Introduction

The Microchip® ATA5577M3C is a contactless RFID IC (R/W-RFID) in the 100 kHz to 150 kHz frequency range applications. It is the Mega-Pad version of Microchip ATA5577M1, with programmable Q5 functionality and configuration register mapping. Unlike ATA5577M1/M2, the ATA5577M3C antenna capacity is not adjusted during production. Although the ATA5577M1/M2 datasheet is valid, this document provides an overview of the differences between ATA5577M1/M2 and ATA5577M3C.

Features

- Contactless Power Supply
- Contactless Read/Write Data Transmission
- Radio Frequency f_{RF} from 100 kHz to 150 kHz
- Basic Mode, Extended Mode or Q5 Mode
- Compatible to Microchip T5557, ATA5567, and T5555B
- Replacement for Microchip e5551/T5551 in Most Common Operation Modes
- Configurable for ISO/IEC 11784/785 Compatibility
- 363-Bit EEPROM Memory in Total: 11 Blocks × (32 Bits + 1 Lock-Bit)
 - 7 × 32 bits EEPROM user memory including 32-bit password memory
 - 2 × 32 bits unique ID
 - 1 × 32-bit option register in EEPROM to set up the analog front end:
 - Clock detection level
 - Gap detection level
 - Improved downlink timing
 - Clamp voltage
 - Modulation voltage
 - Soft modulation switching
 - Write damping like the Microchip T5557/ATA5567 or with resistor
 - Downlink protocol
 - Q5-functionality and Q5-configuration register mapping
 - 1 × 32-bit configuration register in EEPROM to set up:
 - Data rate:
 - RF/128, binary selectable or
 - Fixed Basic mode rates
 - Modulation/coding:
 - Bi-phase, Manchester, FSK, PSK, NRZ
• Other Options:
 – Password mode
 – Max block feature
 – Direct Access mode
 – Sequence terminator(s)
 – Blockwise write protection (Lock bit)
 – Answer-On-Request (AOR) mode
 – Inverse data output
 – Disable Test mode access
 – Fast downlink (~6Kbits/s versus ~3Kbits/s)
 – OTP functionality
 – Init delay (~67ms)

• On-Chip Antenna Capacitor:
 – 330pF
Table of Contents

Introduction..1
Features.. 1
1. Memory..4
 1.1. Traceability Data for the ATA5577M3C... 4
2. Functional Specification...6
 2.1. AFE Option Register for the ATA5577M3C... 6
 2.2. Configuration Register... 6
 2.2.1. Basic Mode... 7
 2.2.2. Extended Mode... 8
 2.2.3. Q5 Mode.. 8
 2.3. Initialization...9
 2.4. Functional Diagram...9
 2.5. Capacitance..9
 2.6. ATA5577M3C Delivery State Configuration...10
3. Electrical Specifications... 11
 3.1. Absolute Maximum Ratings..11
 3.2. Electrical Characteristics..11
4. Ordering Information..14
5. Package Information..15
6. Document Revision History..19
 The Microchip Web Site...20
 Customer Change Notification Service...20
 Customer Support..20
 Microchip Devices Code Protection Feature...20
 Legal Notice..21
 Trademarks..21
 Quality Management System Certified by DNV..22
 Worldwide Sales and Service...23
1. Memory

The memory is a 363-bit EEPROM, which is arranged in 11 blocks of 33 bits each. Page 0 contains 8 blocks and page 1 contains 3 blocks. All 33 bits of a block, including the Lock bit, are programmed simultaneously.

Block 0 of page 0 contains the mode and configuration data, which is not transmitted during regular read operations. Block 7 of page 0 may be used as a write protection password.

Block 3 of page 1 contains the option register, which is also not transmitted during regular read operation.

Bit 0 of every block is the Lock bit for that block. Once locked, the block (including the Lock bit itself) is not re-programmable through the RF field.

Note: The memory map is the same as that of ATA5577M1/M2.

