Creating a "Hello World" Application Using the MPLAB Harmony Configurator (MHC)

Introduction

MPLAB® Harmony is a software framework consisting of compatible and interoperable libraries that include peripheral drivers, middleware, system services, and third-party libraries. The MPLAB Harmony Configurator (MHC) is a GUI-based tool that provides an easy way to enable and configure various MPLAB Harmony library components. The MHC is a plug-in to the MPLAB X IDE and is included as part of the MPLAB Harmony Software Framework installation. The MHC provides a GUI to:

- Enable and configure MPLAB Harmony libraries
- Configure the system clock
- Assign pins to peripherals and configure various options available on the I/O pins
- Design a UI for displays using the Graphics Composer Suite
- Configure a new display using the Display Manager, and many more functionalities
Table of Contents

Introduction ... 1

1. Creating a Hello World Application Using the MHC .. 3

2. References ... 14

The Microchip Web Site ... 15

Customer Change Notification Service .. 15

Customer Support ... 15

Microchip Devices Code Protection Feature .. 15

Legal Notice ... 16

Trademarks .. 16

Quality Management System Certified by DNV ... 17

Worldwide Sales and Service ... 18
1. Creating a Hello World Application Using the MHC

This section describes how to create a simple MPLAB Harmony application using the MHC. The application sends a "Hello World!" string to a console running on a computer.

Before beginning, it is assumed that you have already installed MPLAB Harmony and the MHC plug-in. Please refer to Volume I: Getting Started With MPLAB Harmony Libraries and Applications > Prerequisites to understand the requirements. If the MHC plug-in is not installed, refer to the steps provided at http://microchipdeveloper.com/harmony:mhc-installation.

The demonstration board used in this example is the PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit. MPLAB X IDE version 3.61 and the MHC plug-in version 2.04 are used in this example.

Step 1: Create a MPLAB Harmony-based Project

1. In MPLAB X IDE, select File > New Project (or click the New Project icon).
2. In Categories, select Microchip Embedded and in Projects select 32-bit MPLAB Harmony Project, and then click Next, see Figure 1-1.
 Note: If the option 32-Bit MPLAB Harmony Project is not visible, please download and install MPLAB Harmony before continuing with this tutorial.

Figure 1-1. Creating a MPLAB Harmony-based Project

3. Specify the project details in the New Project dialog, as shown in Figure 1-2.
4. Click Finish.

This will create a MPLAB Harmony-based project and launch the MHC, as shown in Figure 1-3. MHC can be launched anytime in MPLAB X IDE by navigating to Tools > Embedded.

Note:
1. The path to MPLAB Harmony will be different if a different version of MPLAB Harmony is used or if MPLAB Harmony is not installed at its default location.
2. Based on the selected Target Board, the corresponding Board Support Package (BSP) will be selected. The BSP assigns device pins to various board functions and sets up the device's clock tree based on the board's clock source.
Note: For detailed information on the MHC, please refer to Volume III: MPLAB Harmony Configurator (MHC) > MPLAB Harmony Configurator User's Guide in the MPLAB Harmony help.

Step 2: Add and Configure MPLAB Harmony Libraries Using MHC

1. In MHC, expand Options > Application Configuration > Application 0 Configuration, and set the Application Name to hello, as shown in Figure 1-4. This will create an HELLO_Initialize() routine and a template state machine by the name HELLO_Tasks().
2. In MHC, select the Clock Diagram Tab and verify that the clock is configured correctly for the selected target board. The Clock Diagram tab allows for easy setup of the system clocks (see Figure 1-5).

Figure 1-5. Clock Configuration

3. In MHC, go back to the Options tab and expand **BSP Configuration > Select BSP Features** and check the Use USART to USB Bridge option, as shown in Figure 1-6. This will map the USART...
lines - U2RX pin-to-pin 14 and the U2TX pin-to-pin 61. This will also map the USART driver instance 0 to USART2.

