>
<td>Potentiometer signal</td>
<td>PIM_POT</td>
<td>Potentiometer signal</td>
</tr>
<tr>
<td>33</td>
<td>NC</td>
<td>NC</td>
<td>PIM_POT</td>
<td>Potentiometer signal</td>
</tr>
<tr>
<td>34</td>
<td>PIM_GEN2</td>
<td>General I/O</td>
<td>PIM_GEN2</td>
<td>General I/O</td>
</tr>
<tr>
<td>35</td>
<td>PIM_VBUS</td>
<td>DC bus voltage</td>
<td>PIM_VBUS</td>
<td>DC bus voltage (downscaled)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(downscaled)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>VSS</td>
<td>NC</td>
<td>VSS</td>
<td>NC</td>
</tr>
<tr>
<td>37</td>
<td>VDD</td>
<td>NC</td>
<td>VDD</td>
<td>NC</td>
</tr>
<tr>
<td>38</td>
<td>NC</td>
<td>NC</td>
<td>PIM_VAC_VOL2</td>
<td>AC Input Voltage (unbuffered)</td>
</tr>
<tr>
<td>39</td>
<td>NC</td>
<td>NC</td>
<td>PFC Shunt Signal</td>
<td>PFC Shunt Signal</td>
</tr>
<tr>
<td>40</td>
<td>NC</td>
<td>NC</td>
<td>PIM_PFC_L</td>
<td>PFC Shunt Signal</td>
</tr>
<tr>
<td>41</td>
<td>PIM_MONITOR_1</td>
<td>Hall Sensor/Current Sense/Voltage Feedback Signal</td>
<td>PIM_V_M1/POT</td>
<td>Hall Sensor/Current Sense/Voltage Feedback Signal</td>
</tr>
<tr>
<td>PIM Connector PIN</td>
<td>MCLV2 100-pin connection</td>
<td>MCHV3 100-pin connection</td>
<td>SAME54 MCU Pins</td>
<td>MCU Pin</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>42</td>
<td>PIM_MONITOR_2</td>
<td>PIM_V_M2</td>
<td>PB08_GPIO_CH2_ADC1_ADC0_VFL</td>
<td>19</td>
</tr>
<tr>
<td>43</td>
<td>PIM_MONITOR_3</td>
<td>PIM_V_M3/ISBUS</td>
<td>PB09_GPIO_CH3_ADC1_ADC0_VFL;</td>
<td>20, 8</td>
</tr>
<tr>
<td>44</td>
<td>NC</td>
<td>NC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>45</td>
<td>VSS</td>
<td>VSS</td>
<td>5, 31, 38, 45,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53, 64, 78,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90, 96, 108, 116</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>VDD</td>
<td>VDD</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>47</td>
<td>HALLB</td>
<td>HALLB_QEB</td>
<td>PC17_GPIO_QDI1_HALL_ENC</td>
<td>71</td>
</tr>
<tr>
<td>48</td>
<td>HALLC</td>
<td>HALLC_QINDEX</td>
<td>PC18_GPIO_QDI2_HALL_ENC</td>
<td>72</td>
</tr>
<tr>
<td>49</td>
<td>RX</td>
<td>UART_RECEIVE</td>
<td>PA13_GPIO_QDI2_SER2_PAD</td>
<td>61</td>
</tr>
<tr>
<td>50</td>
<td>TX</td>
<td>UART_TRANSMIT</td>
<td>PA12_GPIO_QDI2_SER2_PAD</td>
<td>60</td>
</tr>
<tr>
<td>51</td>
<td>USB_TX</td>
<td>UART_TRANSMIT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>52</td>
<td>USB_RX</td>
<td>UART.Receive</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>53</td>
<td>NC</td>
<td>NC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>54</td>
<td>NC</td>
<td>NC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>55</td>
<td>NC</td>
<td>NC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>56</td>
<td>NC</td>
<td>NC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>57</td>
<td>NC</td>
<td>NC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>58</td>
<td>PIM_FLT_OUT2</td>
<td>PIM_FLT_OUT2_VACZC</td>
<td>PA11_GPIO_CH11_PFCVACZC_IA</td>
<td>36, 12</td>
</tr>
<tr>
<td>59</td>
<td>PIM_FLT_OUT1</td>
<td>PIM_FLT_OUT1_PFCI</td>
<td>PB00_GPIO_CH12_PFCI_IB;</td>
<td>125, 123</td>
</tr>
<tr>
<td>60</td>
<td>DBG_LED1</td>
<td>DBG_LED2</td>
<td>PB27_GPIO</td>
<td>103</td>
</tr>
<tr>
<td>61</td>
<td>HOME</td>
<td>HOME</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62</td>
<td>VDD</td>
<td>VDD</td>
<td>32, 37, 46, 54,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65, 79, 91,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>97, 107, 118</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>OSC1/CLKO</td>
<td>OSCI</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>64</td>
<td>OSC2/CLKO</td>
<td>OSCO</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
ATSAME54

PIM to MCU Mapping

<table>
<thead>
<tr>
<th>PIM Connector PIN</th>
<th>MCLV2 100-pin connection</th>
<th>MCHV3 100-pin connection</th>
<th>SAME54 MCU Pins</th>
<th>MCU Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin Name</td>
<td>Functionality</td>
<td>Pin Name</td>
<td>Functionality</td>
