PIC16F631/677/685/687/689/690 Family
Silicon Errata and Data Sheet Clarification

The PIC16F631/677/685/687/689/690 family devices that you have received conform functionally to the current Device Data Sheet (DS41262E), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2 through Table 6.

The errata described in this document will be addressed in future revisions of the PIC16F631/677/685/687/689/690 silicon.

Data Sheet clarifications and corrections start on page 12, following the discussion of silicon issues.

The silicon revision level can be identified using the current version of MPLAB® IDE and Microchip’s programmers, debuggers, and emulation tools, which are available at the Microchip corporate web site (www.microchip.com).

For example, to identify the silicon revision level using MPLAB IDE in conjunction with MPLAB ICD 2, MPLAB ICD 3, PICkit™ 2 or PICkit™ 3:
1. Using the appropriate interface, connect the device to the MPLAB ICD 2 programmer/debugger, PICkit™ 2 or PICkit™ 3.
2. From the main menu in MPLAB IDE, select Configure> Select Device, and then select the target part number in the dialog box.
3. Select the MPLAB hardware tool (Programmer> Select Tool).
4. Perform a “Connect” operation to the device (Programmer> Connect). Depending on the development tool used, the part number and Device Revision ID value appear in the Output window.

Note: If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.

The Device ID values for the various devices and silicon revisions are shown in Table 1.

TABLE 1: SILICON DEVREV VALUES

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Device ID(1)</th>
<th>Revision ID for Silicon Revision(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>A3</td>
</tr>
<tr>
<td>PIC16F631</td>
<td>142x</td>
<td>1</td>
</tr>
<tr>
<td>PIC16F677</td>
<td>132x</td>
<td>1</td>
</tr>
<tr>
<td>PIC16F685</td>
<td>04Ax</td>
<td>3</td>
</tr>
<tr>
<td>PIC16F687</td>
<td>132x</td>
<td>3</td>
</tr>
<tr>
<td>PIC16F689</td>
<td>134x</td>
<td>3</td>
</tr>
<tr>
<td>PIC16F690</td>
<td>134x</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 through Table 6 apply to the current silicon revision.

Note: The device and revision data is stored in the Device ID located at 2006h in program memory.

1. Refer to the “PIC12F6XX/16F6XX Memory Programming Specification” (DS41204) for detailed information.
TABLE 2: SILICON ISSUE SUMMARY (PIC16F631)

<table>
<thead>
<tr>
<th>Module</th>
<th>Feature</th>
<th>Item Number</th>
<th>Issue Summary</th>
<th>Affected Revisions(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer1</td>
<td>Ext. Crystal</td>
<td>5.1</td>
<td>Overflow may take additional count.</td>
<td>X</td>
</tr>
<tr>
<td>Timer1</td>
<td>Ext. Crystal</td>
<td>5.2</td>
<td>Oscillator may stop running at low temps.</td>
<td>X</td>
</tr>
<tr>
<td>Timer1</td>
<td>Ext. Crystal</td>
<td>5.3</td>
<td>Sleep in LP mode disables T1OSC.</td>
<td>X</td>
</tr>
<tr>
<td>WDT/Timer0</td>
<td>Prescaler</td>
<td>6.</td>
<td>Spurious Reset may occur.</td>
<td>X</td>
</tr>
</tbody>
</table>

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

TABLE 3: SILICON ISSUE SUMMARY (PIC16F677)