Figure 1-6. Enable BSP Features

Verify the mapping of the UART lines by opening the Pin Table tab and scrolling down to the UART2 module, as shown in Figure 1-7. The Pin Manager consists of the Pin Settings, Pin Diagram and the Pin Table tabs and allows users to configure (assign peripheral function, set pin direction, configure pull-up/pull-down etc.,) and map the I/O pins, as shown in Figure 1-7.

Figure 1-7. Pin Manager - Pin Settings, Pin Diagram, and Pin Table Tabs

4. In MHC, expand Options > Harmony Framework Configurator. Peripheral drivers, system services and middleware libraries can be configured under this tree. Expand System Services > Console.
and select the **Use Console System Service?** option. Expand the Use Console System Service? option and set the Select Peripheral For Console Instance to **UART_CONSOLE**, as shown in **Figure 1-8**. The Console System Service will use the UART instance 0.

5. In MHC, expand **Options > Harmony Framework Configurator > System Services > Debug** and select the **Use Debug System Service?** option, as shown in **Figure 1-8**. The Debug System Service is used to send formatted messages to the console.

Figure 1-8. Harmony Framework Configuration

6. Expand **Options > Harmony Framework Configurator > Drivers > USART** and verify that the USART driver is automatically enabled by MHC because the Console System Service is configured to use USART, as shown in **Figure 1-8**. The USART Module ID for USART Driver Instance 0 is automatically set to USART_ID_2 because the BSP is configured to use the USART-to-USB Bridge. Also, notice that the USART driver is configured for 9600 baud, 8 data bits, no parity and 1 stop bit.

Note: Support for third-party libraries, such as RTOS, Graphics, Cryptography, etc., is integrated in MHC under **Options > Third Party Libraries**. The Project configurations and fuse settings can be configured under **Options > Device & Project Configuration**.

7. Save the MHC configuration (), click Generate Code (), and then click **Generate**, as shown in **Figure 1-9**.
Step 3: Add Application Code and Test the Demonstration

Upon clicking **Generate**, MHC will include MPLAB Harmony library files for the modules enabled in MHC to your project, as shown in Figure 1-10.
The files generated by MHC are located in the `firmware/src/system_config/pic32mz_ef_sk` folder and mainly consists of the following files:

- **system_config.h** – contains the configuration definitions based on MHC selection
- **system_init.c** – initializes the Harmony modules and calls the application initialization routine
- **system_tasks.c** – runs the Harmony library tasks and the application task routines in a `while (1)` loop
- **system_interrupts.c** – contains the interrupt service routines for the peripherals configured for interrupt mode of operation in MHC

In addition to this, it also includes the template application files `hello.h` and `hello.c`. The `hello.c` file contains an application initialization routine, which is called by the system to allow initialization of the user application and an application task routine that maintains the application state. The application task routine is called by the system in a `while(1)` loop (see Figure 1-11).
Users can extend this template state machine to add their application specific code.

1. For this simple application, add the lines of code in the `HELLO_Tasks()` routine in the `hello.c` file, as highlighted in Figure 1-12. This will send the “Hello World!” string to the console running on the PC whenever the switch, SW1, is pressed.

2. Build and program the PIC32MZ EF Starter Kit by connecting a mini USB cable between port J3 on the board and the PC, as shown in Figure 1-13.

3. Connect a mini USB cable between port J11 on the board and the PC, as shown in Figure 1-13.

4. Open a terminal application (e.g., Tera Term) on the PC (configure: 9600, 8, N, 1) and observe the “Hello World!” string on the console whenever the switch SW1 is pressed, as shown in Figure 1-14.

Getting the terminal application to identify the COM port belonging to the MCP2221A (either on-board or in a Breakout Module) can be a difficult and frustrating process. For example, there may be times when you cannot find the COM port. In these instances on a Windows PC, you can try the following:

1. In the Control Panel, select System > Device Manager.
2. Within Ports (COM & LPT), identify the COM port belonging to the MCP2221A. Double click this port to open its Properties window.
3. Select the Driver tab and disable, and then enable the driver.
4. Close the window. This should allow your HyperTerminal to see the port.

