Features

• Cryptographic Co-Processor with Secure Hardware-Based Key Storage:
 – Protected storage for up to 16 keys, certificates or data
• Hardware Support for Asymmetric Sign, Verify, Key Agreement:
 – ECDSA: FIPS186-3 Elliptic Curve Digital Signature
 – ECDH: FIPS SP800-56A Elliptic Curve Diffie-Hellman
 – NIST Standard P256 Elliptic Curve Support
• Hardware Support for Symmetric Algorithms:
 – SHA-256 & HMAC Hash including off-chip context save/restore
 – AES-128: Encrypt/Decrypt, Galois Field Multiply for GCM
• Networking Key Management Support:
 – Turnkey PRF/HKDF calculation for TLS 1.2 & 1.3
 – Ephemeral key generation and key agreement in SRAM
 – Small message encryption with keys entirely protected
• Secure Boot Support:
 – Full ECDSA code signature validation, optional stored digest/signature
 – Optional communication key disablement prior to secure boot
 – Encryption/Authentication for messages to prevent on-board attacks
• Internal High-Quality NIST SP 800-90A/B/C Random Number Generator (RNG)
• Two High-Endurance Monotonic Counters
• Unique 72-Bit Serial Number
• Two Interface Options Available:
 – High-speed Single Pin Interface with One GPIO Pin
 – 1 MHz Standard I²C Interface
• 1.8V to 5.5V IO Levels, 2.0V to 5.5V Supply Voltage
• <150 nA Sleep Current
• 8-pad UDFN and 8-lead SOIC
• Die-on-Tape and Reel for Qualified Customers (Contact Microchip Sales)

Applications

• IoT network endpoint key management & exchange
• Encryption for small messages and PII data
• Secure Boot and Protected Download
• Ecosystem Control, Anti-cloning
Pin Configuration and Pinouts

Table 1. Pin Configuration

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>No Connect</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>SDA</td>
<td>Serial Data</td>
</tr>
<tr>
<td>SCL</td>
<td>Serial Clock Input</td>
</tr>
<tr>
<td>VCC</td>
<td>Power Supply</td>
</tr>
</tbody>
</table>

Figure 1. Pinouts
Table of Contents

Features.. 1

Applications... 1

Pin Configuration and Pinouts... 2

1. Introduction.. 4
 1.1. Applications... 4
 1.2. Device Features.. 4
 1.3. Cryptographic Operation.. 5

2. Electrical Characteristics... 6
 2.1. Absolute Maximum Ratings... 6
 2.2. Reliability.. 6
 2.3. AC Parameters: All I/O Interfaces.. 6
 2.4. DC Parameters: All I/O Interfaces.. 10

3. Compatibility.. 14
 3.1. Microchip ATECC508A... 14
 3.2. Microchip ATSHA204A, ATECC108A... 15

4. Package Marking Information.. 16

5. Package Drawings... 17
 5.1. 8-lead SOIC... 17
 5.2. 8-pad UDFN... 20

6. Revision History... 23

The Microchip Web Site.. 24

Customer Change Notification Service... 24

Customer Support... 24

Product Identification System.. 25

Microchip Devices Code Protection Feature... 26

Legal Notice.. 26

Trademarks.. 26

Quality Management System Certified by DNV.. 27

Worldwide Sales and Service.. 28
1. Introduction

1.1 Applications

The ATECC608A is a member of the Microchip CryptoAuthentication™ family of high-security cryptographic devices which combine world-class hardware-based key storage with hardware cryptographic accelerators to implement various authentication and encryption protocols.

The ATECC608A has a flexible command set that allows use in many applications, including the following:

- **Network/IoT Node Endpoint Security**
 Manage node identity authentication and session key creation & management. Supports the entire ephemeral session key generation flow for multiple protocols including TLS 1.2 (and earlier) and TLS 1.3

- **Secure Boot**
 Support the MCU host by validating code digests and optionally enabling communication keys on success. Various configurations to offer enhanced performance are available.

- **Small Message Encryption**
 Hardware AES engine to encrypt and/or decrypt small messages or data such as PII information. Supports AES-ECB mode directly. Other modes can be implemented with the help of the host microcontroller. Additional GFM calculation function to support AES-GCM.