<table>
<thead>
<tr>
<th>Module</th>
<th>Feature</th>
<th>Item Number</th>
<th>Issue Summary</th>
<th>Affected Revisions(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Start Bit</td>
<td>2.1</td>
<td>Fail to recognize Start bit.</td>
<td>X</td>
</tr>
<tr>
<td>SSP</td>
<td>SSPIF Flag</td>
<td>2.2</td>
<td>SSPIF flag set on first reception only.</td>
<td>X</td>
</tr>
<tr>
<td>ADC/INTOSC</td>
<td>Freq. Disturbance</td>
<td>4.</td>
<td>Oscillator may stop running at low temps.</td>
<td>X</td>
</tr>
<tr>
<td>Timer1</td>
<td>Ext. Crystal</td>
<td>5.1</td>
<td>Overflow may take additional count.</td>
<td>X</td>
</tr>
<tr>
<td>Timer1</td>
<td>Ext. Crystal</td>
<td>5.2</td>
<td>Oscillator may stop running at low temps.</td>
<td>X</td>
</tr>
<tr>
<td>Timer1</td>
<td>Ext. Crystal</td>
<td>5.3</td>
<td>Sleep in LP mode disables T1OSC.</td>
<td>X</td>
</tr>
<tr>
<td>WDT/Timer0</td>
<td>Prescaler</td>
<td>6.</td>
<td>Spurious Reset may occur.</td>
<td>X</td>
</tr>
</tbody>
</table>

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

TABLE 4: SILICON ISSUE SUMMARY (PIC16F685)

<table>
<thead>
<tr>
<th>Module</th>
<th>Feature</th>
<th>Item Number</th>
<th>Issue Summary</th>
<th>Affected Revisions(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECCP</td>
<td>Auto-Shutdown</td>
<td>3.</td>
<td>Overflow may take additional count.</td>
<td>X X</td>
</tr>
<tr>
<td>ADC/INTOSC</td>
<td>Freq. Disturbance</td>
<td>4.</td>
<td>Oscillator may stop running at low temps.</td>
<td>X X X X</td>
</tr>
<tr>
<td>Timer1</td>
<td>Ext. Crystal</td>
<td>5.1</td>
<td>Overflow may take additional count.</td>
<td>X X X X</td>
</tr>
<tr>
<td>Timer1</td>
<td>Ext. Crystal</td>
<td>5.2</td>
<td>Oscillator may stop running at low temps.</td>
<td>X X X X</td>
</tr>
<tr>
<td>Timer1</td>
<td>Ext. Crystal</td>
<td>5.3</td>
<td>Sleep in LP mode disables T1OSC.</td>
<td>X X X X</td>
</tr>
<tr>
<td>WDT/Timer0</td>
<td>Prescaler</td>
<td>6.</td>
<td>Spurious Reset may occur.</td>
<td>X X X X</td>
</tr>
</tbody>
</table>

Note 1: Only those issues indicated in the last column apply to the current silicon revision.
TABLE 5: SILICON ISSUE SUMMARY (PIC16F687/PIC16F689)

<table>
<thead>
<tr>
<th>Module</th>
<th>Feature</th>
<th>Item Number</th>
<th>Issue Summary</th>
<th>Affected Revisions(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUSART</td>
<td>Wake-up</td>
<td>1.1</td>
<td>WUE bit not clearing.</td>
<td>X X</td>
</tr>
<tr>
<td>EUSART</td>
<td>Auto-Baud</td>
<td>1.2</td>
<td>Incorrect baud rate after a break.</td>
<td>X X</td>
</tr>
<tr>
<td>EUSART</td>
<td>Auto-Baud</td>
<td>1.3</td>
<td>Baud rate value +2.</td>
<td>X X</td>
</tr>
<tr>
<td>EUSART</td>
<td>Auto-Baud</td>
<td>1.4</td>
<td>Delay after auto-baud before transmit.</td>
<td>X X</td>
</tr>
<tr>
<td>EUSART</td>
<td>Auto-Baud</td>
<td>1.5</td>
<td>R/W bit on ACK.</td>
<td>X X</td>
</tr>
<tr>
<td>EUSART</td>
<td>Reset</td>
<td>1.6</td>
<td>Clock-stretching handling.</td>
<td>X X</td>
</tr>
<tr>
<td>EUSART</td>
<td>Extra Character</td>
<td>1.7</td>
<td>Multi-byte transmission.</td>
<td>X X</td>
</tr>
<tr>
<td>SSP</td>
<td>Start Bit</td>
<td>2.1</td>
<td>Fail to recognize Start bit.</td>
<td>X X X</td>
</tr>
<tr>
<td>SSP</td>
<td>SSPIF Flag</td>
<td>2.2</td>
<td>SSPIF flag set on first reception only.</td>
<td>X X X</td>
</tr>
<tr>
<td>ADC/INTOSC</td>
<td>Freq. Disturbance</td>
<td>4.</td>
<td>Oscillator may stop running at low temps.</td>
<td>X X X</td>
</tr>
<tr>
<td>Timer1</td>
<td>Ext. Crystal</td>
<td>5.1</td>
<td>Overflow may take additional count.</td>
<td>X X X X</td>
</tr>
<tr>
<td>Timer1</td>
<td>Ext. Crystal</td>
<td>5.2</td>
<td>Oscillator may stop running at low temps.</td>
<td>X X X X</td>
</tr>
<tr>
<td>Timer1</td>
<td>Ext. Crystal</td>
<td>5.3</td>
<td>Sleep in LP mode disables T1OSC.</td>
<td>X X X X</td>
</tr>
<tr>
<td>WDT/Timer0</td>
<td>Prescaler</td>
<td>6.</td>
<td>Spurious Reset may occur.</td>
<td>X X X</td>
</tr>
</tbody>
</table>

