Introduction

A differential ADC measures the voltage between the two inputs. In a differential ADC system, two lines carry the desired signals of 180 degrees out of phase with respect to each other, and the signals run parallel to each other. As a result, an equal amount of noise occurs in both the lines. When a signal is applied to the A(+) and the A(-) inputs of a differential ADC, the voltage difference between the desired signals adds up as the desired signals are 180 degrees out of phase with respect to each other. The in-phase signals, such as the common-mode noise are rejected by the differential ADC. This results in an improved signal-to-noise ratio. Other advantages include cancellation of harmonics in the even order.

The following figure shows the cancellation of common mode noise in a differential ADC. The output signal is the analog representation of the digital value converted by the ADC.

Figure 1. Cancellation of Common-Mode Noise in a Differential ADC

On the other hand, a single-ended Analog-to-Digital Converter (ADC) measures the signal voltage with respect to the ground. A single-ended ADC is sufficient when the signal source and ADC are close enough. However, in a noisy environment a single-ended system becomes more susceptible to noise.

The following figure shows the effect of noise in a single-ended ADC.
Figure 2. The Effect of Noise in a Single-Ended ADC

ARM® Cortex® -M7 based Microchip's MCUs, such as SAM V7x/E7x/S7x have an analog front-end controller (AFEC) which consists of a 12-bit ADC with two 6-to-1 analog multiplexers interfaced with two sample and hold (S&H) circuits, namely SH-1 and SH-2. It also consists of an internal Digital-to-Analog Converter (DAC), programmable-gain amplifiers (PGA), digital averaging with oversampling, therefore the resolution can be extended up to 16-bit. This document describes how to use the differential mode of ADC on Microchip's Cortex-M7 based MCUs.
Table of Contents

Introduction ...1

1. Enabling Differential Mode...4

2. Programmable Gain.. 7

3. Simultaneous Sampling of ADC Channels...9

4. Using Sequencer in Differential Mode... 11

5. Other Relevant Resources.. 12

The Microchip Web Site.. 13

Customer Change Notification Service..13

Customer Support... 13

Microchip Devices Code Protection Feature... 13

Legal Notice...14

Trademarks... 14

Quality Management System Certified by DNV...15

Worldwide Sales and Service..16
1. **Enabling Differential Mode**

Analog inputs can be configured either as Single-Ended mode or Differential mode. In Differential mode, consecutive analog inputs, such as AD0-AD1, AD2-AD3 form a pair of positive and negative analog inputs. The following figure shows a simplified AFEC block diagram, where six pairs of analog channels are shown in Differential mode.

Figure 1-1. Simplified AFEC Block Diagram with Analog Channels Configured in Differential Mode

The input voltage on each pin of the differential pair is limited from 0V to \(V_{\text{REFP}}\), where \(V_{\text{REFP}}\) is the positive voltage reference for the ADC, and it can vary from 1.7V to \(V_{\text{DDIN}}\). The negative voltage reference pin \(V_{\text{REFN}}\) must be connected to GND. The following figure shows the input voltage range with \(V_{\text{REFP}}= 3.3\text{V}\) and a gain of 1. The differential voltage witnessed by the ADC can vary from \(-V_{\text{REFP}}\) to \(+V_{\text{REFP}}\) (that is, -3.3V to +3.3V); however, the voltage on individual inputs of the differential pair must be between 0 to \(V_{\text{REFP}}\).

The result of the conversion depends on the Sign mode. For signed results, \(-V_{\text{REFP}}\) corresponds to -2048 and \(+V_{\text{REFP}}\) corresponds to +2047. For unsigned results, \(-V_{\text{REFP}}\) corresponds to 0 and \(+V_{\text{REFP}}\) corresponds to 4095.

Differential voltages smaller than \(-V_{\text{REFP}}\) results in negative saturation (-2048 for Signed mode and 0 for Unsigned mode) and differential voltages greater than \(+V_{\text{REFP}}\) results in positive saturation (+2047 for Signed mode and 4095 for Unsigned mode).
Figure 1-2. Input Signal Ranges When Channels are Configured in Differential Mode

Differential mode can be configured by setting the Channel Enable bit (AFEC_CHER.CHx) to 1 and then by setting the Differential Mode bit (AFEC_DIFFR.DIFFx) to 1, where x is the even channel number of the differential pair. To configure the AD2 and AD3 in Differential mode, the AFEC_CHER.CH2 and AFEC_DIFFR.DIFF2 bits must be set to 1. The AD3 will be automatically enabled for differential operation, see table below. Once the conversion is complete, the Conversion bit (AFEC_ISR.EOC2) is set to 1, and the result can be read either from the AFEC_LCDR.LDATA register or from the internal multiplexed AFEC_CDR.DATA register by configuring the channel in the Channel Selection register, AFEC_CSELR.CSEL, to 0x02.