Note: In a worst case situation, use an oscilloscope to ensure that the USART TX signal is getting to the MCP2221A and that the USB data lines are working.
Figure 1-12. Application Initialization and State Machine

```c
void HELLO_Initilize ( void )
{
    /* Place the App state machine in its
     helloData.state = HELLO_STATE_INIT;
     */
    /* TODO: Initialize application's
     * parameters.
     */
}

void HELLO_Tasks ( void )
{
    /* Check the application's current state. */
    switch ( helloData.state )
    {
        /* Application's initial state. */
        case HELLO_STATE_INIT:
        {
            bool appInitialized = true;

            case HELLO_STATE_SERVICE_TASKS:
            {
                if ( 0 == BSP_SwitchStateGet(BSP_SWITCH_1) )
                {
                    SYS_PRINT("Hello World! \r\n");
                }
                break;
            }
        }
    }
}
Tip: MHC provides an option to generate a stand-alone project (Options > Device & Project Configuration > Project Configuration > Generate Standalone Project?), whereby all of the MPLAB Harmony library files referred by your project will be copied to the project folder. This project can then be compiled from any path in your system.
2. References

For additional information on MHC and MPLAB Harmony, download the MPLAB Harmony Integrated Software Framework from the Microchip web site: http://www.microchip.com/mplab/mplab-harmony.

Detailed documentation on various MHC options and windows is included in your installation of MPLAB Harmony within the <harmony-install-path>/doc/ folder. PDF, Compiled HTML (.CHM), and HTML Help formats are available.

Additional resources include:

- Video Tutorials on MHC http://microchipdeveloper.com/harmony:mhc-videos
- PIC32MZ EF Starter Kit www.microchip.com/PIC32MZEFStarterKit4233990
- PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit User’s Guide (DS70005230)
The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.


Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BtCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, maXSylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTech, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntellIMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.


SQTTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Office</td>
<td>Asia Pacific Office</td>
<td>China - Xiamen</td>
<td>Austria - Wels</td>
</tr>
<tr>
<td>2355 West Chandler Blvd.</td>
<td>Suites 3707-14, 37th Floor</td>
<td>Tel: 86-592-2388138</td>
<td>Tel: 43-7242-2244-39</td>
</tr>
<tr>
<td>Chandler, AZ 85224-6199</td>
<td>Tower 6, The Gateway</td>
<td>Fax: 86-592-2388130</td>
<td>Fax: 43-7242-2244-393</td>
</tr>
<tr>
<td>Tel: 480-792-7200</td>
<td>Harbour City, Kowloon</td>
<td>China - Zhuhai</td>
<td>Denmark - Copenhagen</td>
</tr>
