The PIC16F62X (Rev. C) parts you have received conform functionally to the Device Data Sheet (DS40300C), except for the anomalies described below. Microchip intends to address all issues listed here in future revisions of the PIC16F62X silicon.

1. Module: I/O Ports

A read of the PORTB Data Direction Register (TRISB) returns the Data Direction state on the port pins themselves and not the contents of the TRISB register latch.

FIGURE 5-8: BLOCK DIAGRAM OF RB0/INT PIN
FIGURE 5-9: BLOCK DIAGRAM OF RB1/RX/DT PIN

Port/Peripheral Select

USART Data Output

Data Bus

WR PORTB

DDO

TRIS Latch

P

WR TRISB

TRIS Latch

RD TRISB

RD PORTB

 USART Receive Input

Schmitt Trigger

Peripheral OE

Note 1: Port/Peripheral select signal selects between port data and peripheral output.

2: Peripheral OE (output enable) is only active if peripheral select is active.
FIGURE 5-10: BLOCK DIAGRAM OF RB2/TX/CK PIN

Note 1: Port/Peripheral select signal selects between port data and peripheral output.
2: Peripheral OE (output enable) is only active if peripheral select is active.
FIGURE 5-11: BLOCK DIAGRAM OF RB3/CCP1 PIN

Note 1: Peripheral select is defined by CCP1M3:CCP1M0 (CCP1CON<3:0>).
Note 1: The Low-Voltage Programming disables the interrupt-on-change and the weak pull-ups on RB4.
FIGURE 5-13: BLOCK DIAGRAM OF RB5 PIN
FIGURE 5-14: BLOCK DIAGRAM OF RB6/T1OSO/T1CKI PIN

Data Latch

TRIS Latch

RD TRISB

N

QD

Q

VSS

VDD

VSS

P

WR PORTB

Data Bus

WR TRISB

RD PORTB

T1OSCEN

TMR1 Clock

From RB7

Serial Programming Clock

Set RBIF

From other RB<7:4> pins

Serial Programming Clock

TMR1 Oscillator

TTL Input Buffer

Schmitt Trigger

Weak Pull-up

RBPU

VDD

Q3

Q1

EN

EN

RD Port
FIGURE 5-15: BLOCK DIAGRAM OF RB7/T1OSI PIN
2. Module: Comparator Mode 1

Mode 1 allows AN2 to drive the (+) inputs of both comparators. AN1 continues to drive the (-) input of Comparator 2, but AN0 and AN3 can be switched into the (-) input of Comparator 1. The state of the CIS bit chooses which input is to be connected to the comparator. When CIS = 0, AN0 is attached and the comparator functions correctly. When CIS = 1, AN3 is not completely connected to the comparator, resulting in incorrect behavior.

Mode 2 is also a Multiplex mode using the CIS bit. This mode functions correctly.

All other modes are unaffected by this Errata.

3. Module: Low-Voltage Programming Mode

The high-voltage override for low-voltage programming does not operate as specified in the programming specification. In the Low-Voltage Programming (LVP) mode, the device can be programmed without using 12V on VPP (pin 4). However, when high-voltage programming is used while the part has low-voltage programming enabled, the Low-Voltage mode is not overridden. If RB4 goes high for any reason during high-voltage programming with LVP enabled, the programming will be interrupted.

Work around
Pull RB4 (pin 10) to ground during the initial programming to prevent programming interruptions. Once LVP has been disabled, it remedies this issue with RB4.

4. Module: CCP (Compare Mode)

The CCP1 output latch, observed on RB3/CCP1/P1A, can change unexpectedly when the CCP module is changed from a set output on match (CCP1CON<3:0> = "1000") to clear output on match (CCP1CON<3:0> = "1001"), or vice versa. This condition will occur following a CCP Reset at the beginning of the third iteration of the following sequence.

- CCPR1<3:0> is changed from "1001" to "1000" or vice versa
- The TMR1H:TMR1L register pair matches the CCP1R1H:CCPR1L register pair

Step 1 of the third iteration will cause the CCP1 output latch to immediately and erroneously change to the inverse of the CCPR1<0> bit. This gives the appearance of an inverted CCP response to the third and subsequent compare match events.

