The Device# parts you have received conform functionally to the Device Data Sheet (DS21664D), except for the anomalies described below.

These Errata are associated with the following Microchip devices:
- MCP25020
- MCP25025
- MCP25050
- MCP25055

All of the issues listed here will be addressed in future revisions of the MCP250XX silicon.

1. **Module: CAN**

The CAN module may send a passive error flag earlier than expected. This will occur at the transition point of error active to error passive, TEC (Transmit Error Count), or REC (Receive Error Count) ≥ 128.

Work around
None

Date Codes that pertain to this issue:
All engineering and production devices.

2. **Module: CAN**

The CAN module may not synchronize correctly if there is a phase error between nodes that is equal to the Synchronization Jump Width (SJW). As a result, the module may request retransmission of messages from the transmitting node (via an Error Frame).

Work around
Use the longest SJW possible that will work with the application.

Date Codes that pertain to this issue:
All engineering and production devices.

3. **Module: Control Logic**

The device may exceed the maximum standby current specification (IDDs) when it is initially placed into SLEEP mode (OPTREG2.SLPEN bit is set).

This condition may peak at ≥ 2 mA for a duration of ≤ 10 seconds, up to 5 seconds after the SLEEP mode command is received, with the magnitude and length of time being dependent on external conditions, including device voltage and temperature range.

Work around
None

Date Codes that pertain to this issue:
All engineering and production devices.

4. **Module: CAN TX Module**

If an error frame occurs on the CAN bus during message transmission by the MCP250XX, the internal flags are cleared, however, the internal byte counter does not clear. This causes the retransmitted message to become corrupted.

Work around
The CAN node(s) interested in MCP250XX messages should discard the subsequent MCP250XX message after an error frame is detected on the bus.

Date Codes that pertain to this issue:
All engineering and production devices.

CLARIFICATIONS/CORRECTIONS TO THE DATA SHEET:

In the Device Data Sheet (DS21664D), the following clarifications and corrections should be noted.

- None
APPENDIX A: REVISION HISTORY

Revision B Document (9/2008)
1. Added CAN TX Module.

Revision A Document (10/2001)
Initial release of this document.

APPENDIX B: SILICON REVISION HISTORY

The following table and package marking information indicates how to determine the revision of the MCP250XX devices. The revision information can be determined by the Year and Week Code of the manufacturer printed on the device.

<table>
<thead>
<tr>
<th>Silicon Revision</th>
<th>YYWWNNN</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start Date</td>
<td>End Date</td>
</tr>
<tr>
<td>Rev A2</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Rev A1</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Legend: “N” is any alphanumeric character.
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELoQ, KEELoQ logo, MPLAB, PIC, PICmicro, PICSTART, rPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICWorks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PicTail, PIC® logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rLAB, Select Mode, Total Endurance, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

ISO/TS 16949:2002