<td>100-pin connector signal name</td>
</tr>
<tr>
<td>65</td>
<td>VSS</td>
<td>VSS</td>
<td>NC</td>
<td>VSS</td>
</tr>
<tr>
<td>66</td>
<td>PIM_IBUS+</td>
<td>Bus current shunt signal</td>
<td>PIM_IBUS+</td>
<td>NC</td>
</tr>
<tr>
<td>67</td>
<td>PIM_IBUS-</td>
<td>Bus current shunt signal</td>
<td>PIM_IBUS-</td>
<td>NC</td>
</tr>
<tr>
<td>68</td>
<td>LIN_CS</td>
<td>LIN Chip Select signal</td>
<td>BTN</td>
<td>BTN</td>
</tr>
<tr>
<td>69</td>
<td>LIN_FAULT</td>
<td>LIN Fault signal</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>70</td>
<td>RX</td>
<td>UART Receive</td>
<td>RX</td>
<td>UART</td>
</tr>
<tr>
<td>71</td>
<td>NC</td>
<td>NC</td>
<td>PIM_PFC_PWM</td>
<td>PFC</td>
</tr>
<tr>
<td>72</td>
<td>USB_RX</td>
<td>UART Receive (connected directly to U7)</td>
<td>HA/QEA</td>
<td>Hall Sensor /QEI Input</td>
</tr>
<tr>
<td>73</td>
<td>PIM_IB+</td>
<td>IMOTOR1 shunt signal</td>
<td>PIM_IB+</td>
<td>IB Shunt Signal</td>
</tr>
<tr>
<td>74</td>
<td>PIM_IA+</td>
<td>IMOTOR2 shunt signal</td>
<td>PIM_IA+</td>
<td>IA Shunt Signal</td>
</tr>
<tr>
<td>75</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS</td>
<td>NC</td>
</tr>
<tr>
<td>76</td>
<td>USB_TX</td>
<td>UART Transmit (connected directly to U7)</td>
<td>HB/QEB</td>
<td>Hall Sensor /QEI Input</td>
</tr>
<tr>
<td>77</td>
<td>CAN_TX</td>
<td>CAN Transmit</td>
<td>PIM_HALLC/INDX/STP_PWM</td>
<td>Hall Sensor /QEI Input</td>
</tr>
<tr>
<td>78</td>
<td>CAN_RX</td>
<td>CAN Receive</td>
<td>PIM_PFC_PWM</td>
<td>PFC</td>
</tr>
<tr>
<td>79</td>
<td>NC</td>
<td>VDD</td>
<td>VACZX</td>
<td>AC Input Zero Cross</td>
</tr>
<tr>
<td>80</td>
<td>HALLA</td>
<td>Hall sensor /QEI input</td>
<td>HA/QEA</td>
<td>Hall Sensor /QEI Input</td>
</tr>
<tr>
<td>81</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>82</td>
<td>PIM_GEN1</td>
<td>General I/O</td>
<td>PIM_GEN1</td>
<td>General I/O</td>
</tr>
<tr>
<td>83</td>
<td>BTN_1</td>
<td>Push-button S2 input</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>84</td>
<td>BTN_2</td>
<td>Push-button S3 input</td>
<td>TX</td>
<td>UART</td>
</tr>
<tr>
<td>85</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>86</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
<td>VDD</td>
</tr>
<tr>
<td>87</td>
<td>CAN_RX</td>
<td>CAN Receive</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>88</td>
<td>CAN_TX</td>
<td>CAN Transmit</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>PIM Connector PIN</td>
<td>MCLV2 100-pin connection</td>
<td>MCHV3 100-pin connection</td>
<td>SAME54 MCU Pins</td>
<td>MCU Pin</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Pin Name</td>
<td>Functionality</td>
<td>Pin Name</td>
<td>Functionality</td>
<td>100-pin connector signal name</td>
</tr>
<tr>
<td>89</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>90</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>91</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>92</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>93</td>
<td>PWM1L1</td>
<td>PWM Output - 1L</td>
<td>PWM1L1</td>
<td>PWM Output - 1L</td>
</tr>
<tr>
<td>94</td>
<td>PWM1H1</td>
<td>PWM Output - 1H</td>
<td>PWM1H1</td>
<td>PWM Output - 1H</td>
</tr>
<tr>
<td>95</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>96</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>97</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>98</td>
<td>PWM1L2</td>
<td>PWM Output - 2L</td>
<td>PWM1L2</td>
<td>PWM Output - 2L</td>
</tr>
<tr>
<td>99</td>
<td>PWM1H2</td>
<td>PWM Output - 2H</td>
<td>PWM1H2</td>
<td>PWM Output - 2H</td>
</tr>
<tr>
<td>100</td>
<td>PWM1L3</td>
<td>PWM Output - 3L</td>
<td>PWM1L3</td>
<td>PWM Output - 3L</td>
</tr>
</tbody>
</table>
Figure 1-1. ATSAME54 Motor Control PIM Schematic
The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLab, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

clockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-5197-6

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Office</td>
<td>Australia - Sydney</td>
<td>Tel: 61-2-9868-6733</td>
<td>India - Bangalore</td>
</tr>
<tr>
<td>2355 West Chandler Blvd.</td>
<td>China - Beijing</td>