- **Key Generation for Software Download**
 Supports local protected key generation for downloaded images. Both broadcast of one image to many systems, each with the same decryption key, or point-to-point download of unique images per system are supported.

- **Ecosystem control and Anti-Counterfeiting**
 Validates that a system or component is authentic and came from the OEM shown on the nameplate.

The ATECC608A is generally compatible with the ATECC508A when properly configured. See Section 3.1 Microchip ATECC508A for more details.

1.2 Device Features

The ATECC608A includes an EEPROM array which can be used for storage of up to 16 keys, certificates, miscellaneous read/write, read-only or secret data, consumption logging, and security configurations. Access to the various sections of memory can be restricted in a variety of ways and then the configuration can be locked to prevent changes.

Access to the device is made through a standard I²C Interface at speeds of up to 1 Mb/s. The interface is compatible with standard Serial EEPROM I²C interface specifications. The device also supports a Single-Wire Interface (SWI), which can reduce the number of GPIOs required on the system processor, and/or reduce the number of pins on connectors. If the Single-Wire Interface is enabled, the remaining pin is available for use as a GPIO, an authenticated output or tamper input.

Each ATECC608A ships with a guaranteed unique 72-bit serial number. Using the cryptographic protocols supported by the device, a host system or remote server can verify a signature of the serial number to prove that the serial number is authentic and not a copy. Serial numbers are often stored in a
standard Serial EEPROM; however, these can be easily copied with no way for the host to know if the serial number is authentic or if it is a clone.

The ATECC608A features a wide array of defense mechanisms specifically designed to prevent physical attacks on the device itself, or logical attacks on the data transmitted between the device and the system. Hardware restrictions on the ways in which keys are used or generated provide further defense against certain styles of attack.

1.3 Cryptographic Operation

The ATECC608A implements a complete asymmetric (public/private) key cryptographic signature solution based upon Elliptic Curve Cryptography and the ECDSA signature protocol. The device features hardware acceleration for the NIST standard P256 prime curve and supports the complete key life cycle from high quality private key generation, to ECDSA signature generation, ECDH key agreement, and ECDSA public key signature verification.

The hardware accelerator can implement such asymmetric cryptographic operations from ten to one-thousand times faster than software running on standard microprocessors, without the usual high risk of key exposure that is endemic to standard microprocessors.

The ATECC608A also implements AES-128, SHA256 and multiple SHA derivatives such as HMAC(SHA), PRF (the key derivation function in TLS) and HKDF in hardware. Support is included for the Galois Field Multiply (aka Ghash) to facilitate GCM encryption/decryption/authentication.

The device is designed to securely store multiple private keys along with their associated public keys and certificates. The signature verification command can use any stored or an external ECC public key. Public keys stored within the device can be configured to require validation via a certificate chain to speed-up subsequent device authentications.

Random private key generation is supported internally within the device to ensure that the private key can never be known outside of the device. The public key corresponding to a stored private key is always returned when the key is generated and it may optionally be computed at a later time.

The ATECC608A can generate high-quality random numbers using its internal random number generator. This sophisticated function includes runtime health testing designed to ensure that the values generated from the internal noise source contain sufficient entropy at the time of use. The random number generator is designed to meet the requirements documented in the NIST 800-90A, 800-90B and 800-90C documents.

These random numbers can be employed for any purpose, including usage as part of the device’s cryptographic protocols. Because each random number is assured to be essentially unique from all numbers ever generated on this or any other device, their inclusion in the protocol calculation ensures that replay attacks (i.e. re-transmitting a previously successful transaction) will always fail.

The ATECC608A also supports a standard hash-based challenge-response protocol in order to allow its use across a wide variety of additional applications. In its most basic instantiation, the system sends a challenge to the device, which combines that challenge with a secret key via the MAC command and then sends the response back to the system. The device uses a SHA-256 cryptographic hash algorithm to make that combination so that an observer on the bus cannot derive the value of the secret key. At the same time the recipient can verify that the response is correct by performing the same calculation with a stored copy of the secret on the recipient’s system. There are a wide variety of variations possible on this symmetric challenge/response theme.
2. Electrical Characteristics

2.1 Absolute Maximum Ratings

Operating Temperature: -40°C to +85°C
Storage Temperature: -65°C to +150°C
Maximum Operating Voltage: 6.0V
DC Output Current: 5.0 mA
Voltage on any pin -0.5V to (VCC + 0.5V)

ESD Ratings:
- Human Body Model (HBM) ESD: >4kV
- Charge Device Model (CDM) ESD: >1kV

Note: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2.2 Reliability

The ATECC608A is fabricated with Microchip’s high reliability CMOS EEPROM manufacturing technology.

