The dsPIC30F4011/4012 family devices that you have received conform functionally to the current Device Data Sheet (DS70135F), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the dsPIC30F4011/4012 silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (A4).

Data Sheet clarifications and corrections start on page 19, following the discussion of silicon issues.

The silicon revision level can be identified using the current version of MPLAB® IDE and Microchip’s programmers, debuggers and emulation tools, which are available at the Microchip corporate web site (www.microchip.com).

For example, to identify the silicon revision level using MPLAB IDE in conjunction with MPLAB ICD 2 or PICkit™ 3:

1. Using the appropriate interface, connect the device to the MPLAB ICD 2 programmer/debugger or PICkit 3.
2. From the main menu in MPLAB IDE, select Configure>Select Device, and then select the target part number in the dialog box.
3. Select the MPLAB hardware tool (Debugger>Select Tool).
4. Perform a “Connect” operation to the device (Debugger>Connect). Depending on the development tool used, the part number and Device Revision ID value appear in the Output window.

Note: If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.

The Device and Revision ID values for the various dsPIC30F4011/4012 silicon revisions are shown in Table 1.

TABLE 1: SILICON DEVREV VALUES

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Device ID(1)</th>
<th>Revision ID for Silicon Revision(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>A2</td>
</tr>
<tr>
<td>dsPIC30F4011</td>
<td>0x0101</td>
<td>0x1001</td>
</tr>
<tr>
<td>dsPIC30F4012</td>
<td>0x0100</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The Device and Revision IDs (DEVID and DEVREV) are located at the last two implemented addresses in program memory.

Note 2: Refer to the “dsPIC30F Flash Programming Specification” (DS70102) for detailed information on Device and Revision IDs for your specific device.
TABLE 2: SILICON ISSUE SUMMARY

<table>
<thead>
<tr>
<th>Module</th>
<th>Feature</th>
<th>Item Number</th>
<th>Issue Summary</th>
<th>Affected Revisions<sup>(1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>MAC Class Instructions with ±4 Address Modification</td>
<td>1.</td>
<td>Sequential MAC instructions, which prefetch data from Y data space using ±4 address modification, will cause an address error trap.</td>
<td>X X X X</td>
</tr>
<tr>
<td>CPU</td>
<td>DAW.b Instruction</td>
<td>2.</td>
<td>The Decimal Adjust instruction, DAW.b, may improperly clear the Carry bit, C (SR<0>).</td>
<td>X X X X</td>
</tr>
<tr>
<td>I/O</td>
<td>SFR Writes</td>
<td>3.</td>
<td>Writes to certain unimplemented address locations can affect I/O Port register values.</td>
<td>X X X X</td>
</tr>
<tr>
<td>PSV Operations</td>
<td>—</td>
<td>4.</td>
<td>In certain instructions, fetching one of the operands from program memory using Program Space Visibility (PSV) will corrupt specific bits in the STATUS Register, SR.</td>
<td>X X X X</td>
</tr>
<tr>
<td>CPU</td>
<td>Nested DO Loops</td>
<td>5.</td>
<td>When using two DO loops in a nested fashion, terminating the inner-level DO loop by setting the EDT bit (CORCON<11>) will produce unexpected results.</td>
<td>X X X X</td>
</tr>
<tr>
<td>PLL</td>
<td>4x Mode</td>
<td>6.</td>
<td>The 4x PLL mode of operation may not function correctly for certain input frequencies.</td>
<td>X X X X</td>
</tr>
<tr>
<td>Interrupt Controller</td>
<td>—</td>
<td>7.</td>
<td>An interrupt occurring immediately after modifying the CPU IPL, interrupt IPL, interrupt enable or interrupt flag may cause an address error trap.</td>
<td>X X X X</td>
</tr>
<tr>
<td>CPU</td>
<td>DISI Instruction</td>
<td>8.</td>
<td>The DISI instruction will not disable interrupts if a DISI instruction is executed in the same instruction cycle that the DISI counter decrements to zero.</td>
<td>X X X X</td>
</tr>
<tr>
<td>Output Compare</td>
<td>PWM Mode</td>
<td>9.</td>
<td>Output compare will produce a glitch when loading 0% duty cycle in PWM mode. It will also miss the next compare after the glitch.</td>
<td>X X X X</td>
</tr>
<tr>
<td>Output Compare</td>
<td>—</td>
<td>10.</td>
<td>The Output Compare module will produce a glitch on the output when an I/O pin is initially set high and the module is configured to drive the pin low at a specified time.</td>
<td>X X X X</td>
</tr>
<tr>
<td>ADC</td>
<td>Sleep Mode</td>
<td>11.</td>
<td>ADC event triggers from the INT0 pin will not wake-up the device from Sleep mode if the SMPI bits are non-zero.</td>
<td>X X X X</td>
</tr>
<tr>
<td>PLL</td>
<td>8x Mode</td>
<td>12.</td>
<td>If 8x PLL mode is used, the input frequency range is 5 MHz-10 MHz instead of 4 MHz-10 MHz.</td>
<td>X X X X</td>
</tr>
<tr>
<td>ADC</td>
<td>Sampling Rate</td>
<td>13.</td>
<td>The 10-bit Analog-to-Digital Converter (ADC) has a maximum sampling rate of 750 ksp/s.</td>
<td>X X X X</td>
</tr>
<tr>
<td>QEI</td>
<td>Interrupt Generation</td>
<td>14.</td>
<td>The Quadrature Encoder Interface (QEI) module does not generate an interrupt in a particular overflow condition.</td>
<td>X X X X</td>
</tr>
<tr>
<td>Sleep Mode</td>
<td>—</td>
<td>15.</td>
<td>Execution of the Sleep instruction (PWRSAV #D) may cause incorrect program operation after the device wakes up from Sleep. The current consumption during Sleep may also increase beyond the specifications listed in the device data sheet.</td>
<td>X X X X</td>
</tr>
<tr>
<td>I²C™</td>
<td>Slave Mode</td>
<td>16.</td>
<td>The I²C module loses incoming data bytes when operating as an I²C slave.</td>
<td>X X X X</td>
</tr>
<tr>
<td>PWM</td>
<td>Debug Mode</td>
<td>17.</td>
<td>PTMR does not continue counting down after halting code execution in Debug mode.</td>
<td>X X X X</td>
</tr>
</tbody>
</table>