The apparent inverted response will persist until the CCP1CON<3> bit is cleared (exiting Compare mode). Interrupts always occur correctly on the match condition. The error is only in the state of the CCP1 output latch.

Work around

Option 1
Use the CCP toggle output on Compare Match mode (CCP1CON<3.0> = "0010").

Option 2
Since the problem occurs after two changes to the Compare and Match modes, it is only necessary to reset the CCP1CON register before the third change is made. To remain backwards compatible with earlier versions of the CCP module, always reset the CCP1CON register when changing from the clear output on Match mode to the set output on Match mode, as described in the following steps.

1. Ensure the RB3 data latch is set to '0'.
2. Clear the CCP1CON register (clrf CCP1CON).
3. Set the CCP1CON<3:0> bits to "1000" for set output on match.

5. Module: MCLR/RA5 in LVP Mode

When the PIC16F62X device has LVP enabled, MCLR is always enabled, regardless of the CONFIG register settings.
Clarifications/Corrections to the Data Sheet:

In the Device Data Sheet (DS40300C), the following clarifications and corrections should be noted.

1. **Module: Special Function Registers (T1SYNC, Register T1CON)**

 In Table 3-1, “Special Function Registers Summary Bank 0”, bit T1SYNC, in Register T1CON (address 10h), should be asserted logic low (i.e., T1SYNC) as shown in bold below.

2. **Module: Special Function Registers (ADEN, Register RCSTA)**

 In Table 3-1, “Special Function Registers Summary Bank 0”, bit ADEN, in Register RCSTA (address 18h), is misspelled. The correct spelling should be ADDEN, as shown in bold below.

 This misspelling also appears in Register 12-2, Tables 12-2, 12-6, 12-7, 12-8, 12-9, 12-10, 12-11 and 12-12, Figures 12-8, 12-9, 12-10 and 12-11. Sections 12.2.2, 12.3.1 and 12.3.1.1.

TABLE 3-1: SPECIAL REGISTERS SUMMARY BANK 0

<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Value on POR Reset</th>
<th>Value on all other Resets(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10h</td>
<td>T1CON</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>T1CKPS1</td>
<td>T1CKPS0</td>
<td>T1OSCN</td>
<td>T1SYNC</td>
<td>TMR1CS</td>
<td>TMR1ON</td>
<td>--00 0000</td>
</tr>
<tr>
<td>18h</td>
<td>RCSTA</td>
<td>SPEN</td>
<td>RX9</td>
<td>SREN</td>
<td>CREN</td>
<td>ADDEN</td>
<td>FERR</td>
<td>OERR</td>
<td>RX9D</td>
<td>0000 --00x</td>
<td>0000 --00x</td>
</tr>
</tbody>
</table>

Legend:
- x = unknown, u = unchanged, - = unimplemented locations, read as ‘0’, q = value depends on condition, shaded = unimplemented

Note 1: Other (non power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

Figure 5-5, “Block Diagram of the RA5/MCLR/VPP Pin”, is incorrect. The following diagram should be used instead.

FIGURE 5-5: BLOCK DIAGRAM OF RA5/MCLR/VPP PIN
4. Module: Comparator

Example 9-1, “Initializing Comparator Module”, is incorrect. The following code example should be used instead.

EXAMPLE 1: INITIALIZING COMPARATOR MODULE

```
BCF INTCON,GIE ; Turn OFF Global Interrupts
BCF INTCON,PEIE ; Turn OFF Peripheral Interrupts
CLRF PORTA ; Init Port A
MOVLW 0x03 ; Init comparator mode
MOVF CMCON ; CM<2:0> = 011
BSF STATUS,RP0 ; Select BANK 1
MOVLW 0x07 ; Initialize Port A Direction
MOVF TRISA ; Set RA<2:0> as Inputs
 ; RA<4:3> as outputs
BSF STATUS,RP0 ; Select BANK 0
CALL DELAY10 ; Wait 10us for comparator output to become valid
 ; See Table 17-1 Parameter 301
MOVF CMCON,F ; Read CMCON to end change condition
BCF PIR1,CMIF ; Clear pending interrupts
BSF STATUS,RP0 ; Select BANK 1
BSF PIE1,CMIE ; Enable Comparator Interrupts
BCF STATUS,RP0 ; Select BANK 0
BSF INTCON,PEIE ; Enable Peripheral Interrupts
BSF INTCON,GIE ; Global Interrupt Enable

; Insert Your code....

; Helper function is the Delay for 10us routine show below.

DELAY10 ; burns 8 cycles + the call for 10 cycles or 10us at 4Mhz
goto 1+1 ; goto the next instruction and burn 2 cycles
call retlbl ; goto the next instruction and burn 2 more cycles
retlblreturn; go back and burn 2 cycles (actually done 2x for 4 cycles consumed)
```
5. Module: Data EEPROM Memory