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

TABLE 6: SILICON ISSUE SUMMARY (PIC16F690)

<table>
<thead>
<tr>
<th>Module</th>
<th>Feature</th>
<th>Item Number</th>
<th>Issue Summary</th>
<th>Affected Revisions(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUSART</td>
<td>Wake-up</td>
<td>1.1</td>
<td>WUE bit not clearing.</td>
<td>X X</td>
</tr>
<tr>
<td>EUSART</td>
<td>Auto-Baud</td>
<td>1.2</td>
<td>Incorrect baud rate after a break.</td>
<td>X X</td>
</tr>
<tr>
<td>EUSART</td>
<td>Auto-Baud</td>
<td>1.3</td>
<td>Baud rate value +2.</td>
<td>X X</td>
</tr>
<tr>
<td>EUSART</td>
<td>Auto-Baud</td>
<td>1.4</td>
<td>Delay after auto-baud before transmit.</td>
<td>X X</td>
</tr>
<tr>
<td>EUSART</td>
<td>Auto-Baud</td>
<td>1.5</td>
<td>R/W bit on ACK.</td>
<td>X X</td>
</tr>
<tr>
<td>EUSART</td>
<td>Reset</td>
<td>1.6</td>
<td>Clock-stretching handling.</td>
<td>X X</td>
</tr>
<tr>
<td>EUSART</td>
<td>Extra Character</td>
<td>1.7</td>
<td>Multi-byte transmission.</td>
<td>X X</td>
</tr>
<tr>
<td>SSP</td>
<td>Start Bit</td>
<td>2.1</td>
<td>Fail to recognize Start bit.</td>
<td>X X X</td>
</tr>
<tr>
<td>SSP</td>
<td>SSPIF Flag</td>
<td>2.2</td>
<td>SSPIF flag set on first reception only.</td>
<td>X X X</td>
</tr>
<tr>
<td>ECCP</td>
<td>Auto-Shutdown</td>
<td>3.</td>
<td>Overflow may take additional count.</td>
<td>X X X X</td>
</tr>
<tr>
<td>ADC/INTOSC</td>
<td>Freq. Disturbance</td>
<td>4.</td>
<td>Oscillator may stop running at low temps.</td>
<td>X X X X</td>
</tr>
<tr>
<td>Timer1</td>
<td>Ext. Crystal</td>
<td>5.1</td>
<td>Overflow may take additional count.</td>
<td>X X X X</td>
</tr>
<tr>
<td>Timer1</td>
<td>Ext. Crystal</td>
<td>5.2</td>
<td>Oscillator may stop running at low temps.</td>
<td>X X X X</td>
</tr>
<tr>
<td>Timer1</td>
<td>Ext. Crystal</td>
<td>5.3</td>
<td>Sleep in LP mode disables T1OSC.</td>
<td>X X X X</td>
</tr>
<tr>
<td>WDT/Timer0</td>
<td>Prescaler</td>
<td>6.</td>
<td>Spurious Reset may occur.</td>
<td>X X X</td>
</tr>
</tbody>
</table>

Note 1: Only those issues indicated in the last column apply to the current silicon revision.
Silicon Errata Issues

1. Module: EUSART (PIC16F687/689/690 only)

1.1 WUE Bit is not clearing.

After a wake-up due to a Break character, the WUE bit is not automatically cleared.

