The PIC12C67X (Rev. A) parts you have received conform functionally to the Device Data Sheet (DS30561), except for the anomalies described below.

FIGURE 1: PIC12C67X VOLTAGE-FREQUENCY GRAPH, \(-40^\circ C \leq TA \leq +125^\circ C\)

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.

2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.
FIGURE 2: PIC12LC67X VOLTAGE-FREQUENCY GRAPH, \(-40^\circ C \leq T_A \leq 0^\circ C\)

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.

2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

FIGURE 3: PIC12LC67X VOLTAGE-FREQUENCY GRAPH, \(0^\circ C \leq T_A \leq +70^\circ C\)

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.

2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.
FIGURE 4: PIC12LC67X VOLTAGE-FREQUENCY GRAPH, +70°C ≤ TA ≤ +85°C

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.

2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.
Clarifications/Corrections to the Data Sheet:

In the Device Data Sheet (DS30561B), the following clarifications and corrections should be noted.

1. **Module: Register Summary (OSCCAL)**

 In Section 4.0, corrections for the Special Function Register Summary, Table 4-1, are shown.

 TABLE 4-1: PIC12C67X SPECIAL FUNCTION REGISTER SUMMARY

<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Value on Power-on Reset</th>
<th>Value on all other RESETS (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8Fh</td>
<td>OSCCAL</td>
<td>CAL5</td>
<td>CAL4</td>
<td>CAL3</td>
<td>CAL2</td>
<td>CAL1</td>
<td>CAL0</td>
<td>—</td>
<td>—</td>
<td>1000 00—</td>
<td>——</td>
</tr>
</tbody>
</table>

 Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.
 Shaded locations are unimplemented, read as '0'.

 Note 1: These registers can be addressed from either bank.
 2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.
 3: Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset.
 4: The IRP and RP1 bits are reserved on the PIC12C67X; always maintain these bits clear.
 5: The SCL (GP7) and SDA (GP6) bits are unimplemented on the PIC12C671/672 and read as '0'.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC12C67X; always maintain these bits clear.

5: The SCL (GP7) and SDA (GP6) bits are unimplemented on the PIC12C671/672 and read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC12C67X; always maintain these bits clear.

5: The SCL (GP7) and SDA (GP6) bits are unimplemented on the PIC12C671/672 and read as '0'.
2. Module: OSCCAL Register

Correction for the "OSCCAL" Register, Section 4.2.2.7, is shown.

4.2.2.7 OSCCAL REGISTER

The Oscillator Calibration (OSCCAL) Register is used to calibrate the internal 4 MHz oscillator. It contains six bits for calibration. Increasing the value increases the frequency.

REGISTER 4-7: OSCCAL REGISTER (ADDRESS 8Fh)

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL5</td>
<td>CAL4</td>
</tr>
<tr>
<td>CAL3</td>
<td>CAL2</td>
</tr>
<tr>
<td>CAL1</td>
<td>CAL0</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

bit 7-2 CAL<5:0>: Calibration
bit 1-0 Unimplemented: Read as '0'

Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as '0'
- n = Value at POR
'1' = Bit is set
'0' = Bit is cleared
x = Bit is unknown

3. Module: GPIO Register

Clarification to the "GPIO", Section 5.1 is provided. New I/O drawings were added.

5.1 GPIO

GPIO is an 8-bit I/O register. Only the low order 6 bits are used (GP<5:0>). Bits 6 and 7 (SDA and SCL, respectively) are used by the EEPROM peripheral on the PIC12CE673/674. Refer to Section 6.0 and Appendix B for use of SDA and SCL. Please note that GP3 is an input only pin. The configuration word can set several I/O's to alternate functions. When acting as alternate functions, the pins will read as '0' during port read.

Pins GP0, GP1 and GP3 can be configured with weak pull-ups and also with interrupt-on-change. The interrupt on change and weak pull-up functions are not pin selectable. If pin 4, (GP3), is configured as MCLR, a weak pull-up is always on. Interrupt-on-change for this pin is not set and GP3 will read as '0'. Interrupt-on-change is enabled by setting bit GPIE, INTCON<3>.

The interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

a) Any read or write of GPIO will end the mismatch condition.

 b) Clear flag bit GPIF.

 A mismatch condition will continue to set flag bit GPIF. Reading GPIO will end the mismatch condition and allow flag bit GPIF to be cleared.

 Note that external oscillator use overrides the GPIO functions on GP4 and GP5.
FIGURE 5-2: GP2 Block Diagram

FIGURE 5-3: GP3 Block Diagram

FIGURE 5-4: GP4 Block Diagram

FIGURE 5-5: GP5 Block Diagram
4. Module: OSCCAL (Oscillator)
Corrections for the Internal 4 MHz RC Oscillator, Section 9.2.5, are shown.