Figure 1-1. Memory Map

1.1 Traceability Data for the ATA5577M3C

The traceability data is defined as follows:
Table 1-1. Arrangement of Traceability Data

<table>
<thead>
<tr>
<th>Denotation</th>
<th>Bit</th>
<th>Bitcount</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSB first:</td>
<td>IC revision: D00-D01</td>
<td>2</td>
<td>D00 is LSB of IC revision</td>
</tr>
<tr>
<td>Lot ID:</td>
<td>D02-D42</td>
<td>17</td>
<td>D02 is LSB of lot ID</td>
</tr>
<tr>
<td>Wafer no.:</td>
<td>D43-D53</td>
<td>5</td>
<td>D43 is LSB of wafer no.</td>
</tr>
<tr>
<td>DoW:</td>
<td>D60-D91</td>
<td>14</td>
<td>D60 is LSB of DoW</td>
</tr>
<tr>
<td>RFU:</td>
<td>D92-D93</td>
<td>2</td>
<td>D92 is LSB of RFU</td>
</tr>
</tbody>
</table>

The traceability data in Q5 mode is always sent with Manchester RF/64 - independently of configuration register setting.
2. **Functional Specification**

This chapter describes the ATA5577M3C state diagram, modes of operation, and register configurations.

2.1 **AFE Option Register for the ATA5577M3C**

The ATA5577M3C has an additional bit in the AFE Option Register: Bit #23 controls the Q5 functionality.

Figure 2-1. Block 3 Page 1 AFE Option Mapping ATA5577M3C

<table>
<thead>
<tr>
<th>L</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Note:

1. If the Option Key is 6 or 9, the front end options are activated; for all other values they take on the default state (all 0). If the Option Key is 6, then the complete page 1 (i.e., option register and traceability data) cannot be overwritten by any Test Write command. Therefore, if the Lock bits of the three blocks of page 1 are set and the Option Key is 6, then all of page 1’s blocks are locked against change.

2. Weak field condition

2.2 **Configuration Register**

The ATA5577M3C offers three different modes of operation:
Basic mode is the default mode.

Table 2-1. Modes of Operation for the ATA5577M3C

<table>
<thead>
<tr>
<th>Mode of Operation</th>
<th>AFE Option Register (p1, bl3)</th>
<th>Configuration Register (p0, bl0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Option Key (bit 1 to 4)</td>
<td>Q5 Mode (bit 23)</td>
</tr>
<tr>
<td>Basic mode</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>X-mode</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>Q5 Mode</td>
<td>= 0110 or 1001</td>
<td>1</td>
</tr>
</tbody>
</table>

2.2.1 Basic Mode

If bit 15 of the Configuration register block 0 page 0 is reset (‘0’) then the IC operates in Basic mode. Additionally, bit 23 in AFE Option register block 3 page 1 has to be reset (‘0’) (or the Option Key has to be unequal to ‘6’ or ‘9’).

Note: The configuration mapping in Basic mode is the same as it is in ATA5577M1/M2.

Figure 2-2. Block 0 Page 0 – Configuration Mapping in Basic Mode

Note:
1. If Master Key is 6, the Test mode access is disabled
2. If Master Key is neither 6 nor 9, the Extended Function mode and Init Delay are disabled
2.2.2 Extended Mode

If bit 15 of the Configuration register block 0 page 0 is set ('1') and Master Key = ‘6’ or ‘9’ then the IC operates in Extended mode. Additionally, bit 23 in AFE Option register block 3 page 1 has to be reset ('0') (or the Option Key has to be unequal to ‘6’ or ‘9’).

Note: The configuration mapping in X-mode is the same as it is in ATA5577M1/M2.

Figure 2-3. Block 0 Page 0 – Configuration Map in Extended Mode (X-mode)

![Extended Mode Configuration Map](image)

Note:
1. If Master Key is 6 and bit 15 is set, the Test mode access is disabled and the Extended mode is active
2. If Master Key is 9 and bit 15 is set, the Extended mode is enabled

2.2.3 Q5 Mode

If bit 23 in AFE Option Register block 3 page 1 is set ('1') and Option key is ‘6’ or ‘9’ then the IC operates in Q5 mode.

Figure 2-4. Block 0 Page 0 – Configuration Map in Q5 Mode

![Q5 Mode Configuration Map](image)

Note:
1. If Master Key is 6 the Test mode access is disabled
2. AOR, PWD and Fast Write are only enabled when Master Key is 6 or 9
2.3 Initialization

The Power-on-Reset (POR) circuit remains active until an adequate voltage threshold is reached. This, in turn, triggers the default initialization delay sequence. During this configuration period of 128 field clocks, the ATA5577M3C is initialized with the configuration data stored in EEPROM block 0, and with the AFE options stored in block 3 page 1. Modulation is switched off during initialization.

Any field gap which occurs during this initialization phase restarts the complete sequence. After this initialization time, the ATA5577M3C enters Regular-Read mode (if not programmed in AOR mode) and modulation starts automatically using the parameters defined in the Configuration and AFE Option register.