Note 1: Only those issues indicated in the last column apply to the current silicon revision.
<table>
<thead>
<tr>
<th>Module</th>
<th>Feature</th>
<th>Item Number</th>
<th>Issue Summary</th>
<th>Affected Revisions(1)</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O</td>
<td>Port Pin Multiplexed with IC1</td>
<td>18.</td>
<td>The Port I/O pin multiplexed with the Input Capture 1 (IC1) function cannot be used as a digital input pin when the UART auto-baud feature is enabled.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>I²C</td>
<td>10-bit Addressing</td>
<td>19.</td>
<td>When the I²C module is configured for 10-bit addressing using the same address bits (A10 and A9) as other I²C devices, the A10 and A9 bits may not work as expected.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Timer</td>
<td>Sleep Mode</td>
<td>20.</td>
<td>Clock switching prevents the device from waking up from Sleep.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PLL</td>
<td>Lock Status bit</td>
<td>21.</td>
<td>The PLL LOCK Status bit (OSCCON<5>) can occasionally get cleared and generate an oscillator failure trap even when the PLL is still locked and functioning correctly.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PSV Operations</td>
<td>—</td>
<td>22.</td>
<td>An address error trap occurs in certain addressing modes when accessing the first four bytes of any PSV page.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>I²C</td>
<td>10-bit Addressing</td>
<td>23.</td>
<td>The 10-bit slave does not set the RBF flag or load the I2CxRCV register on address match if the Least Significant bits (LSbs) of the address are the same as the 7-bit reserved addresses.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>I²C</td>
<td>10-bit Addressing</td>
<td>24.</td>
<td>When the I²C module is configured as a 10-bit slave with an address of 0x102, the I2CxRCV register content for the lower address byte is 0x01 rather than 0x02.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>I²C</td>
<td>Bus Collision</td>
<td>25.</td>
<td>When the I²C module is enabled, the dsPIC® DSC device generates a glitch on the SDA and SCL pins, causing a false communication start in a single-master configuration or a bus collision in a multi-master configuration.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Data EEPROM</td>
<td>—</td>
<td>26.</td>
<td>The Most Significant bit (MSb) of every fourth byte in Data EEPROM may be corrupted.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OSC2 Pin</td>
<td>Using RC15 for Digital I/O</td>
<td>27.</td>
<td>If the pin RC15 is required for digital input/output, the FPR<4:0> bits in the FOSC Configuration register may not be set up for FRC w/PLL 4x/8x/16x modes.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN</td>
<td>RX Filters 3, 4 and 5</td>
<td>28.</td>
<td>CAN Receive filters 3, 4 and 5 may not work for a given combination of instruction cycle speed and CAN bit time quanta.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CAN</td>
<td>Error Count</td>
<td>29.</td>
<td>The C1EC register does not reflect the correct error count value.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>QEI</td>
<td>Timer Gated Accumulation Mode</td>
<td>30.</td>
<td>When Timer Gated Accumulation is enabled, the QEI does not generate an interrupt on every falling edge.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QEI</td>
<td>Timer Gated Accumulation Mode</td>
<td>31.</td>
<td>When Timer Gated Accumulation is enabled, and an external signal is applied, the POSCNT increments and generates an interrupt after a match with MAXCNT.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADC</td>
<td>Current Consumption in Sleep Mode</td>
<td>32.</td>
<td>If the ADC module is in an enabled state when the device enters Sleep Mode, the power-down current (IPD) of the device may exceed the device data sheet specifications.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Only those issues indicated in the last column apply to the current silicon revision.
Silicon Errata Issues

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (A4).

1. Module: CPU

 Sequential MAC class instructions, which prefetch data from Y data space using ±4 address modification, will cause an address error trap. The trap occurs only when all of the following conditions are true:
 1. Two sequential MAC class instructions (or a MAC class instruction executed in a REPEAT or DO loop) that prefetch from Y data space.
 2. Both instructions prefetch data from Y data space using the + = 4 or - = 4 address modification.
 3. Neither of the instruction uses an accumulator write back.

 Work around
 The problem described above can be avoided by using any of the following methods:
 1. Inserting any other instruction between the two MAC class instructions.
 2. Adding an accumulator write back (a dummy write back if needed) to either of the MAC class instructions.
 3. Do not use the + = 4 or - = 4 address modification.
 4. Do not prefetch data from Y data space.

2. Module: CPU

 The Decimal Adjust instruction, DAW.b, may improperly clear the Carry bit, C (SR<0>), when executed.

 Work around
 Check the state of the Carry bit prior to executing the DAW.b instruction. If the Carry bit is set, set the Carry bit again after executing the DAW.b instruction. Example 1 shows how the application should process the Carry bit during a BCD addition operation.