Examples 13-1, “Data EEPROM Read”, 13-2, “Data EEPROM Write”, and 13-3, “Write Verify”, are incorrect. The EEPROM registers are all located in Bank 1. The examples show the registers in Bank 0 and Bank 1. The following code examples should be used instead.

EXAMPLE 13-1: DATA EEPROM READ

```assembly
BSF STATUS, RP0 ; Bank 1
MOVLW CONFIG_ADDR ;
MOVF EEADR ; Address to write
BSF EECON1, RD ; EE Read
MOVF EEDATA, W ; W = EEDATA
BCF STATUS, RP0 ; Bank 0

; set up the data and the address
BSF STATUS, RP0 ; Bank 1
MOVLW CONFIG_ADDR ;
MOVF EEADR ; Address to write
MOVWF CONFIG_DATA ;
MOVF EEDATA ; Data to write

; perform the write operation
BSF EECON1, WREN ; Enable Write
BCF INTCON, GIE ; Disable INTs
MOVLW 055h ;
MOVF EECON2 ; Write 55
MOVLW 0AAh ;
MOVF EECON2 ; Write AA
BSF EECON1, WR ; Set WR bit
BCF STATUS, RP0 ; Bank 0

; after the write in complete (i.e. in the write interrupt)
BSF STATUS, RP0 ; Bank 1
MOVF EEDATA, W ; load the last written value into W
BSF EECON1, RD ; start a read

; Is the value written (in W Reg) and read (in EEDATA) the same?
SUBWF EEDATA, W ; the EEDATA has fresh data
BTFSS STATUS, Z ; Is the Zero flag set?
GOTO WRITE_ERR ; NO, Write Error
GOTO GOOD_WRITE ; YES, Good Write

; continue program
```

EXAMPLE 13-2: DATA EEPROM WRITE

```assembly
BSF STATUS, RP0 ; Bank 1
MOVLW CONFIG_ADDR ;
MOVF EEADR ; Address to write
BSF STATUS, RP0 ; Bank 1
MOVLW CONFIG_ADDR ;
MOVF EEADR ; Address to write
MOVLW CONFIG_DATA ;
MOVF EEDATA ; Data to write

; perform the write operation
BSF EECON1, WREN ; Enable Write
BCF INTCON, GIE ; Disable INTs
MOVLW 055h ;
MOVF EECON2 ; Write 55
MOVLW 0AAh ;
MOVF EECON2 ; Write AA
BSF EECON1, WR ; Set WR bit
BCF STATUS, RP0 ; Bank 0

; after the write in complete (i.e. in the write interrupt)
BSF STATUS, RP0 ; Bank 1
MOVF EEDATA, W ; load the last written value into W
BSF EECON1, RD ; start a read

; Is the value written (in W Reg) and read (in EEDATA) the same?
SUBWF EEDATA, W ; the EEDATA has fresh data
BTFSS STATUS, Z ; Is the Zero flag set?
GOTO WRITE_ERR ; NO, Write Error
GOTO GOOD_WRITE ; YES, Good Write

; continue program
```

EXAMPLE 13-3: WRITE VERIFY
6. Module: Timer1 Module

In Section 7.0, “Timer1 Module”, in Register 7-1, bit TMR1ON, “Timer1 On” should read as shown in bold below:

