The MCP23017 parts you have received conform functionally to the MCP23017/MCP23S17 Data Sheet (DS21952A), except for the anomalies described below.

All of the issues listed here will be addressed in future revisions of the MCP23017 silicon.

1. Module: \(^2\text{C}^{\text{TM}}\) Module

 In silicon revisions A0 and prior: The \(^2\text{C}\) may detect its slave address (OPCODE) at the wrong time in a data transfer and acknowledge (ACK) its perceived OPCODE.

 During normal operations, the MCP23017 expects the byte immediately following a Start bit to be an OPCODE. When the device is not addressed, it should remain silent and not interfere with the bus. However, the device continues to monitor the bus and checks for an address match every 8 bits and acknowledges (ACKs) if a match is detected.

 While the device checks for a match every 8 bits, every data byte transfer on the bus is 9 bits long, causing the device’s matching routine to get out of phase with the bus. Therefore, the false ACK could occur in the data field as well as the ack field.

 Work around

 The issue was addressed and no longer appears in silicon revision A1. See Appendix B: “Silicon Revision History” to determine how to identify the silicon revisions.

 As long as there are no other devices on the bus, or the data on the bus is known (and does not cause a false match), the issue will not appear.

 A hardware work around may be used which disables the clock input to the MCP23017 when it is not addressed.

 Date Codes that pertain to this issue:

 - Date code 0542 and earlier have the issue.
 - Date code 0543 and later do not have the issue.

Clarifications/Corrections to the Data Sheet:

In the MCP23017/MCP23S17 Data Sheet (DS21952A), the following clarifications and corrections should be noted.

None.
APPENDIX A: REVISION HISTORY

Initial Release of this Document.

APPENDIX B: SILICON REVISION HISTORY

The following table and package marking information indicates how to determine the revision of the MCP23017 device. The revision information can be determined by the Year and Week Code of the manufacturer printed on the device.

TABLE B-1: SILICON REVISION/DEVICE MARKING

<table>
<thead>
<tr>
<th>Silicon Revision</th>
<th>YYWWNNN</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start Date</td>
<td>End Date</td>
</tr>
<tr>
<td>Rev A1</td>
<td>0543NNN</td>
<td>—</td>
</tr>
<tr>
<td>Rev A0</td>
<td>—</td>
<td>0543NNN</td>
</tr>
</tbody>
</table>

Legend: “N” is any alphanumeric character.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, Keeloq, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rFLAB, rFICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance and WiperLock are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2005, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company’s quality system processes and procedures are for its PICmicro® 8-bit MCUs, Keeloq® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.