2.4 Functional Diagram

Figure 2-5. Functional Diagram

2.5 Capacitance

The ATA5577M3C offers 330pF of on-chip capacitance which are not trimmed during the production process.
Note: The tolerance of the on-chip resonance capacitor is ±15% over whole production. The capacitor tolerance is ±3% at 3σ on a wafer basis.

2.6 ATA5577M3C Delivery State Configuration

This section describes the memory content after production test.

Table 2-2. Delivery State for the ATA5577M3C

<table>
<thead>
<tr>
<th>Page</th>
<th>Block</th>
<th>(L) 32-bit Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(0) 6001 F004</td>
<td>Manchester RF/64, Maxblock = 2</td>
</tr>
<tr>
<td>1</td>
<td>(0) FF8C A64A</td>
<td>Fixed ID</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(0) 98F8 C802</td>
<td>Fixed ID</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(0) 0000 0000</td>
<td>All ‘0’</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(0) 0000 0000</td>
<td>All ‘0’</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(0) 0000 0000</td>
<td>All ‘0’</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(0) xxxx xxxx</td>
<td>Variable BCD coded LotID and Wafer#</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(0) 0000 0000</td>
<td>All ‘0’</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(L) FFxx xxxx</td>
<td>Traceability data according to Figure 2-2</td>
</tr>
<tr>
<td>2</td>
<td>(L) xxxx xxxx</td>
<td>Traceability data according to Figure 2-2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(0) 65C0 0200</td>
<td>SM one pulse weak, Clamp Hi, Mod Lo, Q5 Mode</td>
<td></td>
</tr>
</tbody>
</table>

Note: (L) means Lock bit is set for that block.
3. Electrical Specifications

3.1 Absolute Maximum Ratings

Absolute maximum ratings for the ATA5577M3C are listed below.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum DC current into Coil1/Coil2</td>
<td>(I_{coil})</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Maximum AC current into Coil1/Coil2 (f = 125) kHz</td>
<td>(I_{coil\ p})</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation (dice) (Free-Air condition, time of application: (1s))</td>
<td>(P_{tot})</td>
<td>100</td>
<td>mW</td>
</tr>
<tr>
<td>Electrostatic discharge maximum to ANSI/ESDSTM5.1-2001 standard (HBM)</td>
<td>(V_{max})</td>
<td>2000</td>
<td>V</td>
</tr>
<tr>
<td>Operating ambient temperature range</td>
<td>(T_{amb})</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range (data retention reduced)</td>
<td>(T_{stg})</td>
<td>-40 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

CAUTION Stresses listed under **Absolute Maximum Ratings** may cause permanent damage to the device. This is a stress rating only. The functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect the device reliability.

3.2 Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Type*</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF frequency</td>
<td></td>
<td>(f_{RF})</td>
<td>100</td>
<td>125</td>
<td>150</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Supply current (without current consumed by the external LC tank circuit)</td>
<td>(T_{amb} = 25^\circ)C(^{(1)})</td>
<td>(I_{DD})</td>
<td>—</td>
<td>1.5</td>
<td>3</td>
<td>(\mu)A</td>
<td>T</td>
</tr>
<tr>
<td>Read - full temperature range</td>
<td></td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>5</td>
<td>(\mu)A</td>
<td>Q</td>
</tr>
<tr>
<td>Programming - full temperature range</td>
<td></td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>—</td>
<td>(\mu)A</td>
<td>Q</td>
</tr>
</tbody>
</table>
ATA5577M3C