Work around
Clear the WUE bit after waking up.

Fix
Rev. A5 Silicon and later revisions.

Affected Silicon Revisions
PIC16F687/PIC16F689/PIC16F690

A3	A4	A5	A6
X | X |

1.2 Auto-baud captures the incorrect baud rate after a break.

The SPBRGH:SPBRG registers are not being initialized correctly. If WUE and ABDEN are set at the same time and a Break character followed by a Sync character are received, then the calculated baud rate will be random.

Work around
Set WUE and wait for the wake-up to occur. Clear SPBRGH:SPBRG after waking up with the break. Set ABDEN to begin the auto-baud process.

Fix
Rev. A5 Silicon and later revisions.

Affected Silicon Revisions
PIC16F687/PIC16F689/PIC16F690

A3	A4	A5	A6
X | X |

1.3 Auto-baud calculates a baud rate value that is +2.

The SPBRGH:SPBRG are not initialized correctly when ABDEN is set. This causes the measured baud rate to be high by two counts.

Work around
Clearing the SPBRGH:SPBRG registers will correctly initialize the baud rate counter. After the auto-baud has been completed, the baud rate will now be +1. The firmware should now subtract 1 from the Baud Rate Generator to produce the correct baud rate.

Fix
Rev. A5 Silicon and later revisions.

Affected Silicon Revisions
PIC16F687/PIC16F689/PIC16F690

A3	A4	A5	A6
X | X |

1.4 Delay after auto-baud before transmit is allowed.

After the auto-baud Sync character has been received and the RCIF flag is set, there is approximately 17 ms of delay before the transmitter is enabled.

Work around
After the RCIF flag is set indicating the baud rate has been measured, read the SPBRG register and write the value back to SPBRG. This will terminate the delay, and enable the transmitter module.

Fix
Rev. A5 Silicon and later revisions.

Affected Silicon Revisions
PIC16F687/PIC16F689/PIC16F690

A3	A4	A5	A6
X | X |
1.5 Auto-baud sequence cannot be aborted in some cases.
If an auto-baud is started but no edges are received, there is no way to leave Auto-Baud mode.

Work around
Use the Watchdog Timer to reset the entire device.

Fix
Rev. A5 Silicon and later revisions.

Affected Silicon Revisions
PIC16F687/PIC16F689/PIC16F690

<table>
<thead>
<tr>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.6 Clearing SPEN does not reset EUSART state machine correctly.
When SPEN is cleared, the entire EUSART is frozen. When SPEN is set, the EUSART resumes where it left off. This can cause some unexpected behavior.

Work around
To reset the EUSART, toggle TXEN and CREN after clearing SPEN. This will reset the transmit and receive state machines.

Fix
Rev. A5 Silicon and later revisions.

Affected Silicon Revisions
PIC16F687/PIC16F689/PIC16F690

<table>
<thead>
<tr>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.7 Extra character transmitted after auto-baud.
If TXEN is high when ABDEN is set, it will be cleared as soon as the auto-baud process begins, and reset as soon as the auto-baud process completes. When TXEN is reset, the character in the transmit queue will be transmitted.

Work around
Before starting auto-baud, clear TXEN. This will reset the transmit state machine correctly. After the auto-baud is complete and the firmware has brought TXEN high, no character will be transmitted.

Fix
Rev. A5 Silicon and later revisions.

Affected Silicon Revisions
PIC16F687/PIC16F689/PIC16F690

<table>
<thead>
<tr>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Module: SSP (PIC16F687/689/690 only)

2.1 SSP module does not recognize first Start bit received.

In any of the \(\text{i}^2\text{C} \) modes, the SSP module will fail to recognize the first Start bit received after a transition from module disable to module enable. Subsequent Stop bits and Start bits are detected properly.