 EXAMPLE 1: CHECK CARRY BIT BEFORE DAW.b

   ```
   .include "p30fxxxx.inc"
   .......
   MOV.b #0x80, w0 ;First BCD number
   MOV.b #0x80, w1 ;Second BCD number
   ADD.b w0, w1, w2 ;Perform addition
   BRA NC, L0 ;If C set go to L0
   DAW.b w2 ;If not, do DAW and
   BSET.b SR, #C ;set the carry bit
   BRA L1 ;and exit
   L0: DAW.b w2
   L1: ....
   ```

3. Module: I/O

 The I/O Port register values can be changed by writing to the following address locations, which are located in unimplemented memory space. A write to these unimplemented addresses could cause an I/O pin configured as an output to change states. This state change could be confirmed by reading either the PORT or LAT register associated with the pin.

 PORTB will be modified by a write to address 0x0C8
 PORTC will be modified by a write to address 0x0CE
 PORTD will be modified by a write to address 0x0D4
 PORTE will be modified by a write to address 0x0DA
 PORTF will be modified by a write to address 0x0E0

 Work around
 User software should avoid writing to the unimplemented locations listed above.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Note:
This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (A4).
4. Module: PSV Operations

When one of the operands of instructions shown in Table 3 is fetched from program memory using Program Space Visibility (PSV), the STATUS Register, SR and/or the results may be corrupted.

These instructions are identified in Table 3. Example 2 demonstrates one scenario where this occurs.
Also, always use Work around 2 if the C compiler is used to generate code for dsPIC30F4011/4012 devices.

Table 3: Affected Instructions

<table>
<thead>
<tr>
<th>Instruction(1)</th>
<th>Examples of Incorrect Operation(2)</th>
<th>Data Corruption In</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDC</td>
<td>ADDC W0, [W1++], W2 ;</td>
<td>SR<1:0> bits(3), Result in W2</td>
</tr>
<tr>
<td>SUBB</td>
<td>SUBBB.b W0, [++W1], W3 ;</td>
<td>SR<1:0> bits(3), Result in W3</td>
</tr>
<tr>
<td>SUBBR</td>
<td>SUBBR.b W0, [++W1], W3 ;</td>
<td>SR<1:0> bits(3), Result in W3</td>
</tr>
<tr>
<td>CPB</td>
<td>CPB W0, [W1++], W4 ;</td>
<td>SR<1:0> bits(3)</td>
</tr>
<tr>
<td>RLC</td>
<td>RLC [W1], W4 ;</td>
<td>SR<1:0> bits(3), Result in W4</td>
</tr>
<tr>
<td>RRC</td>
<td>RRC [W1], W2 ;</td>
<td>SR<1:0> bits(3), Result in W2</td>
</tr>
<tr>
<td>ADD (Accumulator-based)</td>
<td>ADD [W1++], A ;</td>
<td>SR<1:0> bits(3)</td>
</tr>
<tr>
<td>LAC</td>
<td>LAC [W1], A ;</td>
<td>SR<15:10> bits(4)</td>
</tr>
</tbody>
</table>

Note 1: Refer to the “dsPIC30F/33F Programmer’s Reference Manual” (DS70157) for details on the dsPIC30F instruction set.

2: The errata only affects these instructions when a PSV access is performed to fetch one of the source operands in the instruction. A PSV access is performed when the Effective Address of the source operand is greater than 0x8000 and the PSV bit (CORCON<2>) is set to ‘1’. In the examples shown, the data access from program memory is made via the W1 register.

3: SR<1:0> bits represent Sticky Zero and Carry Status bits, respectively.

4: SR<15:10> bits represent Accumulator Overflow and Saturation Status bits.

Example 2: Incorrect Results

```
.include “p30fxxxx.inc”
......
MOV.B #0x00, W0 ;Load PSVPAG register
MOV.B WREG, PSVPAG
BSET CORCON, #PSV ;Enable PSV
....
MOV #0x8200, W1 ;Set up W1 for
;indirect PSV access
;from 0x000200
ADD W3, [W1++], W5 ;This instruction
;works ok
ADDC W4, [W1++], W6 ;Carry flag and
;W6 gets
;corrupted here!
```

Example 3: Correct Results

```
.include “p30fxxxx.inc”
......
MOV.B #0x00, W0 ;Load PSVPAG register
MOV.B WREG, PSVPAG
BSET CORCON, #PSV ;Enable PSV
....
MOV #0x8200, W1 ;Set up W1 for
;indirect PSV access
;from 0x000200
ADD W3, [W1++], W5 ;This instruction
;works ok
MOV [W1++], W2 ;Load W2 with data
;from program memory
ADDC W4, W2, W6 ;Carry flag and W4
;results are ok!
```

Work arounds

Work around 1: For Assembly Language Source Code

To work around the erratum in the MPLAB ASM30 assembler, the application may perform a PSV access to move the source operand from program memory to RAM or a W register prior to performing the operations listed in Table 3. The work around for Example 2 is demonstrated in Example 3.

Work around 2: For C Language Source Code

For applications using C language, MPLAB C30 versions 1.20.04 or higher provide the following command-line switch that implements a work around for the erratum.

```
-merrata=psv
```

Refer to the “readme.txt” file in the MPLAB C30 v1.20.04 toolsuite for further details.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
5. Module: CPU

When using two `DO` loops in a nested fashion, terminating the inner-level `DO` loop by setting the EDT bit (CORCON<11>) will produce unexpected results. Specifically, the device may continue executing code within the outer `DO` loop forever. This erratum does not affect the operation of the MPLAB C30 compiler.

Work around

The application should save the DCOUNT Special Function Register (SFR) prior to entering the inner `DO` loop and restore it upon exiting the inner `DO` loop. This work around is shown in Example 4.

