Introduction

Audio system applications can pose typical producer-consumer problems associated with a real-time system. The timing constraints include latency, sampling rate, sampling period and real-time response. To implement a solution to the audio time challenges, an application typically uses the Ping-Pong data buffer method. The Ping-Pong method uses two buffers: one buffer reads data from the source and another buffer is submitting the data to the destination. When the submission to the destination is complete, the roles of the two buffers are switched. The Ping-Pong is accomplished by modifying the index (pointers) to the buffers.

The following figure represents a typical USB Audio headphone application implementation where the PC (acting as a USB host) streams audio data to the Cortex™-M7 microcontroller (MCU) based audio subsystem. The application updates Buffer1 with streamed in audio data from the USB. The XDMAC sets up the transfer of audio data to the CODEC (through the SSC) by configuring the address of Buffer1 as the source address, and the address of the SSC transmit register (SSC_THR) as the destination address. When the data transmission is completed, the XDMAC switches the source address to Buffer2 (which would be updated by the latest streamed in audio data). When the Buffer2 data transmission is completed, the XDMAC switches the source address to Buffer1, which can be updated by the latest streamed audio data. This process of the XDMAC switching the source address from Buffer1 to Buffer2 continues as the data is streamed in and updated in the buffers while transmitting the data from the buffers to the CODEC to realize the audio playback at the headphone.
Figure 1. USB Audio Headphone Application

Cortex-M7 MCU based Audio Sub-system

USB

Write Data

If PPFlag = 0

True

False

Buffer1

Update Address

If PPFlag = 0

False

True

Buffer2

Update Address

XDMAC

Source Address Register

Destination Address Register

Address of SSC Transmit Holding Register

SSC/I2S

CODEC

TB3172

© 2017 Microchip Technology Inc.
Table of Contents

Introduction..1
1. Concept... 4
2. Solution..5
3. Relevant Resources.. 9
The Microchip Web Site.. 10
Customer Change Notification Service..10
Customer Support... 10
Microchip Devices Code Protection Feature... 10
Legal Notice...11
Trademarks..11
Quality Management System Certified by DNV...12
Worldwide Sales and Service..13
1. **Concept**

The XDMAC peripheral provides support to implement the Ping-Pong buffering method through a multiple block data transfer feature. In multiple block data transfer, each block of data can be transferred with different configuration parameters such as, data source, destination address, data size, and trigger source. The XDMAC supports multiple block data transfer through the linked list. An implementation that uses a linked list feature requires the creation of linked list descriptors.

A linked list descriptor contains register settings to transfer a block of memory. When data is transferred using a linked list, the XDMAC fetches the first descriptor from the linked list, copies the register settings to channel registers, and performs the data transfer according to the configuration settings. When the first block transfer is completed, the XDMAC fetches the second descriptor from the linked list, copies the register settings to channel registers, and performs the data transfer according to the configuration settings. This process continues until the end of the linked list. Linked list descriptors are usually stored in internal data memory.
2. Solution
To implement Ping-Pong based audio data buffer handling in the USB Audio headphone application, build an XDMAC circular linked list consisting of two descriptors with the ‘View 1’ type. The ‘View 1’ type descriptor has four members, as shown in the following table.

Table 2-1. View 1 Type Linked List Descriptor

<table>
<thead>
<tr>
<th>MBR_NDA</th>
<th>Next Descriptor Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBR_SA</td>
<td>Source Address</td>
</tr>
<tr>
<td>MBR_DA</td>
<td>Destination Address</td>
</tr>
<tr>
<td>MBR_UBC</td>
<td></td>
</tr>
<tr>
<td>UBLEN</td>
<td>Data length in microblocks</td>
</tr>
<tr>
<td>NDE</td>
<td>Next Descriptor Enable</td>
</tr>
<tr>
<td>NSEN</td>
<td>Next Descriptor Source Update</td>
</tr>
<tr>
<td>NDEN</td>
<td>Next Descriptor Source Update</td>
</tr>
<tr>
<td>NVIEW</td>
<td>Next Descriptor View Type</td>
</tr>
</tbody>
</table>

Note: In this application, although the ‘View 0’ type descriptor is sufficient, the ‘View 1’ type descriptor is chosen to demonstrate the use case where one item of control configuration changes (NSEN enabled) from one block to other while another item remains the same (NDEN disabled).

The following figure is a representation of the application buffers used in the Ping-Pong implementation

Figure 2-1. Ping-Pong Audio Data Buffers

Note: The application buffers Buffer1 and Buffer2 are shared between the XDMAC and the USB.
1. Typically, the application maintains the exclusive access to these buffers through a global flag, such as PPFlag, shown in Figure 1.
2. If XDMAC is transmitting Buffer1, it is the responsibility of the application to ensure that the Buffer2 is updated with data from USB before the completion of Buffer1.

