The PIC16F87X family (Rev. B8) parts you have received conform functionally to the Device Data Sheet (DS30292C), except for the anomalies described below. Any Data Sheet Clarification issues related to the PIC16F87X family will be reported in a separate Data Sheet errata. Please check the Microchip web site for any existing issues.

This errata applies to the PIC16F873 production version and all other production versions of the PIC16F87X family with the following Device/Revision IDs:

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Device ID</th>
<th>Revision ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC16F873</td>
<td>0000 1001 011</td>
<td>0 0110</td>
</tr>
</tbody>
</table>

The Device IDs (DEVID and REVID) are located at the last two implemented addresses in program memory. They are shown in hexadecimal in the format “DEVID REVID”.

1. **Module: TMR1**

 When operating in External Clock mode (TMR1CS is set), reading either of the Timer1 registers (TMR1H or TMR1L) may cause the timer not to increment as expected. This occurs for both synchronous and asynchronous inputs.

 The scenarios which display this are:

 a) When a read operation of the TMR1H register occurs, the TMR1L register may not increment.

 b) When a read operation of the TMR1L register occurs, the TMR1H register may not increment. This improper operation is only an issue when the TMR1L register increments from FFh to 00h (FFh → 00h) during the read of the TMR1L register.

 Work around

 Do not read either the TMR1H or the TMR1L registers when operating in External Clock mode (TMR1CS is set). If the application needs to read the 16-bit counter, evaluate if this function can be moved to the TMR0, or one of the other timer resources on the device.

2. **Module: Capture/Compare/PWM Modules**

 While changing the mode of the module, when CCPxCON is loaded with 0x08, the CCPx pin is not pulled LOW as expected.

 Work around

 When changing the mode of the module, reset the CCP module (CCPxCON = 0x00) and load the new mode (CCPxCON = 0x08).

 Note: x = 1 or 2 (either CCP1 or CCP2).
REVISION HISTORY

Rev A Document (12/2008)
Initial release of this document. Includes silicon issues 1 (TMR1) and 2 (Capture/Compare/PWM Modules).
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeeLog, KeeLoq logo, MPLAB, PIC, PICmicro, PICSTART, rPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail, PICC logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rLAB, Select Mode, Total Endurance, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KeeLoq® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.