EXAMPLE 4: SAVE AND RESTORE DCOUNT

```
.include "p30fxxxx.inc"
........
DO #CNT1, LOOP0 ;Outer loop start
....
PUSH DCOUNT ;Save DCOUNT
DO #CNT2, LOOP1 ;Inner loop
.... ;starts
BTSS Flag, #0
BSET CORCON, #EDT ;Terminate inner
.... ;DO-loop early
....
LOOP1: MOV W1, W5 ;Inner loop ends
POP DCOUNT ;Restore DCOUNT
....
LOOP0: MOV W5, W8 ;Outer loop ends
```

Note: For details on the functionality of EDT bit, see section 2.9.2.4 in the dsPIC30F Family Reference Manual.

6. Module: PLL

When the 4x PLL mode of operation is selected, the specified input frequency range of 4 MHz-10 MHz is not fully supported.

When device VDD is 2.5V-3.0V, the 4x PLL input frequency must be in the range of 4 MHz-5 MHz. When device VDD is 3.0V-3.6V, the 4x PLL input frequency must be in the range of 4 MHz-6 MHz for both industrial and extended temperature ranges.

Work around

1. Use 8x PLL or 16x PLL mode of operation and set final device clock speed using the POST<1:0> oscillator postscaler control bits (OSCCON<7:6>).
2. Use the EC without PLL Clock mode with a suitable clock frequency to obtain the equivalent 4x PLL clock rate.

Affected Silicon Revisions

```
<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
```
7. Module: Interrupt Controller

The following sequence of events will lead to an address error trap. The generic term “Interrupt 1” is used to represent any enabled dsPIC30F interrupt.

1. User software performs one of the following operations:
 - CPU IPL is raised to Interrupt 1 IPL level or higher, or
 - Interrupt 1 IPL is lowered to CPU IPL level or lower, or
 - Interrupt 1 is disabled (Interrupt 1 IE bit set to '0'), or
 - Interrupt 1 flag is cleared

2. Interrupt 1 occurs between 2 and 4 instruction cycles after any of the operations listed above.

Work arounds

Work around 1: For Assembly Language Source Code

The user may disable interrupt nesting, disable interrupts before modifying the Interrupt 1 setting or execute a DISI instruction before modifying the CPU IPL or Interrupt 1. A minimum DISI value of 4 is required if the DISI instruction is executed immediately before the CPU IPL or Interrupt 1 is modified, as shown in Example 5. It is necessary to have DISI active for four cycles after the CPU IPL or Interrupt 1 is modified.

EXAMPLE 5: USING DISI

```assembly
.include "p30fxxxx.inc"
...
DISI #4 ; protect the disable of INT1
BCLR IEC1, #INT1IE ; disable interrupt 1
... ; next instruction
; protected by DISI
```

Work around 2: For C Language Source Code

For applications using the C language, MPLAB C30 versions 1.32 and higher provide several macros for modifying the CPU IPL. The SET_CPU_IPL macro provides the ability to safely modify the CPU IPL, as shown in Example 6.

EXAMPLE 6: USING SET_CPU_IPL MACRO

```c
// Note: Macro defined in device include files
#define SET_CPU_IPL (ipl){
  int DISI_save;
  DISI_save = DISICNT;
  asm volatile("disi #0x3FFF");
  SRbits.IPL = ipl;
  __builtin_nop();
  __builtin_nop();
  DISICNT = DISI_save;
} (void) 0;

#include "p30fxxxx.h"
.
SET_CPU_IPL (3)
...
```

There is one level of DISI, so this macro saves and restores the DISI state. For temporarily modifying and restoring the CPU IPL, the macros SET_AND_SAVE_CPU_IPL and RESTORE_CPU_IPL can be used, as shown in Example 7. These macros also make use of the SET_CPU_IPL macro.

EXAMPLE 7: USING SET_AND_SAVE_CPU_IPL AND RESTORE_CPU_IPL MACROS

```c
// Note: Macros defined in device include files
#define SET_AND_SAVE_CPU_IPL (save_to, ipl){
  save_to = SRbits.IPL;
  SET_CPU_IPL (ipl); } (void) 0;

#define RESTORE_CPU_IPL (saved_to) SET_CPU_IPL (saved_to)

#include "p30fxxxx.h"
.
SET_AND_SAVE_CPU_IPL (save_to, 3)
.
RESTORE_CPU_IPL (save_to)
```
For modification of the Interrupt 1 setting, the INTERRUPT_PROTECT macro can be used. This macro disables interrupts before executing the desired expression, as shown in Example 8. This macro is not distributed with the compiler.

EXAMPLE 8: USING INTERRUPT_PROTECT MACRO

```c
#define INTERRUPT_PROTECT (x) { \
    int save_sr; \
    SET_AND_SAVE_CPU_IPL (save_sr, 7);\ 
    x; \ 
    RESTORE_CPU_IPL (save_sr); } (void) 0;
```

`. . .
INTERRUPT_PROTECT (IEC0bits.U1TXIE=0);

Note: If you are using a MPLAB C30 compiler version earlier than version 1.32, you may still use the macros by adding them to your application.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
8. Module: CPU

When a user executes a disi #7, for example, this will disable interrupts for 7 + 1 cycles (7 + the disi instruction itself). In this case, the disi instruction uses a counter which counts down from 7 to 0. The counter is loaded with 7 at the end of the disi instruction.

If the user code executes another disi on the instruction cycle where the disi counter has become zero, the new disi count is loaded, but the disi state machine does not properly re-engage and continue to disable interrupts. At this point, all interrupts are enabled. The next time the user code executes a disi instruction, the feature will act normally and block interrupts.