Table 2-1. EEPROM Reliability

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write Endurance at +85°C (Each Byte)</td>
<td>400,000</td>
<td>—</td>
<td>—</td>
<td>Write Cycles</td>
</tr>
<tr>
<td>Data Retention at +55°C</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>Years</td>
</tr>
<tr>
<td>Data Retention at +35°C</td>
<td>30</td>
<td>50</td>
<td>—</td>
<td>Years</td>
</tr>
<tr>
<td>Read Endurance</td>
<td>Unlimited</td>
<td>—</td>
<td>—</td>
<td>Read Cycles</td>
</tr>
</tbody>
</table>

2.3 AC Parameters: All I/O Interfaces

Figure 2-1. AC Timing Diagram: All Interfaces
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Direction</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-Up Delay (^{(2)})</td>
<td>(t_{PU})</td>
<td>To Crypto Authentication</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>(\mu)s</td>
<td>Minimum time between (V_{CC} > V_{CC\ min}) prior to start of (t_{WLO}).</td>
</tr>
<tr>
<td>Wake Low Duration</td>
<td>(t_{WLO})</td>
<td>To Crypto Authentication</td>
<td>60</td>
<td>—</td>
<td>—</td>
<td>(\mu)s</td>
<td></td>
</tr>
<tr>
<td>Wake High Delay to Data Comm</td>
<td>(t_{WHI})</td>
<td>To Crypto Authentication</td>
<td>1500</td>
<td>—</td>
<td>—</td>
<td>(\mu)s</td>
<td>SDA should be stable high for this entire duration unless polling is implemented. SelfTest is not enabled at power-up.</td>
</tr>
<tr>
<td>Wake High Delay when SelfTest is Enabled</td>
<td>(t_{WHIST})</td>
<td>To Crypto Authentication</td>
<td>20</td>
<td>—</td>
<td>—</td>
<td>ms</td>
<td>SDA should be stable high for this entire duration unless polling is implemented.</td>
</tr>
<tr>
<td>High Side Glitch Filter at Active</td>
<td>(t_{HIGNORE_A})</td>
<td>To Crypto Authentication</td>
<td>45 (^{(1)})</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Pulses shorter than this in width will be ignored by the device, regardless of its state when active.</td>
</tr>
<tr>
<td>Low Side Glitch Filter at Active</td>
<td>(t_{LIGNORE_A})</td>
<td>To Crypto Authentication</td>
<td>45 (^{(1)})</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Pulses shorter than this in width will be ignored by the device, regardless of its state when active.</td>
</tr>
<tr>
<td>Low Side Glitch Filter at Sleep</td>
<td>(t_{LIGNORE_S})</td>
<td>To Crypto Authentication</td>
<td>15 (^{(1)})</td>
<td>—</td>
<td>—</td>
<td>(\mu)s</td>
<td>Pulses shorter than this in width will be ignored by the device when in Sleep mode.</td>
</tr>
<tr>
<td>Watchdog Timeout</td>
<td>(t_{WATCHDOG})</td>
<td>To Crypto Authentication</td>
<td>0.7</td>
<td>1.3</td>
<td>1.7</td>
<td>s</td>
<td>Time from wake until device is forced into Sleep mode if Config.ChipMode. (<2>) is 0.</td>
</tr>
</tbody>
</table>

Note:
1. These parameters are characterized, but not production tested.
2. The power-up delay will be significantly longer if Power-On self test is enabled in the configuration zone.
2.3.1 AC Parameters: Single-Wire Interface