Electrical Specifications

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Type*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coil voltage (AC supply)</td>
<td>POR threshold (50mV hysteresis)</td>
<td>$V_{\text{coil pp}}$</td>
<td>—</td>
<td>3.6</td>
<td>—</td>
<td>V</td>
<td>Q</td>
</tr>
<tr>
<td>Read mode and write command(2)</td>
<td></td>
<td>—</td>
<td>6</td>
<td>—</td>
<td>V_{clamp}</td>
<td>V</td>
<td>Q</td>
</tr>
<tr>
<td>Program EEPROM(2)</td>
<td></td>
<td>—</td>
<td>8</td>
<td>—</td>
<td>V_{clamp}</td>
<td>V</td>
<td>Q</td>
</tr>
<tr>
<td>Start-up time</td>
<td>$V_{\text{coil pp}} = 6V$</td>
<td>t_{startup}</td>
<td>—</td>
<td>2.5</td>
<td>—</td>
<td>ms</td>
<td>Q</td>
</tr>
<tr>
<td>Clamp voltage (depends on settings in option register)</td>
<td>3 mA current into Coil1/2</td>
<td>$V_{\text{pp clamp lo}}$</td>
<td>—</td>
<td>11</td>
<td>—</td>
<td>V</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{pp clamp med}}$</td>
<td>—</td>
<td>13</td>
<td>—</td>
<td>V</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{pp clamp hi}}$</td>
<td>14</td>
<td>17</td>
<td>21</td>
<td>V</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>20mA current into Coil1/2</td>
<td>$V_{\text{pp clamp med}}$</td>
<td>13</td>
<td>15</td>
<td>18</td>
<td>V</td>
<td>T</td>
</tr>
<tr>
<td>Modulation parameters (depends on settings in option register)</td>
<td>3mA current into Coil1/2 and modulation ON</td>
<td>$V_{\text{pp mod lo}}$</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>V</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{pp mod med}}$</td>
<td>—</td>
<td>5</td>
<td>—</td>
<td>V</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{pp mod hi}}$</td>
<td>—</td>
<td>7</td>
<td>—</td>
<td>V</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td>20mA current into Coil1/2 and modulation ON</td>
<td>$V_{\text{pp mod med}}$</td>
<td>6</td>
<td>7.5</td>
<td>9</td>
<td>V</td>
<td>T</td>
</tr>
<tr>
<td>Thermal stability</td>
<td>$V_{\text{mod lo}/T_{\text{amb}}}$</td>
<td>—</td>
<td>—1</td>
<td>—</td>
<td>—</td>
<td>mV/°C</td>
<td>Q</td>
</tr>
<tr>
<td>Clock detection level (depends on settings in Option register)</td>
<td>$V_{\text{coil pp}} = 8V$</td>
<td>$V_{\text{clkdet lo}}$</td>
<td>—</td>
<td>250</td>
<td>—</td>
<td>mV</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{clkdet med}}$</td>
<td>400</td>
<td>550</td>
<td>730</td>
<td>mV</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{clkdet hi}}$</td>
<td>—</td>
<td>800</td>
<td>—</td>
<td>mV</td>
<td>Q</td>
</tr>
<tr>
<td>Gap detection level (depends on settings in Option register)</td>
<td>$V_{\text{coil pp}} = 8V$</td>
<td>$V_{\text{gapdet lo}}$</td>
<td>—</td>
<td>250</td>
<td>—</td>
<td>mV</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{gapdet med}}$</td>
<td>400</td>
<td>550</td>
<td>730</td>
<td>mV</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{gapdet hi}}$</td>
<td>—</td>
<td>850</td>
<td>—</td>
<td>mV</td>
<td>Q</td>
</tr>
<tr>
<td>Parameters</td>
<td>Test Conditions</td>
<td>Symbol</td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
<td>Unit</td>
<td>Type*</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Programming time</td>
<td>From last command gap to re-enter Read mode (64 + 648 internal clocks)</td>
<td>Tprog</td>
<td>5</td>
<td>5.7</td>
<td>6</td>
<td>ms</td>
<td>T</td>
</tr>
<tr>
<td>Endurance</td>
<td>Erase all/Write all(^{(3)})</td>
<td>n_cycle</td>
<td>100000</td>
<td>—</td>
<td>—</td>
<td>Cycles</td>
<td>Q</td>
</tr>
<tr>
<td>Data retention</td>
<td>Top = 55°C(^{(3)})</td>
<td>t_retention</td>
<td>10</td>
<td>20</td>
<td>50</td>
<td>Years</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td>Top = 150°C(^{(3)})</td>
<td>t_retention</td>
<td>96</td>
<td>—</td>
<td>—</td>
<td>hrs</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Top = 250°C(^{(3)})</td>
<td>t_retention</td>
<td>24</td>
<td>—</td>
<td>—</td>
<td>hrs</td>
<td>Q</td>
</tr>
<tr>
<td>Resonance capacitor(^{(4)})</td>
<td>Mask option(^{(5)}) (V_{coil_{pp}} = 1\text{V})</td>
<td>(C_r)</td>
<td>280</td>
<td>330</td>
<td>380</td>
<td>pF</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>179</td>
<td>210</td>
<td>241</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>68</td>
<td>80</td>
<td>92</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Type means: T = directly or indirectly tested during production; Q: ensured based on initial product qualification data

Note:

1. IDD measurement setup: EEPROM programmed to 00 ... 000 (erase all); chip in modulation defeat.
2. Current into Coil1/Coil2 is limited to 10mA.
3. Since EEPROM performance is influenced by assembly processes, Microchip cannot confirm the parameters for -DDW (tested die on unsawn wafer) delivery.
4. The tolerance of the on-chip resonance capacitor is ±15% over whole production. The capacitor tolerance is ±3% at 3σ on a wafer basis.
5. See ordering information.
4. Ordering Information

Following table describes the ordering details for the ATA5577M3C modules.