In summary, it is only when a disi execution is coincident with the current disi count = 0, that the issue occurs. Executing a disi instruction before the disi counter reaches zero will not produce this error. In this case, the disi counter is loaded with the new value, and interrupts remain disabled until the counter becomes zero.

Work around

When executing multiple disi instructions within the source code, make sure that subsequent disi instructions have at least one instruction cycle between the time that the disi counter decrements to zero and the next disi instruction. Alternatively, make sure that subsequent disi instructions are called before the disi counter decrements to zero.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

9. Module: Output Compare

If the desired duty cycle is ‘0’ (OCxRS = 0), the module will generate a high level glitch of 1 Tcy. The second problem is that on the next cycle after the glitch, the OC pin does not go high, or in other words, it misses the next compare for any value written on OCxRS.

Work around

There are two possible solutions to this problem:

1. Load a value greater than ‘0’ to the OCxRS register when operating in PWM mode. In this case, no 0% duty cycle is achievable.
2. If the application requires 0% duty cycles, the Output Compare module can be disabled for 0% duty cycles, and re-enabled for non-zero percent duty cycles.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

10. Module: Output Compare

A glitch will be produced on an output compare pin under the following conditions:

- The user software initially drives the I/O pin high using the Output Compare module or a write to the associated PORT register.
- The Output Compare module is configured and enabled to drive the pin low at some point in later time (OCxCON = 0x0002 or OCxCON = 0x0003).

When these events occur, the Output Compare module will drive the pin low for one instruction cycle (Tcy) after the module is enabled.

Work around

None. However, the user may use a timer interrupt and write to the associated PORT register to control the pin manually.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
11. Module: ADC

ADC event triggers from the INT0 pin will not wake-up the device from Sleep mode if the SMPI bits are non-zero. This means that if the ADC is configured to generate an interrupt after a certain number of INT0 triggered conversions, the ADC conversions will not be triggered and the device will remain in Sleep. The ADC will perform conversions and wake-up the device only if it is configured to generate an interrupt after each INT0 triggered conversion (SMPI<3:0> = 0000).

Work around

None. If ADC event trigger from the INT0 pin is required, initialize SMPI<3:0> to '0000' (interrupt on every conversion).

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

12. Module: PLL

If 8x PLL mode is used, the input frequency range is 5 MHz-10 MHz instead of 4 MHz-10 MHz.

Work around

None. If 8x PLL is used, make sure the input crystal or clock frequency is 5 MHz or greater.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

TABLE 4: 10-BIT ADC RATE PARAMETERS

A/D Speed	TAD	Sampling Time	Rs	VDD	Temperature	A/D Channels
Up to 750 kps	95.24 ns	2 TAD	500Ω	4.5V to 5.5V	-40°C to +85°C	![Diagram](image1.png)
Up to 500 kps	153.85 ns	1 TAD	5.0 kΩ	4.5V to 5.5V	-40°C to +125°C	![Diagram](image2.png)
Up to 300 kps	256.41 ns	1 TAD	5.0 kΩ	3.0V to 5.5V	-40°C to +125°C	![Diagram](image3.png)

13. Module: ADC

The maximum sampling rate for the 10-bit Analog-to-Digital Conversion module is 750 kps.

This rate is only achievable when one A/D pin is being used. Configuring the ADC module to use multiple sample-and-hold circuits (see device data sheet), will not improve the conversion speed of the module.

Table 4 shows the maximum ADC conversion rates possible using the 10-bit ADC module and the corresponding module configuration and operating conditions.

Work around

None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
14. Module: QEI

The Quadrature Encoder Interface (QEI) module does not generate an interrupt when MAXCNT is set to 0xFFFF and the following events occur:
1. POSCNT underflows from 0x0000 to 0xFFFF.
2. POSCNT stops.
3. POSCNT overflows from 0xFFFF to 0x0000.

This sequence of events occurs when the motor is running in one direction, which causes POSCNT to underflow to 0xFFFF. Once this happens, the motor stops and starts to run in the opposite direction, which generates an overflow from 0xFFFF to 0x0000. The QEI module does not generate an interrupt when this condition occurs.

Work around

To prevent this condition from occurring, set MAXCNT to 0x7FFF, which will cause an interrupt to be generated by the QEI module.

In addition, a global variable could be used to keep track of bit 15, so that when an overflow or underflow condition is present on POSCNT, the variable will toggle bit 15. Example 9 shows the code required for this global variable.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

EXAMPLE 9:

```c
unsigned int POSCNT_b15 = 0;
unsigned int Motor_Position = 0;

int main(void)
{
    // ... User's code

    MAXCNT = 0x7FFF; // Instead of 0xFFFF

    Motor_Position = POSCNT_b15 + POSCNT;

    // ... User's code
}

void __attribute__((__interrupt__)) _QEIInterrupt(void)
{
    IFSxbits.QEIIF = 0; // Clear QEI interrupt flag
    // x=2 for dsPIC30F
    // x=3 for dsPIC33F
    POSCNT_b15 ^= 0x8000; // Overflow or Underflow
}
```
15. Module: Sleep Mode

Execution of the Sleep instruction (PWRSAV #0) may cause incorrect program operation after the device wakes up from Sleep. The current consumption during Sleep may also increase beyond the specifications listed in the device data sheet.

Work arounds

To avoid this issue, implement any of the following three work arounds, depending on the application requirements.

Work around 1:

Ensure that the PWRSAV #0 instruction is located at the end of the last row of program Flash memory available on the target device and fill the remainder of the row with NOP instructions.