Work around

Enable the SSP module in SSPMSK Access mode before changing the mode to the desired \(\text{i}^2\text{C} \) operation.

EXAMPLE 1: CODE EXAMPLE

```assembly
MOVLW B'00111001' ;Module enable, clock
MOVWF SSPCON ;enable, SSPMSK access.
;Optionally load
;address mask value
;into SSPMSK register.
MOVLW B'00110110' ;Module enable, clock
MOVWF SSPCON ;enable, 7-bit address
;\text{i}^2\text{C} slave.
```

Fix

Rev. A6 Silicon and later revisions.

Affected Silicon Revisions

- **PIC16F677**
 - A1
 -

- **PIC16F687/PIC16F689/PIC16F690**
 - A3 A4 A5 A6
 - X X X

2.2 Under certain conditions, the SSPIF flag sets on reception of the first byte.

When all of the following conditions are met:
- The module is configured as a SPI slave
- \(\text{CKP} = 1 \)
- \(\text{CKE} = 1 \)
- Multiple bytes are sent with the \(\text{SS} \) line remaining low between bytes

The SSPIF flag will only be set on reception of the first byte and the following bytes will not be correctly received.

Work around

- Toggle the \(\text{SS} \) line between bytes or
- On reception of the first byte modify the SSPM bits in the SSPCON register to configure the module as a SPI slave with \(\text{SS} \) pin disabled. Then restore the SSPM bits to the configuration for SPI slave with \(\text{SS} \) pin enabled. The module is then ready for reception of the following byte.

Fix

None.

Affected Silicon Revisions

- **PIC16F677**
 - A1
 - X
- **PIC16F687/PIC16F689/PIC16F690**
 - A3 A4 A5 A6
 - X X X X
3. Module: ECCP with Auto-Shutdown
(Silicon Rev. A4 and previous revisions) (PIC16F685 and PIC16F690 only)

The PIC16F631/677/685/687/689/690 Rev. A4 silicon for the ECCP auto-shutdown is connected to the C1IF and C2IF flags. See Figures 8-2 and 8-3 on the following page.

The auto-shutdown connection (Rev. A4 and previous) to C1IF and C2IF causes the auto-shutdown to incorrectly operate synchronously. Additionally, reads of CMxCON0 will incorrectly clear an auto-shutdown event.

Work around
Rev. A4 Silicon and previous revisions.
1) Poll the CxOUT bit until it is low.
2) Read CMxCON0 to precondition CxIF.
3) If CMxCON0 is read while CxOUT is changing, repeat steps 1 and 2.

Fix
Rev. A5 Silicon and later revisions.
The Silicon Rev. A5 (now shipping) and later revision devices have moved the auto-shutdown connection from CxIF to CxOUT. This will eliminate the synchronous shutdown and simplify the use of the comparator for a shutdown event. Figure 1 shows the function of auto-shutdown before and after the device revision.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>PIC16F685</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PIC16F690</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

FIGURE 8-2: COMPARATOR C1 SIMPLIFIED BLOCK DIAGRAM

Note 1: When C1ON = 0, the C1 comparator will produce a '0' output to the XOR Gate.
2: Q1 and Q3 are phases of the four-phase system clock (Fosc).
3: Q1 is held high during Sleep mode.
FIGURE 8-3: COMPARATOR C2 SIMPLIFIED BLOCK DIAGRAM

Note 1: When C2ON = 0, the C2 comparator will produce a '0' output to the XOR Gate.
2: Q1 and Q3 are phases of the four-phase system clock (Fosc).
3: Q1 is held high during Sleep mode.

FIGURE 1: SILICON REVISION A4 AND PREVIOUS VS. REVISION A5

A4 and previous revisions
CCP Output

Rev. A5 CCP Output

CxOUT

CxIF

Uncertainty due to Q1 cycle delay
Read CMxCON0
Uncertainty due to Q1 cycle delay
Read CMxCON0

Selecting the VP6 reference as the analog input source (CHS<3:0> = 1101) for the ADC conversion after sampling another analog channel with input voltages approximately greater than 1.2V can temporarily disturb the HFINTOSC oscillator.