Figure 2-2. AC Timing Diagram: Single-Wire Interface

Table 2-3. AC Parameters: Single-Wire Interface

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Direction</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Pulse Duration</td>
<td>tSTART</td>
<td>To Crypto Authentication</td>
<td>4.10</td>
<td>4.34</td>
<td>4.56</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>From Crypto Authentication</td>
<td>4.60</td>
<td>6</td>
<td>8.60</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>Zero Transmission High Pulse</td>
<td>tZHI</td>
<td>To Crypto Authentication</td>
<td>4.10</td>
<td>4.34</td>
<td>4.56</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>From Crypto Authentication</td>
<td>4.60</td>
<td>6</td>
<td>8.60</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>Zero Transmission Low Pulse</td>
<td>tZLO</td>
<td>To Crypto Authentication</td>
<td>4.10</td>
<td>4.34</td>
<td>4.56</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>From Crypto Authentication</td>
<td>4.60</td>
<td>6</td>
<td>8.60</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>Bit Time (note)</td>
<td>tBIT</td>
<td>To Crypto Authentication</td>
<td>37</td>
<td>39</td>
<td></td>
<td>μs</td>
<td>If the bit time exceeds tTIMEOUT then ATECC608A may enter the Sleep mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>From Crypto Authentication</td>
<td>41</td>
<td>54</td>
<td>78</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td>Direction</td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
<td>Unit</td>
<td>Conditions</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>Turn Around Delay</td>
<td>tTURNAROUND</td>
<td>From Crypto Authentication</td>
<td>64</td>
<td>96</td>
<td>131</td>
<td>µs</td>
<td>ATECC608A will initiate the first low going transition after this time interval following the initial falling edge of the start pulse of the last bit of the transmit flag.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To Crypto Authentication</td>
<td>93</td>
<td>—</td>
<td>—</td>
<td>µs</td>
<td>After ATECC608A transmits the last bit of a group, system must wait this interval before sending the first bit of a flag. It is measured from the falling edge of the start pulse of the last bit transmitted by ATECC608A.</td>
</tr>
<tr>
<td>IO Timeout</td>
<td>tTIMEOUT</td>
<td>To Crypto Authentication</td>
<td>45</td>
<td>65</td>
<td>85</td>
<td>ms</td>
<td>ATECC608A may transition to the Sleep mode if the bus is inactive longer than this duration.</td>
</tr>
</tbody>
</table>

Note: START, ZLO, ZHI, and BIT are designed to be compatible with a standard UART running at 230.4 kBaud for both transmit and receive. The UART should be set to seven data bits, no parity and one Stop bit.

2.3.2 AC Parameters: I²C Interface

Figure 2-3. I²C Synchronous Data Timing

![I²C Synchronous Data Timing Diagram](image)

Table 2-4. AC Characteristics of I²C Interface

Unless otherwise specified, applicable over recommended operating range from $T_A = -40°C$ to $+85°C$, $V_{CC} = +2.0V$ to $+5.5V$, $C_L = 1$ TTL Gate and 100 pF

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCK Clock Frequency</td>
<td>f_{SCK}</td>
<td>0</td>
<td>1</td>
<td>MHz</td>
</tr>
<tr>
<td>SCK High Time</td>
<td>t_{HIGH}</td>
<td>400</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>SCK Low Time</td>
<td>t_{LOW}</td>
<td>400</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>Start Setup Time</td>
<td>$t_{SU.STA}$</td>
<td>250</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>Start Hold Time</td>
<td>$t_{HD.STA}$</td>
<td>250</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td>Min.</td>
<td>Max.</td>
<td>Units</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Stop Setup Time</td>
<td>tSU.STO</td>
<td>250</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Data In Setup Time</td>
<td>tSU.DAT</td>
<td>100</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Data In Hold Time</td>
<td>tHD.DAT</td>
<td>0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Input Rise Time (1)</td>
<td>tR</td>
<td></td>
<td>300</td>
<td>ns</td>
</tr>
<tr>
<td>Input Fall Time (1)</td>
<td>tF</td>
<td></td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>Clock Low to Data Out Valid</td>
<td>tAA</td>
<td>50</td>
<td>550</td>
<td>ns</td>
</tr>
<tr>
<td>Data Out Hold Time</td>
<td>tDH</td>
<td>50</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SMBus Timeout Delay</td>
<td>tTIMEOUT</td>
<td>25</td>
<td>75</td>
<td>ms</td>
</tr>
<tr>
<td>Time bus must be free before a new transmission can start (1)</td>
<td>tBUF</td>
<td>500</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Note:
1. Values are based on characterization and are not tested.
2. AC measurement conditions:
 - R_L (connects between SDA and V_CC): 1.2 kΩ (for V_CC = +2.0V to +5.0V)
 - Input pulse voltages: 0.3V_CC to 0.7V_CC
 - Input rise and fall times: ≤ 50 ns
 - Input and output timing reference voltage: 0.5V_CC

