Clarifications/Corrections to the Data Sheet:

In the Device Data Sheet (DS39605F), the following clarifications and corrections should be noted. Any silicon issues related to the PIC18F1220/1320 will be reported in a separate silicon errata. Please check the Microchip web site for any existing issues.

1. Module: Enhanced Addressable Universal Synchronous Asynchronous Receiver Transmitter (EUSART)

 The note box is added after the second paragraph of Section 16.2.3 “Auto-Baud Rate Detect”, on Page 139. The two paragraphs and note appear as shown.

16.2.3 AUTO-BAUD RATE DETECT

The Enhanced USART module supports the automatic detection and calibration of baud rate. This feature is active only in Asynchronous mode and while the WUE bit is clear.

The automatic baud rate measurement sequence (Figure 16-1) begins whenever a Start bit is received and the ABDEN bit is set. The calculation is self-averaging.

 Note: Some silicon revisions use the falling edges of the Sync byte for baud rate measurement. In these devices, ABDEN may be set during the preceding Break. In other silicon revisions, the rising edges are used. In these devices, the RX input must be high (Break completed) before ABDEN is set. If this is not done, the end of the Break signal could be interpreted as the start of the Sync byte, for baud rate measurement. Code will work for both types of silicon revisions if it waits for the end of the Break signal before setting ABDEN.

2. Module: Enhanced Capture/Compare/PWM (ECCP)

 In Section 15.5.9 “Setup for PWM Operation”, two words are changed in the first step of the procedure for setting up the ECCP module for Pulse-Width Modulation (PWM).

 The step now reads as shown, with bold text indicating the changes.

 1. Configure the PWM pins P1A and P1B (and P1C and P1D, if used) as outputs by clearing the corresponding TRISB bits.

 Note: Some silicon revisions use the falling edges of the Sync byte for baud rate measurement. In these devices, ABDEN may be set during the preceding Break. In other silicon revisions, the rising edges are used. In these devices, the RX input must be high (Break completed) before ABDEN is set. If this is not done, the end of the Break signal could be interpreted as the start of the Sync byte, for baud rate measurement. Code will work for both types of silicon revisions if it waits for the end of the Break signal before setting ABDEN.
REVISION HISTORY

First release of this errata. Clarification 1 (Enhanced
Addressable Universal Synchronous Asynchronous
Receiver Transmitter – EUSART).

Added clarification 2 (ECCP).
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rLAB, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KeeLoq® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.