Note: This only occurs when selecting the VP6 reference ADC channel using the CHS<3:0> bits in the ADCON0 register and NOT during the start of an actual ADC conversion using the GO/DONE bit in the ADCON0 register.

Work around

Select an ADC channel with input voltages lower than 1.2V prior to selecting the VP6 reference voltage input. Any analog channel can be used, even if that channel is configured as a digital I/O (configured as an output) that is driving the output pin low. An alternative is to configure the CVREF module to output a voltage less than 1.2V and then selecting that analog channel CHS<3:0> = 1100 as the analog input source.

EXAMPLE 2: AVOID DISTURBING THE HFINTOSC OSCILLATOR

<table>
<thead>
<tr>
<th>BANKSEL</th>
<th>ADCON0 ;</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOVLW</td>
<td>B’XX110001’; Select ADC</td>
</tr>
<tr>
<td>MOVWF</td>
<td>ADCON0 ;Channel CVREF</td>
</tr>
<tr>
<td>MOVLW</td>
<td>B’XX110101’; Select ADC</td>
</tr>
<tr>
<td>MOVWF</td>
<td>ADCON0 ;Channel VP6</td>
</tr>
</tbody>
</table>

Silicon Fix

None.

Affected Silicon Revisions

PIC16F677

<table>
<thead>
<tr>
<th>A1</th>
<th>X</th>
</tr>
</thead>
</table>

PIC16F685/PIC16F687/PIC16F689/ PIC16F690

<table>
<thead>
<tr>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

5. Module: Timer1

5.1 Asynchronous Timer1

This Errata supersedes Errata DS80233 and DS80329.

When Timer1 is started or updated, the timer needs to see a falling edge from the external clock source before a rising edge can increment the counter. If writes to TMR1H and TMR1L are not completed while the external clock pulse is still high, Timer1 will not count the first clock pulse after the update.

When using an external crystal, the pulse width from rising to falling edge is temperature dependent and may decrease with temperature. As a result, the timer may require an additional oscillation to overflow.

Work around

Switching to the HFINTOSC after reloading, the timer ensures the Timer1 will see a falling edge before switching back to the external clock source.

Due to the time from Timer1 overflow to the reload being application specific, wait for the timer to increment before beginning the reload sequence. This ensures the timer does not miss a rising edge during reload.

Affected Silicon Revisions

PIC16F631/PIC16F677

<table>
<thead>
<tr>
<th>A1</th>
<th>X</th>
</tr>
</thead>
</table>

PIC16F685/PIC16F687/PIC16F689/ PIC16F690

<table>
<thead>
<tr>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
EXAMPLE 3:

```
BTFSC TMR1L, 0
GOTO $-1
BTFSS TMR1L, 0
GOTO $-1 ; Timer has just incremented, 31 μs before next rising edge to complete reload
```

Update:

```
BCF T1CON, TMR1CS ; Select HFINTOSC for Timer1
BSF T1CON, TMR1ON ; Timer1 high byte 0x80
BCF T1CON, TMR1ON ; Timer1 off
BSF T1CON, TMR1CS ; Select external crystal
BCF T1CON, TMR1ON ; Timer1 on
```

Critical Timing of code sequence for instructions following last write to TMR1L or TMR1H.

5.2 LP/Timer1 Oscillator Operation Below 25°C

1-2% of devices experience reduced drive as temperatures approach -40°C. This will result in a loss of Timer1 counts or stopped Timer1 oscillation.

This can also prevent Timer1 oscillator start-up under cold conditions.

Work around

Use of low-power crystals properly matched to the device will reduce the likelihood of failure. A 1MΩ resistor between OSC2 and VDD will further improve the drive strength of the circuit.

Affected Silicon Revisions

- PIC16F631/PIC16F677
- PIC16F685/PIC16F687/PIC16F689/PIC16F690

5.3 LP/Timer1 Oscillator Shared Operation

When using LP oscillator as the system clock and enabling Timer1 external oscillator, the shared crystal will clock both the core and Timer1. On execution of the SLEEP instruction, the oscillator amplifier will be disabled and Timer1 will not be clocked while the device is in Sleep.