REGISTER 7-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS: 10h)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-6</td>
<td>Unimplemented: Read as '0'</td>
</tr>
<tr>
<td>5-4</td>
<td>T1CKPS1/T1CKPS0: Timer1 Input Clock Prescale Select bits</td>
</tr>
<tr>
<td>01</td>
<td>1:2 prescale value</td>
</tr>
<tr>
<td>10</td>
<td>1:4 prescale value</td>
</tr>
<tr>
<td>11</td>
<td>1:8 prescale value</td>
</tr>
<tr>
<td>3</td>
<td>T1OSCEN: Timer1 Oscillator Enable Control bit</td>
</tr>
<tr>
<td>1</td>
<td>Oscillator is enabled</td>
</tr>
<tr>
<td>0</td>
<td>Oscillator is shut off(^1)</td>
</tr>
<tr>
<td>2</td>
<td>T1SYNC: Timer1 External Clock Input Synchronization Control bit</td>
</tr>
<tr>
<td>1</td>
<td>Do not synchronize external clock input</td>
</tr>
<tr>
<td>0</td>
<td>Synchronize external clock input</td>
</tr>
<tr>
<td>1</td>
<td>Timer1 uses the internal clock when TMR1CS = 0.</td>
</tr>
<tr>
<td>0</td>
<td>TMR1CS: Timer1 Clock Source Select bit</td>
</tr>
<tr>
<td>1</td>
<td>External clock from pin RB6/T1OSO/T1CKI (on the rising edge)</td>
</tr>
<tr>
<td>0</td>
<td>Internal clock (Fosc/4)</td>
</tr>
<tr>
<td>0</td>
<td>TMR1ON: Timer1 On bit</td>
</tr>
<tr>
<td>1</td>
<td>Enables Timer1</td>
</tr>
<tr>
<td>0</td>
<td>Disables Timer1</td>
</tr>
</tbody>
</table>

Note 1: The oscillator inverter and feedback resistor are turned off to eliminate power drain.

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown
REVISION HISTORY

Rev A Document (6/00)
Original errata document.

Rev B Document (11/00)
Issue 3 (CCP Compare Mode), Table 1 and 2 were added (page 2).
Under the Clarifications/Corrections Section, Item 1, Table 15-12 was updated with additional information (page 3).

Rev C Document (6/01)
Issues 2 and 3 were added.
Under Clarifications/Corrections, Items 2 and 3 were changed and Item numbers were renumbered accordingly.

Rev D Document (9/01)
Item 3 was rewritten (page 9).
Under the Clarifications/Corrections to the Data Sheet Section, the following items were changed:
Item 2, Tables 17.1 and 17.2, were updated with minor changes.
Item 6 was added.

Rev E Document (2/02)

Rev G Document (05/19/05)
Under Clarifications/Corrections to the Data Sheet, Added Module 6: Timer1 Module.