<td>Tel: 86-10-8569-7000</td>
<td>India - New Delhi</td>
</tr>
<tr>
<td>Chandler, AZ 85224-6199</td>
<td>China - Chengdu</td>
<td>Tel: 86-28-8665-5511</td>
<td>India - Pune</td>
</tr>
<tr>
<td>Tel: 480-792-7200</td>
<td>China - Chongqing</td>
<td>Tel: 86-23-8980-9588</td>
<td>Japan - Osaka</td>
</tr>
<tr>
<td>Fax: 480-792-7277</td>
<td>China - Dongguan</td>
<td>Tel: 86-769-8702-9880</td>
<td>Japan - Tokyo</td>
</tr>
<tr>
<td>Technical Support:</td>
<td>China - Guangzhou</td>
<td>Tel: 86-20-8755-8029</td>
<td>Korea - Daegu</td>
</tr>
<tr>
<td>http://www.microchip.com/support</td>
<td>China - Hangzhou</td>
<td>Tel: 86-8-571-8792-8115</td>
<td>Korea - Seoul</td>
</tr>
<tr>
<td>Web Address:</td>
<td>China - Hong Kong SAR</td>
<td>Tel: 852-2943-5100</td>
<td>Malaysia - Kuala Lumpur</td>
</tr>
<tr>
<td>www.microchip.com</td>
<td>China - Nanjing</td>
<td>Tel: 86-25-8473-2460</td>
<td>Malaysia - Penang</td>
</tr>
<tr>
<td>Atlanta</td>
<td>China - Qingdao</td>
<td>Tel: 86-532-8502-7355</td>
<td>Philippines - Manila</td>
</tr>
<tr>
<td>Duluth, GA</td>
<td>China - Shanghai</td>
<td>Tel: 86-21-3326-8000</td>
<td>Singapore</td>
</tr>
<tr>
<td>Tel: 678-957-9614</td>
<td>China - Shenyang</td>
<td>Tel: 86-24-2334-2829</td>
<td>Taiwan - Hsin Chu</td>
</tr>
<tr>
<td>Fax: 678-957-1455</td>
<td>China - Shenzhen</td>
<td>Tel: 86-755-8864-2200</td>
<td>Taiwan - Kaohsiung</td>
</tr>
<tr>
<td>Austin, TX</td>
<td>China - Suzhou</td>
<td>Tel: 86-186-6233-1526</td>
<td>Taiwan - Taipei</td>
</tr>
<tr>
<td>Tel: 512-257-3370</td>
<td>China - Wuhan</td>
<td>Tel: 86-27-5980-5300</td>
<td>Thailand - Bangkok</td>
</tr>
<tr>
<td>Boston</td>
<td>China - Xian</td>
<td>Tel: 86-29-8833-7252</td>
<td>Vietnam - Ho Chi Minh</td>
</tr>
<tr>
<td>Westbrook, MA</td>
<td>China - Xiamen</td>
<td>Tel: 86-992-2388138</td>
<td></td>
</tr>
<tr>
<td>Tel: 774-760-0087</td>
<td>China - Zhuhai</td>
<td>Tel: 86-756-3210040</td>
<td></td>
</tr>
<tr>
<td>Tel: 774-760-0088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicago</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itasca, IL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tel: 630-285-0071</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax: 630-285-0075</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addison, TX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tel: 972-818-7423</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax: 972-818-2924</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detroit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novi, MI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tel: 248-848-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Houston, TX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tel: 281-894-5983</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indianapolis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noblesville, IN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tel: 317-773-8323</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax: 317-773-5453</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tel: 317-536-2380</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mission Viejo, CA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tel: 949-462-9523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax: 949-462-9608</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tel: 951-273-7800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raleigh, NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tel: 919-844-7510</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York, NY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tel: 631-435-6000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Jose, CA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tel: 408-735-9110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax: 408-436-4270</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Toronto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tel: 905-695-1980</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax: 905-695-2078</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>