Work around

None.

Affected Silicon Revisions

- PIC16F631/PIC16F677
- PIC16F685/PIC16F687/PIC16F689/PIC16F690
6. **Module: Timer0 and WDT Prescaler Assignment Spurious Reset**

A spurious Reset may occur if the Timer0/Watch-dog Timer (WDT) prescaler is assigned from the WDT to Timer0 and then back to the WDT.

Summary

The issue only arises when all of the below conditions are met:

- Timer0 external clock input (TOCKI) is enabled.
- The Prescaler is assigned to the WDT, then to the Timer0 and back to the WDT.
- During the assignments, the TOCKI pin is high when bit TOSE is set, or low when TOSE is clear.
- The 1:1 Prescaler option is chosen.

Description

On a POR, the Timer0/WDT prescaler is assigned to the WDT.

If the prescaler is reassigned to Timer0 and Timer0 external clock input (TOCKI) is enabled then the prescaler would be clocked by a transition on the TOCKI pin.

On power-up, the TOCKI pin is (by default) enabled for Timer0 in the OPTION register.

If the TOCKI pin is:

- High and Timer0 is configured to transition on a falling edge (TOSE set), or
- Low and Timer0 is configured to transition on a rising edge (TOSE clear)

Then, if the prescaler is reassigned to the WDT, a clock pulse to the prescaler will be generated on the reassignment.

If the prescaler is configured for the 1:1 option, the clock pulse will incorrectly cause a WDT Time-out Reset of the device.

Work around

1. Disable the Timer0 external clock input by clearing the TOCKI bit in the OPTION register.
2. Modify the TOSE bit in the OPTION register to the opposite configuration for the logic level on the TOCKI pin.
3. Select a prescaler rate other than 1:1 and issue a CLRWDT instruction before switching to the final prescaler rate.

Affected Silicon Revisions

PIC16F631/PIC16F677

<table>
<thead>
<tr>
<th>A1</th>
<th></th>
<th></th>
<th>X</th>
</tr>
</thead>
</table>

PIC16F685/PIC16F687/PIC16F689/PIC16F690

<table>
<thead>
<tr>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Data Sheet Clarifications

The following typographical corrections and clarifications are to be noted for the latest version of the device data sheet (DS41262E):

Note: Corrections are shown in bold. Where possible, the original bold text formatting has been removed for clarity.

1. Module: Peripheral Features

 Corrections to Table 1: PIC16F631 Pin Summary.

 TABLE 1: PIC16F631 PIN SUMMARY

<table>
<thead>
<tr>
<th>I/O</th>
<th>Pin</th>
<th>Analog</th>
<th>Comparators</th>
<th>Timers</th>
<th>Interrupt</th>
<th>Pull-up</th>
<th>Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA0</td>
<td>19</td>
<td>AN0/ULPWU</td>
<td>C1IN+</td>
<td>—</td>
<td>IOC</td>
<td>Y</td>
<td>ICSPDAT</td>
</tr>
<tr>
<td>RA1</td>
<td>18</td>
<td>—</td>
<td>C12IN0-</td>
<td>—</td>
<td>IOC</td>
<td>Y</td>
<td>ICSPCLK</td>
</tr>
<tr>
<td>RA2</td>
<td>17</td>
<td>—</td>
<td>C1OUT</td>
<td>T0CKI</td>
<td>IOC/INT</td>
<td>Y</td>
<td>—</td>
</tr>
<tr>
<td>RA3</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>IOC</td>
<td>Y(1)</td>
<td>MCLR/VPP</td>
</tr>
<tr>
<td>RA4</td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>T1G</td>
<td>IOC</td>
<td>Y</td>
<td>OSC2/CLKOUT</td>
</tr>
<tr>
<td>RA5</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>IOC</td>
<td>Y</td>
<td>OSC1/CLKIN</td>
</tr>
<tr>
<td>RB4</td>
<td>13</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>IOC</td>
<td>Y</td>
<td>—</td>
</tr>
<tr>
<td>RB5</td>
<td>12</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>IOC</td>
<td>Y</td>
<td>—</td>
</tr>
<tr>
<td>RB6</td>
<td>11</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>IOC</td>
<td>Y</td>
<td>—</td>
</tr>
<tr>
<td>RB7</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>IOC</td>
<td>Y</td>
<td>—</td>
</tr>
<tr>
<td>RC0</td>
<td>16</td>
<td>—</td>
<td>C2IN+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RC1</td>
<td>15</td>
<td>—</td>
<td>C12IN1-</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RC2</td>
<td>14</td>
<td>—</td>
<td>C12IN2-</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RC3</td>
<td>7</td>
<td>—</td>
<td>C12IN3-</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RC4</td>
<td>6</td>
<td>—</td>
<td>C2OUT</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RC5</td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RC6</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RC7</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>VDD</td>
</tr>
<tr>
<td>—</td>
<td>20</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Vss</td>
</tr>
</tbody>
</table>