2.4 DC Parameters: All I/O Interfaces

Table 2-5. DC Parameters on All I/O Interfaces

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Operating Temperature</td>
<td>TA</td>
<td>-40</td>
<td>—</td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Power Supply Voltage</td>
<td>VCC</td>
<td>2.0</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Active Power Supply Current</td>
<td>ICC</td>
<td>—</td>
<td>2</td>
<td>3</td>
<td>mA</td>
<td>Waiting for I/O during I/O transfers or execution of non-ECC commands. Independent of Clock Divider value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>14</td>
<td></td>
<td>mA</td>
<td>During ECC command execution. Clock divider = 0x0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>6</td>
<td></td>
<td>mA</td>
<td>During ECC command execution. Clock divider = 0x5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>3</td>
<td></td>
<td>mA</td>
<td>During ECC command execution. Clock divider = 0xD</td>
</tr>
<tr>
<td>Idle Power Supply Current</td>
<td>IIDLE</td>
<td>—</td>
<td>800</td>
<td>—</td>
<td>µA</td>
<td>When device is in idle mode, VSDA and VSCL < 0.4V or > VCC – 0.4</td>
</tr>
<tr>
<td>Sleep Current</td>
<td>ISLEEP</td>
<td>—</td>
<td>30</td>
<td>150</td>
<td>nA</td>
<td>When device is in sleep mode, VCC ≤ 3.6V, VSDA and VSCL < 0.4V or > VCC – 0.4, TA ≤ 55°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>2</td>
<td></td>
<td>µA</td>
<td>When device is in sleep mode, Over full VCC and temperature range.</td>
</tr>
</tbody>
</table>
2.4.1 V_{IH} and V_{IL} Specifications

The input levels of the device will vary dependent on the mode and voltage of the device. The input voltage thresholds when in Sleep or Idle mode are dependent on the V_{CC} level as shown in Figure 2-4. When in sleep or idle mode the TTLenable bit has no effect.

When the device is active (i.e., not in Sleep or Idle mode), the input voltage thresholds are different depending upon the state of TTLenable (bit 1) within the ChipMode byte in the Configuration zone of the EEPROM. If the voltage supplied to the V_{CC} pin of the ATECC608A is higher than the system voltage to which the input pull-up resistor is connected, then the system designer may choose to set TTLenable to zero. This enables a fixed input threshold shown by Table 2-6.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Low Voltage</td>
<td>V_{IL}</td>
<td>-0.5</td>
<td>—</td>
<td>0.5</td>
<td>V</td>
<td>When device is active and TTLenable bit in configuration memory is zero; otherwise, see above.</td>
</tr>
<tr>
<td>Input High Voltage</td>
<td>V_{IH}</td>
<td>1.5</td>
<td>—</td>
<td>$V_{CC} + 0.5$</td>
<td>V</td>
<td>When device is active and TTLenable bit in configuration memory is zero; otherwise, see above.</td>
</tr>
</tbody>
</table>
When a common voltage is used for the ATECC608A V_{CC} pin and the input pull-up resistor, then the TTL enable bit should be set to a one, which permits the input thresholds to track the supply as shown in Figure 2-5.
Figure 2-5. V_{IH} and V_{IL} When Active and TTLenable = 1 on All I/O Interfaces
3. Compatibility

3.1 Microchip ATECC508A

The ATECC608A is designed to be fully compatible with the ATECC508A devices with the limited exception of the functions listed below. If the ATECC608A is properly configured, software written for the ATECC508A should work with the ATECC608A without any required changes, again with the exception of the functions listed below.