Rev H Document (06/12)
Corrected Silicon Revision.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOG, KEELOG logo, MPLAB, PIC, PICmicro, PICSTART, PIC18 logo, rpIC and Uni/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICWorks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rFLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2000-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620763193
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>ADDRESS</th>
<th>TEL</th>
<th>FAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMERICAS</td>
<td>Corporate Office</td>
<td>480-792-7200</td>
<td>480-792-7277</td>
</tr>
<tr>
<td>ATLANTA</td>
<td>Duluth, GA</td>
<td>678-957-9614</td>
<td>678-957-1455</td>
</tr>
<tr>
<td>BOSTON</td>
<td>Westborough, MA</td>
<td>774-760-0087</td>
<td>774-760-0088</td>
</tr>
<tr>
<td>CHICAGO</td>
<td>Itasca, IL</td>
<td>630-285-0071</td>
<td>630-285-0075</td>
</tr>
<tr>
<td>CLEVELAND</td>
<td>Independence, OH</td>
<td>216-447-0464</td>
<td>216-447-0643</td>
</tr>
<tr>
<td>DALLAS</td>
<td>Addison, TX</td>
<td>972-818-7423</td>
<td>972-818-2924</td>
</tr>
<tr>
<td>DETROIT</td>
<td>Farmington Hills, MI</td>
<td>248-538-2250</td>
<td>248-538-2260</td>
</tr>
<tr>
<td>INDIANAPOLIS</td>
<td>Noblesville, IN</td>
<td>317-773-8323</td>
<td>317-773-5453</td>
</tr>
<tr>
<td>LOS ANGELES</td>
<td>Mission Viejo, CA</td>
<td>949-462-9523</td>
<td>949-462-9608</td>
</tr>
<tr>
<td>SANTA CLARA</td>
<td>Santa Clara, CA</td>
<td>408-961-6444</td>
<td>408-961-6445</td>
</tr>
<tr>
<td>TORONTO</td>
<td>Mississauga, Ontario, Canada</td>
<td>905-673-0699</td>
<td>905-673-6509</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Asia Pacific Office</td>
<td>852-2401-1200</td>
<td>852-2401-3431</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Beijing</td>
<td>86-10-8596-7000</td>
<td>86-10-8528-2104</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Chengdu</td>
<td>86-28-8865-5511</td>
<td>86-28-8865-7889</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Chongqing</td>
<td>86-23-8980-9588</td>
<td>86-23-8980-9500</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Hangzhou</td>
<td>86-571-2819-3187</td>
<td>86-571-2819-3189</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Hong Kong SAR</td>
<td>852-2401-1200</td>
<td>852-2401-3431</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Nanjing</td>
<td>86-25-8473-2460</td>
<td>86-25-8473-2470</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Qingdao</td>
<td>86-532-8502-7355</td>
<td>86-532-8502-7205</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Shanghai</td>
<td>86-21-5407-5533</td>
<td>86-21-5407-5066</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Shenzhen</td>
<td>86-26-2334-2829</td>
<td>86-26-2334-2393</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Wuhan</td>
<td>86-27-5980-5300</td>
<td>86-27-5980-5118</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Xian</td>
<td>86-29-8833-7252</td>
<td>86-29-8833-7256</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Xiamen</td>
<td>86-592-2388138</td>
<td>86-592-2388130</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Zhuhai</td>
<td>86-756-3210040</td>
<td>86-756-3210049</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>India - Bangalore</td>
<td>91-80-3090-4444</td>
<td>91-80-3090-4123</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>India - New Delhi</td>
<td>91-11-4160-8631</td>
<td>91-11-4160-8632</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>India - Pune</td>
<td>91-20-2566-1512</td>
<td>91-20-2566-1513</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Japan - Osaka</td>
<td>81-66-152-7160</td>
<td>81-66-152-9310</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Japan - Yokohama</td>
<td>81-45-471-6166</td>
<td>81-45-471-6122</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Korea - Daegu</td>
<td>82-53-744-4301</td>
<td>82-53-744-4302</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Korea - Seoul</td>
<td>82-2-554-7200</td>
<td>82-2-558-5932 or 82-2-558-5934</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Malaysia - Kuala Lumpur</td>
<td>60-3-6201-9857</td>
<td>60-3-6201-9859</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Malaysia - Penang</td>
<td>60-4-227-8870</td>
<td>60-4-227-4068</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Philippines - Manila</td>
<td>63-2-634-9065</td>
<td>63-2-634-9069</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Singapore</td>
<td>65-6334-8870</td>
<td>65-6334-8850</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Taiwan - Hsin Chu</td>
<td>886-3-5778-366</td>
<td>886-3-5770-955</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Taiwan - Kaohsiung</td>
<td>886-7-536-4818</td>
<td>886-7-330-9305</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Taiwan - Taipei</td>
<td>886-2-2500-6610</td>
<td>886-2-2508-0102</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>Thailand - Bangkok</td>
<td>66-2-694-1351</td>
<td>66-2-694-1350</td>
</tr>
</tbody>
</table>

EUROPE	Austria - Wels	43-7242-2244-39	43-7242-2244-393
EUROPE	Denmark - Copenhagen	45-4450-2828	45-4485-2829
EUROPE	Germany - Munich	49-89-627-144-0	49-89-627-144-44
EUROPE	Italy - Milan	39-0331-742611	39-0331-466781
EUROPE	Netherlands - Drunen	31-416-690399	31-416-690340
EUROPE	Spain - Madrid	34-91-708-08-90	34-91-708-08-91
EUROPE	UK - Wokingham	44-118-921-5869	44-118-921-5820

11/29/11