Note 1: Pull-up enabled only with external MCLR configuration.
APPENDIX A: DOCUMENT

REVISION HISTORY

Rev A Document (7/2005)
Original release of this document.
Clarifications/Corrections to the Data Sheet:
Added Modules 1 through 7:
Module 1: Device VDD Range
Module 2: 4x4 QFN Package Marking
Module 3: Table 1-1: Pinout Description – PIC16F685
Module 4: Register 10-5: EECON1
Module 5: Table11-2: Registers Associated with Capture, Compare and Timer1
Module 6: Section 12.0 EUSART
Module 7: Section 14.2.2 MCLR

Silicon Section:
Added Module 1: EUSART (PIC16F687/689/690 only).
Clarifications/Corrections to the Data Sheet:
Added Modules 8 and 9:
Module 8: SSP Module Overview
Module 9: Electrical Specifications.

Silicon Section:
Added Module 2: SSP (PIC16F687/689/690 only)

Clarifications/Corrections to the Data Sheet:
Replaced the 20-Lead QFN package diagram in Module 2: 4x4 QFN Package Marking.

Data Sheet Clarifications/Corrections Section:
Removed Items 1 through 9, which have been incorporated into the data sheet. Added Item 1, 20-pin QFN Pin Diagram Title change.

Data Sheet Clarifications/Corrections Section: Added Item 2, Product Identification System, Examples change.
Added Module 3: ECCP with Auto-Shutdown (Silicon Rev. B2). Updated Module1: EUSART (PIC16F687/689/690 only) and Module2: SSP (PIC16F687/689/690 only) with Fix information.

Rev G Document (01/2007)
Removed Rev. A6 reference from Module 2 (SSP).
Data Sheet Clarifications/Corrections Section: Added Module 3, Comparator and Voltage Reference Modules Associated Registers, removed REFCON register reference. Added Module 4: DC Characteristics, Table 17.3, revised Max values.

Rev H Document (07/2007)

Rev J Document (09/2008)
Added Module 2.2: Under certain conditions, the SSPIF flag sets on reception of the first byte (under new 2. SSP (PIC16F687/689/690 only)), while changing Module 2. to 2.1. Revised Module 5: LP/Timer1 Oscillator Operations Below 25°C. Added Module 6: SSP.
Clarifications/Corrections to the Data Sheet:
Removed Modules 1 through 4, which have been included in the latest data sheet revision.

Rev K Document (04/2009)
Updated Errata to new format.
Deleted Module 6: SSP (PIC16F687/689/690).
Added Module 5: Timer1. Added Module 6: Timer0 and WDT Prescaler Assignment Spurious Reset.

Rev L Document (07/2009)
Data Sheet Clarifications: Added Module 1: Peripheral Features (Table 1: PIC16F631 Pin Summary).

Rev M Document (05/2010)
Added Module 5.3.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.

- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

- Microchip is willing to work with the customer who is concerned about the integrity of their code.

- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0087
Fax: 216-447-0088

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5053
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2933

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

01/05/10