The following figure shows the XDMAC circular linked list with two descriptors to implement the Ping-Pong buffering.
1. The next descriptor fields (NDA, NDE, NSEN, NDEN and NVIEW) control the transfer behavior of the next descriptor, not the current descriptor.
 - *Descriptor1* controls the transfer behavior when the first descriptor is completed and the transfer of the second descriptor is to start
 - *Descriptor2* controls the transfer behavior when the second descriptor is completed and the transfer of the first descriptor is to start

2. The NSEN field in both of the linked list descriptors above is set as ‘1’ to enable updates of the channel-specific source address register (XDMAC_CSAx) with the value in the MBR_SA field. This is because at the end of a block transfer, the XDMAC_CSAx would have an invalid address for the next transaction. MBR_SA contains the address of the buffer, which would be the next buffer made ready for transfer.
 - After the end of transmission of *Descriptor1*, XDMAC_CSAx is updated to contain the address of *Buffer2* (pong) from *Buffer1* (ping).
 - After the end of transmission of *Descriptor2*, XDMAC_CSAx is updated to contain the address of *Buffer1* (ping) from *Buffer2* (pong).
3. The NDEN field in both the linked list descriptors above is set as '0' to disable updates of the channel-specific destination address register (XDMAC_CDAx) with the value in the MBR_DA field. This is because at the end of a block transfer, the XDMAC_CDAx would still have a valid address for the next transaction.
 - After the end of transmission of Descriptor1, XDMAC_CDAx contains the address of SSC transmit holding register (SSC THR) and subsequently is not updated.
 - After the end of transmission of Descriptor2, XDMAC_CDAx contains the address of SSC transmit holding register (SSC THR) and subsequently is not updated.

4. To start the data transfer, enable the implemented linked list by directly writing to the channel specific next descriptor control (XDMAC_CNDCx) and address (XDMAC_CNDAx) registers with the values of the first descriptor (NDA, NDE, NSEN, NDEN and NVIEW).

The following figure shows example code to create the circular linked list.
Figure 2-3. Create Circular Linked List

```c
typedef struct {
    /* Next Descriptor Address number. */
    uint32_t mbr_nda;
    /* Microblock Control Member. */
    uint32_t mbr_ubic;
    /* Source Address Member. */
    uint32_t mbr_sa;
    /* Destination Address Member. */
    uint32_t mbr_da;
} lld_view1;

/** Bits per slot */
#define BITS_BY SLOT (16)
/** Total number of buffers */
#define TOTAL_BUFFERS 2
/** Length of a buffer */
#define MAX_DMA_SIZE 240
/** XDMAC Descriptor */
static lld_view1 linklist_write[TOTAL_BUFFERS];
/** Audio Buffer */
static uint16_t Buffer[TOTAL_BUFFERS][MAX_DMA_SIZE*(BITS_BY SLOT / 8)];

for(i = 0; i < TOTAL_BUFFERS; i++)
{
    linklist_write[i].mbr_ubic = XDMAC_UBC_NVIEW_NDVL
        | XDMAC_UBC_NDE_FETCH_EN
        | XDMAC_UBC_NSEN_UPDATED
        | XDMAC_UBC_NDEN_UNCHANGED
        | XDMAC_CUBC_ublen(MAX_DMA_SIZE);
    linklist_write[i].mbr_sa = (uint32_t)&Buffer[i];
    linklist_write[i].mbr_da = (uint32_t)(SSC->SSC_THR);
    if ( i == (TOTAL_BUFFERS - 1 ) )
    {
        linklist_write[i].mbr_nda = (uint32_t)&linklist_write[0];
    }
    else
    {
        linklist_write[i].mbr_nda = (uint32_t)&linklist_write[i+1];
    }
}
```

After initializing the linked list as previously described, and once the corresponding XDMAC channel is enabled, the XDMAC places the contents of Buffer1 onto the SSC transmit register (SSC_THR) according to the configuration parameters. When the Buffer1 transmission is completed, the XDMAC switches to Descriptor2 in the linked list. The source address of the audio data in Descriptor2 points to Buffer2. Once transmission completes, as with earlier descriptor, the XDMAC moves back to the Descriptor1 in the list. The XDMAC switches between the two descriptors (implicitly between the two Ping-Pong audio buffers Buffer1 and Buffer2) while transmitting the audio data through the SSC to the CODEC.
3. Relevant Resources

- Usage of XDMAC on SAM S/SAM E/SAM V
 [link]

- Synchronous Serial Controller (SSC) of SAMV71 Devices to Output an Audio Stream Through the On-board WM8904 CODEC
 [link]

- Synchronous Serial Controller (SSC) of SAM3S Devices to Output an Audio Stream Through the On-board WM8731 CODEC
 [link]
The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTorch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntellIMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., and in other countries.