This can be accomplished by replacing all occurrences of the PWRSAV #0 instruction with a function call to a suitably aligned subroutine. The address() attribute provided by the MPLAB ASM30 assembler can be utilized to correctly align the instructions in the subroutine. For an application written in C, the function call would be `GotoSleep()`, while for an assembly language application, the function call would be `CALL _GotoSleep`.

The address error Trap Service Routine (TSR) software can then replace the invalid return address saved on the stack with the address of the instruction immediately following the `GotoSleep` or `GotoSleep()` function call. This ensures that the device continues executing the correct code sequence after waking up from Sleep mode.

Example 10 demonstrates the work around described above.

EXAMPLE 10:

```assembly
.global __reset
.global _main
.global _GotoSleep
.global __AddressError
.global __INT1Interrupt

.section *, code

.main:
    BSET  INTCON2, #INT1EP ; Set up INT pins to detect rising edge
    BCLR  IFS1, #INT1IF ; Clear interrupt pin interrupt flag bits
    BSET  IEC1, #INT1IE ; Enable ISR processing for INT pins
    CALL _GotoSleep ; Call function to enter SLEEP mode

.continue:
    BRA _continue

.section *, code, address (0x1FC0)

_GotoSleep:
; fill remainder of the last row with NOP instructions
.rept 31
    NOP
.endr

    ; Place SLEEP instruction in the last word of program memory
    PWRSAV #0
```
Work around 2:
Instead of executing a PWRSAV #0 instruction to put the device into Sleep mode, perform a clock switch to the 512 kHz Low-Power RC (LPRC) Oscillator with a 64:1 postscaler mode. This enables the device to operate at 0.002 MIPS, thereby significantly reducing the current consumption of the device. Similarly, instead of using an interrupt to wake-up the device from Sleep mode, perform another clock switch back to the original oscillator source to resume normal operation. Depending on the device, refer to Section 7. “Oscillator” (DS70054) or Section 29. “Oscillator” (DS70268) in the “dsPIC30F Family Reference Manual” (DS70046) for more details on performing a clock switch operation.

Note: The above work around is recommended for users for whom application hardware changes are not possible.

Work around 3:
Instead of executing a PWRSAV #0 instruction to put the device into Sleep mode, perform a clock switch to the 32 kHz Low-Power (LP) Oscillator with a 64:1 postscaler mode. This enables the device to operate at 0.000125 MIPS, thereby significantly reducing the current consumption of the device. Similarly, instead of using an interrupt to wake-up the device from Sleep mode, perform another clock switch back to the original oscillator source to resume normal operation. Depending on the device, refer to Section 7. “Oscillator” (DS70054) or Section 29. “Oscillator” (DS70268) in the “dsPIC30F Family Reference Manual” (DS70046) for more details on performing a clock switch operation.

Note: The above work around is recommended for users for whom application hardware changes are possible, and also for users whose application hardware already includes a 32 kHz LP Oscillator crystal.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
16. Module: I\(^2\)C

When the I\(^2\)C module is configured as a slave, either in single-master or multi-master mode, the I\(^2\)C receiver buffer is filled whether a valid slave address is detected or not. Therefore, an I\(^2\)C receiver overflow condition occurs and this condition is indicated by the I2COV flag in the I2CSTAT register.

This overflow condition inhibits the ability to set the I\(^2\)C receive interrupt flag (SI2CF) when the last valid data byte is received. Therefore, the I\(^2\)C slave Interrupt Service Routine (ISR) is not called and the I\(^2\)C receiver buffer is not read prior receiving the next data byte.

Work arounds

To avoid this issue, either of the following two work arounds can be implemented, depending on the application requirements.

Work around 1:
For applications in which the I\(^2\)C receiver interrupt is not required, the following procedure can be used to receive valid data bytes:

1. Wait until the RBF flag is set.
2. Poll the I\(^2\)C receiver interrupt SI2CIF flag.
3. If SI2CF is not set in the corresponding Interrupt Flag Status register (IFSx), a valid address or data byte has not been received for the current slave. Execute a dummy read of the I\(^2\)C receiver buffer, I2CRCV; this will clear the RBF flag. Go back to step 1 until SI2CF is set and then continue to Step 4.
4. If the SI2CF is set in the corresponding Interrupt Flag Status register (IFSx), valid data has been received. Check the D_A flag to verify that an address or a data byte has been received.
5. Read the I2CRCV buffer to recover valid data bytes. This will also clear the RBF flag.
6. Clear the I\(^2\)C receiver interrupt flag SI2CF.
7. Go back to step 1 to continue receiving incoming data bytes.

Work around 2:
Use this work around for applications in which the I\(^2\)C receiver interrupt is required. Assuming that the RBF and the I2COV flags in the I2CSTAT register are set due to previous data transfers in the I2C bus (i.e., between master and other slaves); the following procedure can be used to receive valid data bytes:

1. When a valid slave address byte is detected, SI2CF bit is set and the I\(^2\)C slave interrupt service routine is called; however, the RBF and I2COV bits are already set due to data transfers between other I\(^2\)C nodes.
2. Check the status of the D_A flag and the I2COV flag in the I2CSTAT register when executing the I\(^2\)C slave service routine.
3. If the D_A flag is cleared and the I2COV flag are set, an invalid data byte was received but a valid address byte was received. The overflow condition occurred because the I\(^2\)C receive buffer was overflowing with previous I\(^2\)C data transfers between other I\(^2\)C nodes. This condition only occurs after a valid slave address was detected.
4. Clear the I2COV flag and perform a dummy read of the I\(^2\)C receiver buffer, I2CRCV, to clear the RBF bit and recover the valid address byte. This action will also avoid the loss of the next data byte due to an overflow condition.
5. Verify that the recovered address byte matches the current slave address byte. If they match, the next data to be received is a valid data byte.
6. If the D_A flag and the I2COV flag are both set, a valid data byte was received and a previous valid data byte was lost. It will be necessary to code for handling this overflow condition.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

17. Module: PWM

If the PTDIR bit is set (when PTMR is counting down), and the CPU execution is halted (after a breakpoint is reached), PTMR will start counting up as if PTDIR was zero.