<tr>
<td>Fax: 480-792-7277</td>
<td>Hong Kong</td>
<td>Tel: 86-756-3210040</td>
<td>Tel: 45-4450-2828</td>
</tr>
<tr>
<td>Technical Support:</td>
<td>Tel: 852-2943-5100</td>
<td>Fax: 86-756-3210049</td>
<td>Fax: 45-4485-2829</td>
</tr>
<tr>
<td><a href="http://www.microchip.com/support">http://www.microchip.com/support</a></td>
<td>Fax: 852-2401-3431</td>
<td>India - Bangalore</td>
<td>Finland - Espoo</td>
</tr>
<tr>
<td>Web Address:</td>
<td>Australia - Sydney</td>
<td>Tel: 91-80-3090-4444</td>
<td>Tel: 358-9-4520-820</td>
</tr>
<tr>
<td><a href="http://www.microchip.com">www.microchip.com</a></td>
<td>Tel: 61-2-9868-6733</td>
<td>Fax: 91-80-3090-4123</td>
<td>France - Paris</td>
</tr>
<tr>
<td>Atlanta</td>
<td>Fax: 61-2-9868-6755</td>
<td>India - New Delhi</td>
<td>Tel: 33-1-69-53-63-20</td>
</tr>
<tr>
<td>Duluth, GA</td>
<td>China - Beijing</td>
<td>Tel: 91-11-4160-8632</td>
<td>Fax: 33-1-69-30-90-79</td>
</tr>
<tr>
<td>Tel: 678-957-9614</td>
<td>Tel: 86-10-8569-7000</td>
<td>India - Pune</td>
<td>France - Saint Cloud</td>
</tr>
<tr>
<td>Fax: 678-957-1455</td>
<td>Fax: 86-10-8528-2104</td>
<td>Tel: 91-11-4160-8632</td>
<td>Tel: 33-1-30-60-70-00</td>
</tr>
<tr>
<td>Austin, TX</td>
<td>China - Chengdu</td>
<td>Japan - Osaka</td>
<td>Germany - Garching</td>
</tr>
<tr>
<td>Tel: 512-257-3370</td>
<td>Tel: 86-28-8865-5511</td>
<td>Tel: 81-6-6152-7160</td>
<td>Tel: 49-8931-9700</td>
</tr>
<tr>
<td>Boston</td>
<td>Fax: 86-28-8865-7899</td>
<td>Fax: 81-6-6152-9310</td>
<td>Germany - Haan</td>
</tr>
<tr>
<td>Westbrook, MA</td>
<td>China - Chongqing</td>
<td>Japan - Tokyo</td>
<td>Tel: 49-2129-3766400</td>
</tr>
<tr>
<td>Tel: 774-760-0087</td>
<td>Tel: 86-23-8980-9588</td>
<td>Tel: 81-3-6880-3770</td>
<td>Germany - Heilbronn</td>
</tr>
<tr>
<td>Fax: 774-760-0088</td>
<td>Fax: 86-23-8980-9500</td>
<td>Fax: 81-3-6880-3771</td>
<td>Tel: 49-713-67-3636</td>
</tr>
<tr>
<td>Chicago</td>
<td>China - Dongguan</td>
<td>Korea - Daegu</td>
<td>Germany - Karsruhe</td>
</tr>
<tr>
<td>Itasca, IL</td>
<td>Tel: 86-769-8702-9880</td>
<td>Tel: 82-53-744-4301</td>
<td>Tel: 49-72-625370</td>
</tr>
<tr>
<td>Tel: 630-285-0071</td>
<td>Fax: 86-20-8755-8029</td>
<td>Fax: 82-53-744-4302</td>
<td>Germany - Munich</td>
</tr>
<tr>
<td>Fax: 630-285-0075</td>
<td>China - Guangzhou</td>
<td>Korea - Seoul</td>
<td>Tel: 49-89-627-144-0</td>
</tr>
<tr>
<td>Dallas</td>
<td>Tel: 86-571-8792-8115</td>
<td>Tel: 82-2-554-7200</td>
<td>Fax: 49-89-627-144-44</td>
</tr>
<tr>
<td>Addison, TX</td>
<td>Fax: 86-571-8792-8116</td>
<td>Fax: 82-2-558-5932 or 82-2-558-5934</td>
<td>Germany - Rosenberg</td>
</tr>
<tr>
<td>Tel: 972-818-7423</td>
<td>China - Hong Kong SAR</td>
<td>Malaysia - Kuala Lumpur</td>
<td>Tel: 49-8031-354-560</td>
</tr>
<tr>
<td>Fax: 972-818-2924</td>
<td>Tel: 852-2943-5100</td>
<td>Tel: 60-3-6201-9857</td>