Table 1-1. Register Configuration for AFEC_AD2 and AFEC_AD3 in Differential Mode

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Status</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>x DIFFR.DIFFx</td>
<td>CHER.CHx</td>
<td>ISR.EOCx</td>
</tr>
<tr>
<td>2 1 1 1 0x02</td>
<td>Valid</td>
<td></td>
</tr>
<tr>
<td>3 0 0 0 -</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. For a detailed description of the AFEC registers, refer to the respective SAM V7x/E7x/S7x data sheet.
2. Additionally, in Differential mode, the DAC output must be programmed to mid-scale or 512 when there is no DAC offset error to compensate. To compensate the DAC offset error of n LSB (positive or negative), it must be set to 512+n. When AD2-AD3 are configured in Differential mode, the DAC output must be set to 512+n by configuring the channel in the AFEC_CSELR.CSEL register to 0x02 and then setting the AFEC_COCR.AOFF bits to 512+n.
3. To enable the analog inputs, AFE_ADx, the pull-up resistors on the I/O lines must be disabled in the PIO user interface prior to writing the register either AFEC_CHER or DACC_CHER.
By default, the results of differential channels are provided in Signed mode (AFEC_EMRSIGNMODE = 0x00). Unsigned mode can be enabled by setting the AFEC_EMRSIGNMODE bits to 0x01.

Figure 1-3. Conversion Result

![Conversion Result Diagram](image-url)

Note: The result of the conversion depends on Signed or Unsigned mode which are set through the AFEC_EMRSIGNMODE bit.
2. Programmable Gain

The AFEC module provides a programmable gain which can be used to amplify small-signal voltages and to utilize the complete ADC range.

A sensor with a differential output voltage range of +1.5V to -1.5V is interfaced to a 12-bit ADC with V_{REFP} set to 3.3V. In this case, almost half of the ADC range from +1.5V to +3.3V and -1.5V to -3.3V are unused. Using a programmable gain, the amplitude of the input signal can be increased, such that it utilizes the complete ADC range. In this case, programming a gain value of 2 will result in the input voltage varying from +3.0V to -3.0V, thereby improving the resolution of the measured input voltage.

Figure 2-1. The Amplification of a Signal Using the Internal Programmable Gain Amplifier to Utilize the Full Range of ADC

Alternatively, the ADC reference can be lowered to match the sensor output range. The precision of the voltage measured by the ADC can also be increased by lowering the ADC reference V_{REFP}. The reference voltage of the AFEC module can be set by applying an external voltage on the V_{REFP} pin in the range of 1.7V to V_{DDIN}. The V_{REFN} pin must be connected to a ground. With the V_{REFP} set to 1.7V, 4096 steps will now be applied to the -1.7V to +1.7V voltage range resulting in a step size of 0.83mV ($3.4V \div 4096 \approx 830\mu V$). With the V_{REFP} set to 3.3V, the step size will be 1.61mV.

Figure 2-2. Adjusting the ADC Reference Voltage to Utilize the Full Range of the ADC

Note: Both of the above methods, that is, applying gain and reducing ADC reference voltage, enable users to measure an analog signal with better voltage precision using a lowered input voltage range.
Many sensors have a dynamic range higher than a 12-bit ADC can support. In such cases, the dynamic range can be increased by controlling the gain dynamically through software. In this case, the entire range of sensor output can be divided into sub-ranges where the highest gain is applied to the smallest sensor output voltage, and the lowest gain is applied to the highest sensor output voltage at run-time through the software.

The below figure shows the maximum differential analog input voltage allowed in each gain range. For example, if $V_{REFP} = 3.3V$ and Gain = 4, the maximum differential input voltage must be between $[0V, \pm 0.825V]$.

Figure 2-3. Maximum Differential Input Voltage Ranges for 1x, 2x, and 4x Gains

To enable gain, the programmable gain amplifiers must be enabled by setting the AFEC_ACR.PGA0EN (for AN0-AN5) and AFEC_ACR.PGA1EN (for AN6-AN11) bits to 1. To set the gain on a differential pair of channels, the AFEC_CGR.GAINx bit must be set between 0-3, where x is the even channel number of the differential pair. To set the gain of the differential channels AD4-AD5 to 2, the AFEC_CGR.GAIN4 bit must be set to 0x01.

Table 2-1. Register Configuration for AFEC_AD4 and AFEC_AD5 in Differential Mode with a 2x Gain

<table>
<thead>
<tr>
<th>x</th>
<th>DIFFR.DIFFx</th>
<th>CHER.CHx</th>
<th>CGR.GAINx</th>
<th>ISR.EOCx</th>
<th>CSELR.CSEL</th>
<th>CDR.DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1 (See Note)</td>
<td>1</td>
<td>0x04</td>
<td>valid</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: The programmable gain amplifiers must be enabled by setting the ACR_PG0EN and ACR_PG1EN bits to 1 irrespective of whether the gain is used or not.
3. **Simultaneous Sampling of ADC Channels**

All analog inputs connected to a sample and hold circuit are multiplexed and sampled sequentially. However, some applications in motor control and metering require analog inputs to be sampled simultaneously to preserve the phase information between them.