Work around
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
18. Module: I/O

If the user application enables the auto-baud feature in the UART module, the I/O pin multiplexed with the IC1 (Input Capture) pin cannot be used as a digital input. However, the external interrupt function (INT1) can be used.

Work around
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

19. Module: I²C

If there are two I²C devices on the bus, one of them is acting as the Master receiver and the other as the Slave transmitter. If both devices are configured for 10-bit addressing mode, and have the same value in the A10 and A9 bits of their addresses, then when the Slave select address is sent from the Master, both the Master and Slave acknowledge it. When the Master sends out the read operation, both the Master and the Slave enter into Read mode and both of them transmit the data. The resultant data will be the ANDing of the two transmissions.

Work around
In all I²C devices, the addresses, as well as bits A10 and A9, should be different.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

20. Module: Timer

When the timer is being operated in Asynchronous mode using the secondary oscillator (32.768 kHz) and the device is put into Sleep mode, a clock switch to any other oscillator mode before putting the device to Sleep prevents the timer from waking the device from Sleep.

Work around
Do not clock switch to any other oscillator mode if the timer is being used in Asynchronous mode using the secondary oscillator (32.768 kHz).

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

21. Module: PLL

The PLL LOCK Status bit (OSCCON<5>) can occasionally get cleared and generate an oscillator failure trap even when the PLL is still locked and functioning correctly.

Work around
The user application must include an oscillator failure trap service routine. In the trap service routine, first inspect the status of the Clock Failure Status bit (OSCCON<3>). If this bit is clear, return from the trap service routine immediately and continue program execution.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

22. Module: PSV Operations

An address error trap occurs in certain addressing modes when accessing the first four bytes of an PSV page. This only occurs when using the following addressing modes:

- MOV.D
- Register Indirect Addressing (word or byte mode) with pre/post-decrement

Work around
Do not perform PSV accesses to any of the first four bytes using the above addressing modes. For applications using the C language, MPLAB C30 version 3.11 or higher, provides the following command-line switch that implements a work around for the erratum.

```
-merrata=psv_trap
```

Refer to the readme.txt file in the MPLAB C30 v3.11 tool suite for further details.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
23. Module: I²C

In 10-bit Addressing mode, some address matches do not set the RBF flag or load the receive register I2CxRCV, if the lower address byte matches the reserved addresses. In particular, these include all addresses with the form XX0000XXXX and XX1111XXXX, with the following exceptions:

- 001111000X
- 011111001X
- 101111010X
- 111111011X

Work around

Ensure that the lower address byte in 10-bit Addressing mode does not match any 7-bit reserved addresses.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

24. Module: I²C

When the I²C module is configured as a 10-bit slave with and address of 0x102, the I2CxRCV register content for the lower address byte is 0x01 rather than 0x02; however, the module acknowledges both address bytes.

Work around

None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

25. Module: I²C

When the I²C module is enabled by setting the I2CEN bit in the I2CCON register, the dsPIC DSC device generates a glitch on the SDA and SCL pins. This glitch falsely indicates “Communication Start” to all devices on the I²C bus, and can cause a bus collision in a multi-master configuration.

Additionally, when the I2CEN bit is set, the S and P bits of the I²C module are set to values ‘1’ and ‘0’, respectively, which indicate a “Communication Start” condition.

Work arounds

To avoid this issue, either of the following two work arounds can be implemented, depending on the application requirements.

Work around 1:

In a single-master environment, add a delay between enabling the I²C module and the first data transmission. The delay should be equal to or greater than the time it takes to transmit two data bits.

In the multi-master configuration, in addition to the delay, all other I²C masters should be synchronized and wait for the I²C module to be initialized before initiating any kind of communication.

Work around 2:

In dsPIC DSC devices in which the I²C module is multiplexed with other modules that have precedence in the use of the pin, it is possible to avoid this glitch by enabling the higher priority module before enabling the I²C module.

Use the following procedure to implement this work around:

1. Enable the higher priority peripheral module that is multiplexed on the same pins as the I²C module.
2. Set up and enable the I²C module.

Disable the higher priority peripheral module that was enabled in step 1.

Note: Work around 2 works only for devices that share the SDA and SCL pins with another peripheral that has a higher precedence over the port latch, such as the UART. The priority is shown in the pin diagram located in the data sheet. For example, if the SDA and SCL pins are shared with the UART and SPI pins, and the UART has higher precedence on the port latch pin.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
26. Module: Data EEPROM

The Most Significant bit of every fourth byte in data EEPROM may be corrupted on any write operation. This write corruption may occur while using either PRO MATE®, MPLAB ICD 2 or Run-Time Self-Programming (RTSP).

Figure 1 shows the first twelve bytes in data EEPROM and indicates the affected bits.

Work arounds

Work around 1:

Use program Flash memory instead of data EEPROM to store constant data.

Work around 2:

Use less than 16 bits in each word in the available word of data EEPROM, excluding the Most Significant bit.