All other trademarks mentioned herein are property of their respective companies.
ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Office</td>
<td>Asia Pacific Office</td>
<td>China - Xiamen</td>
<td>Austria - Wels</td>
</tr>
<tr>
<td>2355 West Chandler Blvd.</td>
<td>Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon</td>
<td>Tel: 86-592-2388138</td>
<td>Tel: 43-7242-2244-39</td>
</tr>
<tr>
<td>Chandler, AZ 85224-6199</td>
<td>Tel: 86-10-8569-7000 Fax: 86-10-8528-2104</td>
<td>Fax: 86-756-3210040</td>
<td>Fax: 43-7242-2244-393</td>
</tr>
<tr>
<td>Tel: 480-792-7200 Fax: 480-792-7277</td>
<td>Tel: 86-28-8665-5511 Fax: 86-28-8665-7899</td>
<td>Fax: 86-756-3210049</td>
<td>Fax: 45-4450-2828</td>
</tr>
<tr>
<td>Technical Support: http://www.microchip.com/support</td>
<td>Tel: 86-23-8980-9588 Fax: 86-23-8980-9500</td>
<td>India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123</td>
<td>Tel: 358-9-4520-820</td>
</tr>
<tr>
<td>Web Address: www.microchip.com</td>
<td>Tel: 86-769-8702-9880</td>
<td>India - New Delhi Tel: 91-91-4160-8632 Fax: 91-91-4160-8632</td>
<td>Tel: 33-1-69-53-63-20</td>
</tr>
<tr>
<td>Atlanta</td>
<td>China - Beijing</td>
<td>China - Pune Tel: 91-20-3019-1500</td>
<td>Germany - Garching Tel: 49-8931-9700</td>
</tr>
<tr>
<td>Duluth, GA</td>
<td>Tel: 678-957-9614 Fax: 678-957-1455</td>
<td>Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310</td>
<td>Germany - Haan Tel: 49-2129-3766400</td>
</tr>
<tr>
<td>Tel: 480-792-7200 Fax: 480-792-7277</td>
<td>China - Chongqing Tel: 86-23-8980-9511 Fax: 86-23-8980-9500</td>
<td>Japan - Tokyo Tel: 81-3-6880-3770 Fax: 81-3-6880-3771</td>
<td>Germany - Heilbronn Tel: 49-7-731-67-3636</td>
</tr>
<tr>
<td>California</td>
<td>China - Guangzhou Tel: 86-20-8755-8029</td>
<td>Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302</td>
<td>Germany - Karlsruhe Tel: 49-7-721-625370</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116</td>
<td>Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934</td>
<td>Germany - Munich Tel: 49-89-627-144-0</td>
</tr>
<tr>
<td>Mission Viejo, CA</td>
<td>China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431</td>
<td>Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859</td>
<td>Germany - Garching Tel: 49-8931-9700</td>
</tr>
<tr>
<td>Tel: 949-462-9523 Fax: 949-462-9608</td>
<td>Tel: 86-25-8473-2460 Fax: 86-25-8473-2470</td>
<td>Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068</td>
<td>Germany - Haan Tel: 49-2129-3766400</td>
</tr>
<tr>
<td>Raleigh, NC</td>
<td>China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205</td>
<td>Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069</td>
<td>Germany - Heilbronn Tel: 49-7-731-67-3636</td>
</tr>
<tr>
<td>Tel: 919-844-7510</td>
<td>China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021</td>
<td>Singapore Tel: 65-6334-8870 Fax: 65-6334-8850</td>
<td>Germany - Karlsruhe Tel: 49-7-721-625370</td>
</tr>
<tr>
<td>New York, NY</td>
<td>China - Shenzhen Tel: 86-24-2334-2829 Fax: 86-24-2334-2393</td>
<td>Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955</td>
<td>Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466871</td>
</tr>
<tr>
<td>Tel: 631-435-6000</td>
<td>China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118</td>
<td>Taiwan - Kaohsiung Tel: 886-7-213-7830</td>
<td>Italy - Padova Tel: 39-049-7625286</td>
</tr>
<tr>
<td>San Jose, CA</td>
<td>China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256</td>
<td>Taiwan - Taipei Tel: 886-2-2508-5800 Fax: 886-2-2508-0102</td>
<td>Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340</td>
</tr>
<tr>
<td>Tel: 408-735-9110 Tel: 408-436-4270</td>
<td>Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078</td>
<td>Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350</td>
<td>Norway - Trondheim Tel: 47-7289-7561</td>
</tr>
<tr>
<td>Tel: 408-735-9110 Tel: 408-436-4270</td>
<td>Tel: 40-21-407-87-50</td>
<td>Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91</td>
<td>Poland - Warsaw Tel: 48-22-3325737</td>
</tr>
<tr>
<td>Tel: 408-735-9110 Tel: 408-436-4270</td>
<td>Tel: 40-21-407-87-50</td>
<td>Sweden - Gothenberg Tel: 46-31-704-60-40</td>
<td>Romania - Bucharest Tel: 40-21-407-87-50</td>
</tr>
<tr>
<td>Tel: 408-735-9110 Tel: 408-436-4270</td>
<td>Tel: 40-21-407-87-50</td>
<td>Sweden - Stockholm Tel: 46-8-5090-4654</td>
<td>UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820</td>
</tr>
</tbody>
</table>