The PIC16F87X (Rev. B3) parts you have received conform functionally to the Device Data Sheet (DS30292A), except for the anomalies described below.

All the problems listed here will be addressed in future revisions of the PIC16F87X silicon.

This errata applies to all PIC16F877-20/P production devices marked with an assembly date code prior to 9925.

1. Module: MSSP - SPI mode
 The SDI pin is controlled by the module and not by the state of the TRIS bit. This means that the SDI pin cannot be an output when the MSSP module is in SPI mode.

 Work Around
 None for current silicon revision (fixed in silicon revision B4)

2. Module: Electrical Specifications
 The Supply Voltage specification has not yet met the design target (Data Sheet specification). The specification for these devices is shown in Table 1.

3. Module: A/D Specifications
 The Offset Error specification has not yet met the design target (Data Sheet specification). The specification for these devices is shown in Table 1.

4. Module: TMR1
 When operating in external clock mode (TMR1CS is set), reading either of the timer 1 registers (TMR1H or TMR1L) may cause the timer not to increment as expected. This occurs for both synchronous and asynchronous inputs.

 The scenarios which display this are:
 a) When a read operation of the TMR1H register occurs, the TMR1L register may not increment.
 b) When a read operation of the TMR1L register occurs, the TMR1H register may not increment. This improper operation is only an issue when the TMR1L register increments from FFh to 00h (FFh → 00H) during the read of the TMR1L register.

 Work Around
 Do not read either the TMR1H or the TMR1L registers when operating in external clock mode (TMR1CS is set). If the application needs to read the 16-bit counter, evaluate if this function can be moved to the TMR0 or one of the other timer resources on the device.

TABLE 1: DC SPECIFICATION CHANGES FROM DATA SHEET

<table>
<thead>
<tr>
<th>Param No.</th>
<th>Sym.</th>
<th>Characteristic</th>
<th>Tested Specification</th>
<th>Data Sheet Specification</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min Typ Max</td>
<td>Min Typ Max</td>
<td></td>
</tr>
<tr>
<td>D001</td>
<td>Vdd</td>
<td>Supply Voltage</td>
<td>2.5 — 5.5</td>
<td>2.0 — 5.5</td>
<td>V</td>
</tr>
<tr>
<td>A06</td>
<td>Eoff</td>
<td>Offset Error</td>
<td>— — < ±2</td>
<td>— — < ±1</td>
<td>LSb</td>
</tr>
</tbody>
</table>

© 1999 Microchip Technology Inc. DS80052B-page 1
5. Module: I/O Ports
 The IOL condition for the VOL specification has been relaxed for the I/O ports. Table 2 shows what the current data sheet specification is, as well as the limit that the device is currently tested to.

Work Around
None

TABLE 2: DC SPECIFICATION CHANGES FROM DATA SHEET

<table>
<thead>
<tr>
<th>Param No.</th>
<th>Sym.</th>
<th>Characteristic</th>
<th>Tested Specification</th>
<th>Data Sheet Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOL</td>
<td>Output Low Voltage I/O ports</td>
<td>— — 0.6 (\text{IOL} = 3.0 , \text{mA}) (\text{VDD} = 4.5 , \text{V}) (-40^\circ \text{C} -\text{to} 85^\circ \text{C})</td>
<td>— — 0.6 (\text{IOL} = 8.5 , \text{mA}) (\text{VDD} = 4.5 , \text{V}) (-40^\circ \text{C} -\text{to} 85^\circ \text{C})</td>
</tr>
<tr>
<td>D080A</td>
<td>— — 0.6 (\text{IOL} = \text{TBD} , \text{mA}) (\text{VDD} = 4.5 , \text{V}) (-40^\circ \text{C} -\text{to} 125^\circ \text{C})</td>
<td>— — 0.6 (\text{IOL} = 7.0 , \text{mA}) (\text{VDD} = 4.5 , \text{V}) (-40^\circ \text{C} -\text{to} 125^\circ \text{C})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clarifications/Corrections to the Data Sheet:
In the Device Data Sheet (DS30292A), the following clarifications and corrections should be noted:
None.
Note the following details of the code protection feature on PICmicro® MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable”.
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, PicDEM, PICDEM.net, rPIC, Select Mode and Total Endurance are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.