Figure 3-1. Sampling ADC Channels with a Single Sample and Hold, and a Dual Sample and Hold Circuit

![Diagram showing simultaneous sampling](image)

Note:

1. The left part of the figure illustrates analog inputs which are sampled sequentially with one sample and hold circuit.
2. The right part of the figure illustrates the concurrent sampling of analog inputs with two sample and hold circuits.

The AFEC module has two sample and hold circuits to enable concurrent sampling of analog inputs. The following figure illustrates pairs of differential channels configured in Concurrent Sampling mode, also known as Dual Sample and Hold mode.
Figure 3-2. Simplified AFEC Block Diagram with Pairs of Differential Channels Configured in Dual Sample and Hold Mode

The following pairs of differential channels can be configured in Dual Sample and Hold mode:
1. AD0 - AD1 and AD6 - AD7 (Red line).
2. AD2 - AD3 and AD8 - AD9 (Green line).
3. AD4 - AD5 and AD10 - AD11 (Blue line).

Dual Sample and Hold mode is enabled by setting the AFEC_SHMR.DUALx bit to 1. The following table summarizes the configuration bits to be set to enable simultaneous sampling of the differential channels, AD0-AD1 and AD6-AD7. Once the conversion is complete, the AFEC_ISR.EOC0 and AFEC_ISR.EOC6 bits are set to 1, and the results of each differential channel can be read from the multiplexed AFEC_CDR.DATA register by first selecting the channel 0x00 and then channel 0x06 in the AFEC_CSELR.CSEL register.

Table 3-1. Register Configuration to Enable Concurrent Sampling of Differential Channels AFEC_AD0-AD1 and AFEC_AD6-AD7

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Status</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>DIFFR DIFFx</td>
<td>CGR.GAINx</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0-3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0-3</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
4. **Using Sequencer in Differential Mode**

The AFEC module can convert the channels in any sequence as provided by the user and the sequencer can be enabled by setting the AFEC_MR.USEQ bit to 1. Up to 12 channels can be sequenced by writing the channel numbers in the AFEC_SEQ1R and AFEC_SEQ2R registers and these channel numbers can be written in any order and repeated several times.

When Sequencer mode is enabled by setting the AFEC_MR.USEQ bit to 1, the behavior of the AFEC_CHER.CHx register is slightly different. In Sequencer mode, the AFEC_CHER.CHx register corresponds to the xth channel of the sequence programmed in the AFEC_SEQ1R and AFEC_SEQ2R registers. That is, if the sequencer is configured to convert differential channels AD4-AD5 and AD6-AD7 then CHER.CH0 and CHER.CH1 should be enabled (set to 1) instead of enabling CHER.CH4 (corresponding to AD4-AD5) and CHER.CH6 (corresponding to AD6-AD7).

The table below provides the register configurations required to convert the differential channels, such as AD2-AD3, AD0-AD1, AD6-AD7, AD0-AD1 and AD2-AD3 in sequence.

Table 4-1. Register Configuration to Convert Differential Channels in Sequence

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Status</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>SEQ1R.USCHx</td>
<td>CHER.CHx</td>
</tr>
<tr>
<td>0</td>
<td>0x02 (AD2-AD3)</td>
<td>0x01</td>
</tr>
<tr>
<td>1</td>
<td>0x00 (AD0-AD1)</td>
<td>0x01</td>
</tr>
<tr>
<td>2</td>
<td>0x06 (AD6-AD7)</td>
<td>0x01</td>
</tr>
<tr>
<td>3</td>
<td>0x00 (AD0-AD1)</td>
<td>0x01</td>
</tr>
<tr>
<td>4</td>
<td>0x02 (AD2-AD3)</td>
<td>0x01</td>
</tr>
</tbody>
</table>

The results of the conversion can be read by selecting the channel number in the AFEC_CSELR.CSEL register and then reading the AFEC_CDR.DATA register.

To disable the third channel (AFEC_SEQ1R.USCH2) in the sequence, the AFEC_CHER.CH2 bit must be set to 0 as shown in the following table.

Table 4-2. Register Configuration to Disable 3rd Channel (AFEC_AD6-AD7) From the Conversion Sequence

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Status</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>SEQ1R.USCHx</td>
<td>CHER.CHx</td>
</tr>
<tr>
<td>0</td>
<td>0x02 (AD2-AD3)</td>
<td>0x01</td>
</tr>
<tr>
<td>1</td>
<td>0x00 (AD0-AD1)</td>
<td>0x01</td>
</tr>
<tr>
<td>2</td>
<td>0x06 (AD6-AD7)</td>
<td>0x00</td>
</tr>
<tr>
<td>3</td>
<td>0x00 (AD0-AD1)</td>
<td>0x01</td>
</tr>
<tr>
<td>4</td>
<td>0x02 (AD2-AD3)</td>
<td>0x01</td>
</tr>
</tbody>
</table>
5. Other Relevant Resources
For additional Information, refer to the "Using the Analog Front End in the SAM V7/E7/S7 MCUs Application Note" which is available for download from the following location:

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, maXSylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzr, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntellIMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
</table>
| Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Fax: 512-257-3370
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Fax: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Fax: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078
Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-632-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8933-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880-9270
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-29-5449-2100
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3764600
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820