Note: Most elements of the configuration zone in the ATECC608A are identical in both location and value with the ATECC508A. However, the initial values that had been stored in the LastKeyUse field may need to be changed to conform to the new definition of those bytes which can be found in this document. That field contained the initial count for the Slot 15 limited use function which is supported in the ATECC608A via the monotonic counters.

3.1.1 New Features in ATECC608A vs. ATECC508A

- Secure boot function, with IO encryption and authentication
- KDF command, supporting PRF, HKDF, AES
- AES command, including encrypt/decrypt
- GFM calculation function for GCM AEAD mode of AES
- Updated NIST SP800-90 A/B/C Random Number Generator
- Flexible SHA/HMAC command with context save/restore
- SHA command execution time significantly reduced
- Volatile Key Permitting to prevent device transfer
- Transport Key Locking to protect programmed devices during delivery
- Counter Limit Match function
- Ephemeral key generation in SRAM, also supported with ECDH and KDF
- Verify command output can be validated with a MAC
- Encrypted output for ECDH
- Added self test command, optional automatic power-on self test
- Unaligned public key for built-in X.509 cert key validation
- Optional power reduction at increased execution time
- Programmable I²C address after data (secret) zone lock

3.1.2 Features Eliminated in ATECC608A vs. ATECC508A

- HMAC command removed, replaced via new more powerful SHA command
- OTP consumption mode eliminated, now read only
- Pause command eliminated along with related Selector function in UpdateExtra
- Slot 15 special limited use eliminated, replaced with standard monotonic counter limited use
- SHA command no longer uses TempKey during the digest calculation and the result in TempKey is unchanged throughout the SHA operation. TempKey can however still be used to initialize the SHA for the HMAC_Start or to store the final digest.
3.2 Microchip ATSHA204A, ATECC108A

The ATECC608A is generally compatible with all ATSHA204/A and ATECC108/A devices. If properly configured, it can be used in most situations where these devices are currently employed. For ATSHA204A and ATECC108A compatibility restrictions, see the ATECC508A data sheet.
4. Package Marking Information

As part of Microchip's overall security features, the part mark for all crypto devices is intentionally vague. The marking on the top of the package does not provide any information as to the actual device type or the manufacturer of the device. The alphanumeric code on the package provides manufacturing information and will vary with assembly lot. The packaging mark should not be used as part of any incoming inspection procedure.
5. Package Drawings

5.1 8-lead SOIC

8-Lead Plastic Small Outline - Narrow, 3.90 mm (.150 In.) Body [SOIC]
Atmel Legacy

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-057-Atmel Rev D Sheet 1 of 2
ATECC608A
Package Drawings

8-Lead Plastic Small Outline - Narrow, 3.90 mm (.150 In.) Body [SOIC]
Atmel Legacy

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>ø</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>§</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Chamfer (Optional)</td>
<td>n</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>øφ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-057-OA Rev D Sheet 2 of 2
8-Lead Plastic Small Outline - Narrow, 3.90 mm (.150 In.) Body [SOIC]
Atmel Legacy

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>Dimension Limits</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
<td>1.27 BSC</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
<td>5.40</td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
<td>0.60</td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
<td>1.55</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2057-M6B Rev B

© 2017 Microchip Technology Inc.
5.2 8-pad UDFN

8-Lead Ultra Thin Plastic Dual Flat, No Lead Package (Q4B) - 2x3 mm Body [UDFN]
Atmel Legacy YNZ Package

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-21355-Q4B Rev A Sheet 1 of 2
8-Lead Ultra Thin Plastic Dual Flat, No Lead Package (Q4B) - 2x3 mm Body [UDFN]

Atmel Legacy YNZ Package

Notes:
- For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Terminals</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Terminal Thickness</td>
<td>A3</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
</tr>
<tr>
<td>Terminal Width</td>
<td>b</td>
</tr>
<tr>
<td>Terminal Length</td>
<td>L</td>
</tr>
<tr>
<td>Terminal-to-Exposed-Pad</td>
<td>K</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension, Theoretically exact value shown without tolerances,
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-21355-Q4B Rev A Sheet 2 of 2
RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Optional Center Pad Width</td>
<td>X2</td>
</tr>
<tr>
<td>Optional Center Pad Length</td>
<td>Y2</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
</tr>
<tr>
<td>Contact Pad to Center Pad (X8)</td>
<td>G1</td>
</tr>
<tr>
<td>Contact Pad to Contact Pad (X6)</td>
<td>G2</td>
</tr>
<tr>
<td>Thermal Via Diameter</td>
<td>V</td>
</tr>
<tr>
<td>Thermal Via Pitch</td>
<td>EV</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process.