Table 4-1. Ordering Details

<table>
<thead>
<tr>
<th>Model Number/Order Codes</th>
<th>On-Chip Capacity</th>
<th>Description</th>
<th>Package Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATA5577M3330C-DDB</td>
<td>330pF</td>
<td>6” sawn wafer on foil with ring, thickness 150µm (approx. 6 mil)</td>
<td>Figure 5-1</td>
</tr>
<tr>
<td>ATA5577M3330C-DBB</td>
<td>330pF</td>
<td>Available on request 6” sawn wafer on foil with ring, thickness 285µm (approx. 11mil) plus gold bumps 25µm</td>
<td>—</td>
</tr>
<tr>
<td>ATA5577M3330C-DBQ</td>
<td>330pF</td>
<td>Die in blister tape, thickness 280µm (approx. 11mil) plus gold bumps 25µm</td>
<td>Figure 5-2</td>
</tr>
<tr>
<td>ATA5577M3330C-DUQW</td>
<td>330pF</td>
<td>Die in blister tape, thickness 150µm (approx. 6mil) plus gold bumps 25µm</td>
<td>Figure 5-3</td>
</tr>
<tr>
<td>ATA5577M3331C-DBB</td>
<td>330pF</td>
<td>6” sawn wafer on foil with ring, thickness 150µm (approx. 6mil) plus gold bumps 25µm</td>
<td>Figure 5-4</td>
</tr>
</tbody>
</table>
5. **Package Information**

Figure 5-1. Microchip ATA5577M3xxxC-DDB 150µm

Die Dimensions
20:1

Dimensions in mm

Orientation on frame

Option
xxx
330

Label:
Prod: ATA5577M3xxxC-DDB
Plot no:
Wafer no:
Qty:

Wafer ATA5577M3xxxC-DDB
UV Tape Adwill D176
6" Wafer frame, plastic thickness 2.5mm
Figure 5-2. Microchip ATA5577M3xxxC-DBQ with Gold Bumps

Die Dimensions
20:1

technical drawings according to DIN specifications

Label acc. "Packaging and Packing Spec."

cover tape

carrier tape

"X"

reel Ø330

Option xxx
330

Option

0.5

1.52

1.3
Figure 5-3. Microchip ATA5577M3xxx-C-DUQW with Gold Bumps

Die Dimensions
20:1

technical drawings according to DIN specifications

Die Dimension (0.08)

0.177±0.015

0.04×45°

0.2

0.324

Packing acc. IEC 60286-3

ATA5577M3330C-DUQW
Specification Tape and reel
Dimensions in mm

© 2019 Microchip Technology Inc.

Datasheet

DS70005396A-page 17
Figure 5-4. Microchip ATA5577M3xxxC-DBB 150µm

Die Dimensions
20:1

Dimensions in mm

Orientation on frame

Option
xxx
330

Label:
Prod: ATA5577M3xxxC-DBB
Lot no:
Wafer no:
Qty:

Wafer ATA5577M3xxxC-DBB
UV Tape Adwill D176
6" Wafer frame, plastic thickness 2.5mm
Document Revision History

Table 6-1. Document Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>05/2019</td>
<td>Document</td>
<td>Initial Revision</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Updated from Atmel to Microchip template</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Assigned a new Microchip document number. Previous version is 9188C–RFID–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>07/14.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Added new part ATA5577M3330C-DUQW.</td>
</tr>
</tbody>
</table>

Table 6-2. Atmel Revision History

<table>
<thead>
<tr>
<th>Revision No.</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>9188C-RFID-07/14</td>
<td>• Section 8 “Ordering Information” on page 11 updated</td>
</tr>
<tr>
<td></td>
<td>• Section 10 “Package Information” on pages 13 to 14 updated</td>
</tr>
<tr>
<td>9188B-RFID-07/12</td>
<td>• Section 7 “Electrical Characteristics” Note 4 on pages 9 to 10 changed</td>
</tr>
</tbody>
</table>
The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-632-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-371-32881383

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880-3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-711-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra'anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-6900-4654

UK - Wokingham
Tel: 44-118-921-5800