9.2.5 INTERNAL 4 MHz RC OSCILLATOR

OSCCAL, when written to with the calibration value, will "trim" the internal oscillator to remove process variation from the oscillator frequency. Only bits<7:2> of OSCCAL are implemented, and bits<1:0> should be written as 0 for compatibility with future devices. The oscillator calibration location is not code protected.

5. Module: Initialization Condition (OSCCAL)
Corrections for Section 9.0, Initialization Conditions for all registers, Table 9-7, are shown.

TABLE 9-7: INITIALIZATION CONDITIONS FOR ALL REGISTERS

<table>
<thead>
<tr>
<th>Register</th>
<th>Power-on Reset</th>
<th>MCLR Resets WDT Reset</th>
<th>Wake-up via WDT or Interrupt</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSCCAL</td>
<td>1000 00--</td>
<td>uuuu uu--</td>
<td>uuuu uu--</td>
</tr>
</tbody>
</table>

Legend: u = unchanged, x = unknown, = unimplemented bit, read as '0', q = value depends on condition.

Note 1: One or more bits in INTCON and PIR1 will be affected (to cause wake-up).
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
3: See Table 9-5 for RESET value for specific condition.
4: If wake-up was due to A/D completing then bit 6 = 1, all other interrupts generating a wake-up will cause bit 6 = u.
5: If wake-up was due to A/D completing then bit 3 = 0, all other interrupts generating a wake-up will cause bit 3 = u.

Engineering Samples for the PIC12C671/2 may or may not follow this operational clarification for the OSCCAL register.
6. Module: DC Characteristics
Corrections for the DC Characteristics, Sections 12.3 and 12.4 are shown.

12.3 DC CHARACTERISTICS: PIC12C671/672 (Commercial, Industrial, Extended)
PIC12CE673/674 (Commercial, Industrial, Extended)

<table>
<thead>
<tr>
<th>Param No.</th>
<th>Characteristic</th>
<th>Sym</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D061</td>
<td>Input Leakage Current (Notes 2, 3)</td>
<td>IIL</td>
<td>8</td>
<td>130</td>
<td>250</td>
<td>μA</td>
<td>VSS ≤ VPIN ≤ VDD</td>
</tr>
<tr>
<td>D061A</td>
<td>GP3/MCLR (Note 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D061A</td>
<td>GP3/MCLR (Note 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D070</td>
<td>GPIO weak pull-up current (Note 4)</td>
<td>IPUR</td>
<td>50</td>
<td>250</td>
<td>400</td>
<td>μA</td>
<td>VDD = 5V, VPIN = VSS</td>
</tr>
</tbody>
</table>

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12C67X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: Does not include GP3. For GP3 see parameters D061 and D061A.

5: This spec. applies to GP3/MCLR configured as external MCLR and GP3/MCLR configured as input with internal pull-up enabled.

6: This spec. applies when GP3/MCLR is configured as an input with pull-up disabled. The leakage current of the MCLR circuit is higher than the standard I/O logic.

12.4 DC CHARACTERISTICS: PIC12LC671/672 (Commercial, Industrial)
PIC12LCE673/674 (Commercial, Industrial)

<table>
<thead>
<tr>
<th>Param No.</th>
<th>Characteristic</th>
<th>Sym</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D061</td>
<td>Input Leakage Current (Notes 2, 3)</td>
<td>IIL</td>
<td>8</td>
<td>130</td>
<td>250</td>
<td>μA</td>
<td>VSS ≤ VPIN ≤ VDD</td>
</tr>
<tr>
<td>D061A</td>
<td>GP3/MCLR (Note 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D061A</td>
<td>GP3/MCLR (Note 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D070</td>
<td>GPIO weak pull-up current (Note 4)</td>
<td>IPUR</td>
<td>50</td>
<td>250</td>
<td>400</td>
<td>μA</td>
<td>VDD = 5V, VPIN = VSS</td>
</tr>
</tbody>
</table>

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12C67X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: Does not include GP3. For GP3 see parameters D061 and D061A.

5: This spec. applies to GP3/MCLR configured as external MCLR and GP3/MCLR configured as input with internal pull-up enabled.

6: This spec. applies when GP3/MCLR is configured as an input with pull-up disabled. The leakage current of the MCLR circuit is higher than the standard I/O logic.
7. **Module: GPIO Register**

Corrections for the GPIO pull-up resistor ranges are shown in Table 12-6.