© 2017 Microchip Technology Inc.

ATECC608A
Package Drawings

8-Lead Ultra Thin Plastic Dual Flat, No Lead Package (Q4B) - 2x3 mm Body [UDFN]
Atmel Legacy YNZ Package

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-21355-Q4B Rev A
6. Revision History

Revision B (October 2018)
1. Updated Section Features by adding the Die-on-Tape package option.
2. Updated 2.3 AC Parameters: All I/O Interfaces and 2.3.1 AC Parameters: Single-Wire Interface in Section 2.3 AC Parameters: All I/O Interfaces.
3. Updated Section Product Identification System.

Revision A (November 2017)
Original release of the document.
The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support
Product Identification System

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>XXX</th>
<th>XX</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Package</td>
<td>I/O Type</td>
<td>Tape and Reel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device:</th>
<th>ATECC608A: Cryptographic Co-processor with Secure Hardware-based Key Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package Options</td>
<td>SSH</td>
</tr>
<tr>
<td></td>
<td>MAH</td>
</tr>
<tr>
<td></td>
<td>W07(3)</td>
</tr>
<tr>
<td>I/O Type</td>
<td>CZ</td>
</tr>
<tr>
<td></td>
<td>DA</td>
</tr>
<tr>
<td>Tape and Reel Options</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>S</td>
</tr>
</tbody>
</table>

Examples:
- ATECC608A-SSHCZ-T: 8-Lead (0.150" Wide Body), Plastic Gull Wing Small Outline (JEDEC SOIC), Single-Wire, Tape and Reel, 4,000 per Reel
- ATECC608A-SSHCZ-B: 8-Lead (0.150" Wide Body), Plastic Gull Wing Small Outline (JEDEC SOIC), Single-Wire, Tube, 100 per Tube
- ATECC608A-SSHDA-T: 8-Lead (0.150" Wide Body), Plastic Gull Wing Small Outline (JEDEC SOIC), I^2C, Tape and Reel, 4,000 per Reel
- ATECC608A-SSHDA-B: 8-Lead (0.150" Wide Body), Plastic Gull Wing Small Outline (JEDEC SOIC), I^2C, Tube, 100 per Tube
- ATECC608A-MAHCZ-T: 8-Pad 2 x 3 x 0.6 mm Body, Thermally Enhanced Plastic Ultra Thin Dual Flat NoLead Package (UDFN), Single-Wire, Tape and Reel, 15,000 per Reel
- ATECC608A-MAHDA-T: 8-Pad 2 x 3 x 0.6 mm Body, Thermally Enhanced Plastic Ultra Thin Dual Flat NoLead Package (UDFN), I^2C, Tape and Reel, 15,000 per Reel
- ATECC608A-MAHCZ-S: 8-Pad 2 x 3 x 0.6 mm Body, Thermally Enhanced Plastic Ultra Thin Dual Flat NoLead Package (UDFN), Single-Wire, Tape and Reel, 3,000 per Reel
- ATECC608A-MAHDA-S: 8-Pad 2 x 3 x 0.6 mm Body, Thermally Enhanced Plastic Ultra Thin Dual Flat NoLead Package (UDFN), I^2C, Tape and Reel, 3,000 per Reel
Note:
1. Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
2. Small form-factor packaging options may be available. Please check http://www.microchip.com/packaging for small-form factor package availability, or contact your local Sales Office.
3. Die-on-Tape and Reel devices are available both in the I²C and SWI I/O options. Reel size is a minimum of 10K Units and must be custom ordered.

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXSstylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST,
SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-3616-4

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
AMERICAS

Corporate Office
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support

Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-632-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xiamen
Tel: 86-992-2388138

China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880-3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-72884388

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820