Work around 3:

Avoid using every fourth byte. Example 11 shows how the ASM30 assembler can be used to allocate data in the EEPROM under this constraint.

EXAMPLE 11:

```
.include "p30f4012.inc"
.section .eedata, "r"
.align 4
.hword 0xF345
.byte 0x23
.byte 0xFF ;Unused byte
.hword 0x1234
.byte 0x23
.byte 0xFF ;Unused byte
```

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 1: dsPIC30F4011/4012 DATA EEPROM

- **Note 1:** The shaded bits labelled “B” represent the bits that may be corrupted on a write operation.
- **Note 2:** The memory map shown here depicts only the first twelve bytes of device EEPROM.
27. Module: OSC2 Pin

The port pin, RC15, is multiplexed with the primary oscillator pin, OSC2. When pin RC15 is required for digital input/output, specific bits in the Oscillator Configuration register, FOSC, may be set up as follows:

- FOS<2:0> bits (FOSC<10:8>) configured for LP, LPRC, FRC, ECI0, ERCIO or ECIO w/PLL 4x/8x/16x
- FPR<4:0> bits (FOSC<4:0>) may be configured for ECI0 w/PLL 4x/8x/16x

For this revision of silicon, if the RC15 digital I/O port function is desired, the FPR<4:0> bits in the FOSC Configuration register may not be set up for FRC w/PLL 4x/8x/16x modes.

Work around
None.

In future revisions of silicon, port pin RC15 may also be configured for digital I/O when the FPR<4:0> bits in the FOSC Configuration register are set up for FRC w/PLL 4x/8x/16x modes.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

28. Module: CAN

CAN Receive filters 3, 4 and 5 may not work for a given combination of instruction cycle speed and CAN bit time quanta.

Work around
Do not use CAN RX filters 3, 4 and 5. Instead, use filters 0, 1 and 2.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

29. Module: CAN

The C1EC register does not reflect the correct error count value. The error flags in the C1INTF register are updated correctly and can be read correctly.

Work around
Do not use the C1EC register for error management. Use the error state flags in the C1INTF register instead.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

30. Module: QEI

When the TQCS and TQGATE bits in the QEixCON register are set, a QEI interrupt should be generated after an input pulse on the QEA input. This interrupt is not generated in the affected silicon.

Work around
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

31. Module: QEI

When the TQCS and TQGATE bits in the QEixCON register are set, the POSCNT counter should not increment but erroneously does, and if allowed to increment to match MAXCNT, a QEI interrupt will be generated.

Work around
To prevent the erroneous increment of POSCNT while running the QEI in Timer Gated Accumulation mode, initialize MAXCNT = 0.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

32. Module: ADC

If the ADC module is in an enabled state when the device enters Sleep mode as a result of executing a PWRSAV #0 instruction, the device power-down current (IPD) may exceed the specifications listed in the device data sheet. This may happen even if the ADC module is disabled by clearing the ADON bit prior to entering Sleep mode.

Work around
In order to remain within the IPD specifications listed in the device data sheet, the user software must completely disable the ADC module by setting the ADC Module Disable bit in the corresponding Peripheral Module Disable (PMDx) register, prior to executing a PWRSAV #0 instruction.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS70135F):

Note: Corrections are shown in **bold**. Where possible, the original bold text formatting has been removed for clarity.

1. **Module: DC Characteristics: I/O Pin Input Specifications**

The maximum value for parameter DI19 (VIL specifications for SDAx and SCLx pins) and the minimum value for parameter DI29 (VIH specifications for SDAx and SCLx pins) were stated incorrectly in Table 24-8 of the current device data sheet. The correct values are shown in bold type in Table 5.

TABLE 5: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

<table>
<thead>
<tr>
<th>Param No.</th>
<th>Symbol</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI19</td>
<td>VIL</td>
<td>Input Low Voltage</td>
<td>VSS</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
<td>SMbus enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDAX, CLX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI29</td>
<td>VIH</td>
<td>Input High Voltage</td>
<td>2.1</td>
<td>—</td>
<td>VDD</td>
<td>V</td>
<td>SMbus enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDAX, CLX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Operating Conditions: 3.3V and 5.0V (±10%) (unless otherwise stated)
Operating temperature: -40°C ≤ T_A ≤ 85°C for Industrial
-40°C ≤ T_A ≤ 125°C for Extended
APPENDIX A: REVISION HISTORY

Initial release of this document; issued for revision A1, A2, A3 and A4 silicon
Includes silicon issues 1-2 (CPU), 3 (I/O), 4 (PSV Operations), 5 (CPU), 6 (PLL), 7 (Interrupt Controller), 8 (CPU), 9-10 (Output Compare), 11 (ADC), 12 (PLL), 13 (ADC), 14 (QEI), 15 (Sleep Mode), 16 (I2C), 17 (PWM), 18 (I/O), 19 (I2C), 20 (Timer), 21 (PLL), 22 (PSV Operations), 23-25 (I2C), 26 (Data EEPROM), 27 (OSC2 Pin), 28-29 (CAN).
This document replaces the following errata documents:
• DS80205, “dsPIC30F4011/4012 Rev. A1 Silicon Errata”
• DS80215, “dsPIC30F4011/4012 Rev. A2/A3 Silicon Errata”
• DS80398, “dsPIC30F4011/4012 Rev. A4 Silicon Errata”

Updated silicon issue 7 (Interrupt Controller).
Added silicon issues 30 (QEI) and 31 (QEI).

Updated silicon issue 7 (Interrupt Controller).

Added silicon issue 32 (ADC) and data sheet clarification 1 (DC Characteristics: I/O Pin Input Specifications).
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.