<td>Israel - Ra’anana</td>
</tr>
<tr>
<td>Detroit</td>
<td>Fax: 852-2401-3431</td>
<td>Fax: 60-3-6201-9859</td>
<td>Tel: 972-9-744-7705</td>
</tr>
<tr>
<td>Novi, MI</td>
<td>China - Nanjing</td>
<td>Malaysia - Penang</td>
<td>Italy - Milan</td>
</tr>
<tr>
<td>Tel: 248-848-4000</td>
<td>Tel: 86-25-8473-2460</td>
<td>Tel: 60-4-227-8870</td>
<td>Tel: 39-0331-742611</td>
</tr>
<tr>
<td>Fax: 281-894-5983</td>
<td>Fax: 86-25-8473-2470</td>
<td>Fax: 60-4-227-4068</td>
<td>Fax: 39-0331-466781</td>
</tr>
<tr>
<td>Indianapolis</td>
<td>China - Qingdao</td>
<td>Philippines - Manila</td>
<td>Italy - Padova</td>
</tr>
<tr>
<td>Noblesville, IN</td>
<td>Tel: 86-532-8502-7355</td>
<td>Tel: 63-2-634-9065</td>
<td>Tel: 39-049-7625286</td>
</tr>
<tr>
<td>Tel: 317-773-8323</td>
<td>Fax: 86-532-8502-7205</td>
<td>Fax: 63-2-634-9069</td>
<td>Netherlands - Drunen</td>
</tr>
<tr>
<td>Fax: 317-773-5453</td>
<td>China - Shanghai</td>
<td>Singapore</td>
<td>Tel: 31-416-690399</td>
</tr>
<tr>
<td>Tel: 317-536-2380</td>
<td>Tel: 86-21-3326-8000</td>
<td>Tel: 65-6334-8870</td>
<td>Tel: 31-416-690340</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>Fax: 86-21-3326-8201</td>
<td>Fax: 65-6334-8850</td>
<td>Norway - Trondheim</td>
</tr>
<tr>
<td>Mission Viejo, CA</td>
<td>China - Shenzhen</td>
<td>Taiwan - Hsin Chu</td>
<td>Tel 47-7289-7561</td>
</tr>
<tr>
<td>Tel: 949-462-9620</td>
<td>Tel: 86-24-2334-2829</td>
<td>Tel: 886-3-5778-366</td>
<td>Poland - Warsaw</td>
</tr>
<tr>
<td>Fax: 949-462-9608</td>
<td>Fax: 86-24-2334-2393</td>
<td>Fax: 886-3-5770-955</td>
<td>Tel: 48-22-3325737</td>
</tr>
<tr>
<td>Raleigh, NC</td>
<td>China - Wuhan</td>
<td>Taiwan - Kaohsiung</td>
<td>Romania - Bucharest</td>
</tr>
<tr>
<td>Tel: 919-844-7510</td>
<td>Tel: 86-27-5980-5300</td>
<td>Tel: 886-7-213-7830</td>
<td>Tel: 40-21-407-87-50</td>
</tr>
<tr>
<td>New York, NY</td>
<td>Fax: 86-27-5980-5118</td>
<td>Taiwan - Taipei</td>
<td>Spain - Madrid</td>
</tr>
<tr>
<td>Tel: 631-435-6000</td>
<td>China - Xian</td>
<td>Tel: 886-2-2508-8600</td>
<td>Tel: 34-91-708-08-90</td>
</tr>
<tr>
<td>Fax: 408-735-9110</td>
<td>Tel: 86-29-8833-7252</td>
<td>Fax: 886-2-2508-0102</td>
<td>Fax: 34-91-708-08-91</td>
</tr>
<tr>
<td>San Jose, CA</td>
<td>Fax: 86-29-8833-7256</td>
<td>Thailand - Bangkok</td>
<td>Sweden - Gothenberg</td>
</tr>
<tr>
<td>Tel: 408-735-9110</td>
<td></td>
<td>Tel: 66-2-694-1351</td>
<td>Tel: 46-31-704-60-40</td>
</tr>
<tr>
<td>Fax: 408-436-4270</td>
<td></td>
<td>Fax: 66-2-694-1350</td>
<td>Sweden - Stockholm</td>
</tr>
<tr>
<td>Canada - Toronto</td>
<td></td>
<td></td>
<td>Tel: 46-8-5900-4654</td>
</tr>
<tr>
<td>Tel: 905-695-1980</td>
<td></td>
<td></td>
<td>UK - Wokingham</td>
</tr>
<tr>
<td>Fax: 905-695-2078</td>
<td></td>
<td></td>
<td>Tel: 44-118-921-5800</td>
</tr>
</tbody>
</table>

© 2017 Microchip Technology Inc.