TABLE 12-6: GPIO PULL-UP RESISTOR RANGES

<table>
<thead>
<tr>
<th>Vdd (Volts)</th>
<th>Temperature (°C)</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GP0/GP1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>–40</td>
<td>38K</td>
<td>42K</td>
<td>63K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>42K</td>
<td>48K</td>
<td>63K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>42K</td>
<td>49K</td>
<td>63K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>50K</td>
<td>55K</td>
<td>63K</td>
<td>Ω</td>
</tr>
<tr>
<td>5.5</td>
<td>–40</td>
<td>15K</td>
<td>17K</td>
<td>20K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>18K</td>
<td>20K</td>
<td>23K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>19K</td>
<td>22K</td>
<td>25K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>22K</td>
<td>24K</td>
<td>28K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>GP3(f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>–40</td>
<td>65K</td>
<td>80K</td>
<td>850K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>80K</td>
<td>100K</td>
<td>1150K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>85K</td>
<td>110K</td>
<td>1300K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>100K</td>
<td>120K</td>
<td>1500K</td>
<td>Ω</td>
</tr>
<tr>
<td>5.5</td>
<td>–40</td>
<td>50K</td>
<td>60K</td>
<td>600K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>60K</td>
<td>65K</td>
<td>750K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>65K</td>
<td>80K</td>
<td>900K</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>75K</td>
<td>90K</td>
<td>990K</td>
<td>Ω</td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.

Note 1: The weak pull-up resistor and associated current for the GP3/MCLR pin is non-linear when the respective pin voltage is less than Vdd - 1.0V. See parameter D061 for GP3/MCLR pin current specifications.
8. Module: PACKAGING INFORMATION

Added 8-Lead Plastic Micro Leadframe Package (MF) and (MLF-S).

8-Lead Plastic Micro Leadframe Package (MF) 6x5 mm Body (MLF-S)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
<th>MILLIMETERS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>Pitch</td>
<td>P</td>
<td>.050 BSC</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.033</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.026</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>.000</td>
</tr>
<tr>
<td>Base Thickness</td>
<td>A3</td>
<td>.008 REF.</td>
</tr>
<tr>
<td>Overall Length</td>
<td>E</td>
<td>.194 BSC</td>
</tr>
<tr>
<td>Molded Package Length</td>
<td>E1</td>
<td>.184 BSC</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>E2</td>
<td>.152</td>
</tr>
<tr>
<td>Overall Width</td>
<td>D</td>
<td>.236 BSC</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>D1</td>
<td>.226 BSC</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>D2</td>
<td>.085</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B</td>
<td>.014</td>
</tr>
<tr>
<td>Lead Length</td>
<td>L</td>
<td>.020</td>
</tr>
<tr>
<td>Tie Bar Width</td>
<td>R</td>
<td>.014</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>12°*</td>
</tr>
</tbody>
</table>

*Controlling Parameter

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.
JEDEC equivalent: pending

Drawing No. C04-113
8-Lead Plastic Micro Leadframe Package (MF) 6x5 mm Body (MLF-S)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
<th>MILLIMETERS*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Dimension Limits</td>
<td>P</td>
<td>.050 BSC</td>
</tr>
<tr>
<td>Pad Width</td>
<td>B</td>
<td>.014</td>
</tr>
<tr>
<td>Pad Length</td>
<td>L</td>
<td>.020</td>
</tr>
<tr>
<td>Pad to Solder Mask</td>
<td>M</td>
<td>.005</td>
</tr>
</tbody>
</table>

*Controlling Parameter

Drawing No. C04-2113
REVISION HISTORY

Rev A Document (2/01)
Original errata document, which includes Figures 1, 2, and 3.

Rev B Document (6/00)
Under the Clarifications/Corrections, Items 1 through 7 were added.

Rev C Document (11/01)
Added Figure 1 and renumbered figures accordingly.
Under the Clarifications/Corrections, added Figures 5-1 through 5-5 added to Item 3.
Item 8, added 8-Lead Plastic Micro Leadframe Package (MF/MLF-S).
Note the following details of the code protection feature on PICmicro® MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company’s quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microID, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rIPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2001, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Dayton
Two Prestige Place, Suite 130
Miami, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg., No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou
Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office
Rm. 531, North Building
Fujian Foreign Trade Center Hotel
73 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7557563 Fax: 86-591-7557572

China - Shanghai
Microchip Technology Consulting (Shanghai) Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

Hong Kong
Microchip Technology Hong Kong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

India
Microchip Technology Inc.
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O'Shaugnessy Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850

Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup høj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapa
Batiment A - 1er Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44 118 921-5820
10/01/01