This document describes known silicon errata for the Microchip KSZ9031RNX device, which include the following variants:

- KSZ9031RNXCA
- KSZ9031RNXCC
- KSZ9031RNXIA
- KSZ9031RNXIC
- KSZ9031RNXUA (Rev. A2)
- KSZ9031RNXUB (Rev. A4)
- KSZ9031RNXVA (Rev. A2)
- KSZ9031RNXVB (Rev. A4)

The silicon errata discussed in this document are for silicon revisions as listed in Table 1. The silicon revision can be determined by the device’s top marking as indicated in Figure 1. A summary of KSZ9031RNX silicon errata is provided in Table 2.

TABLE 1: AFFECTED SILICON REVISIONS

<table>
<thead>
<tr>
<th>Part Numbers</th>
<th>Silicon Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSZ9031RNXCA, KSZ9031RNXCC, KSZ9031RNXIA, KSZ9031RNXIC, KSZ9031RNXUA, KSZ9031RNXUB, KSZ9031RNXVA, KSZ9031RNXVB</td>
<td>A, A2, A4</td>
</tr>
</tbody>
</table>

Note: All future orders will be transitioning to silicon revision A4. Contact your local sales representative for additional information.

FIGURE 1: TOP MARKING DATE CODE INDICATION

The markings in this position indicate the Silicon Revision.

Date code:

- **YY** = 2-digit year
- **WW** = 2-digit week
Silicon Errata Issues

Module 1: Device fails to link after Asymmetric Pause capability is set

DESCRIPTION
Whenever the device's Asymmetric Pause capability (Register 4h, Bit [11]) is set to 1, link-up may fail after a link-up to link-down transition (e.g., a cable disconnect).

END USER IMPLICATIONS
The device may fail to establish link when the Asymmetric Pause capability bit is set to 1.

Work around
Do not enable (set to 1) the Asymmetric Pause capability bit. If enabling this bit is required, a second link-up attempt (e.g., disconnect and reconnect cable) is required to establish link.

PLAN
This erratum will not be corrected in a future revision.

TABLE 2: SILICON ISSUE SUMMARY

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Silicon Issue Summary</th>
<th>Affected Silicon Revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Device fails to link after Asymmetric Pause capability is set</td>
<td>A, A2, A4</td>
</tr>
<tr>
<td>2.</td>
<td>Duty cycle variation for optional 125MHz reference output clock</td>
<td>A, A2, A4</td>
</tr>
<tr>
<td>3.</td>
<td>LED toggle is not visible for Tri-color Dual-LED Mode</td>
<td>A, A2, A4</td>
</tr>
<tr>
<td>4.</td>
<td>NAND Tree function does not work</td>
<td>A, A2, A4</td>
</tr>
<tr>
<td>5.</td>
<td>Auto-Negotiation link-up failure / long link-up time due to default FLP interval setting</td>
<td>A, A2, A4</td>
</tr>
<tr>
<td>6.</td>
<td>Link failure after repeated unplugging/plugging of cable in forced 100BASE-TX mode</td>
<td>A, A2, A4</td>
</tr>
<tr>
<td>7.</td>
<td>1000BASE-T receive traffic stoppage in daisy chain configuration</td>
<td>A, A2, A4</td>
</tr>
<tr>
<td>8.</td>
<td>Two RX_CLK clock phases in RGMII 10Mbps mode</td>
<td>A, A2, A4</td>
</tr>
<tr>
<td>9.</td>
<td>1000BASE-T Transmitter Jitter fails to meet IEEE compliance specification</td>
<td>A, A2, A4</td>
</tr>
<tr>
<td>10.</td>
<td>1000BASE-T Transmitter Distortion fails to meet IEEE compliance specification</td>
<td>A, A2, A4</td>
</tr>
<tr>
<td>11.</td>
<td>Transmitter common mode voltage drift at cold temperature</td>
<td>A, A2</td>
</tr>
</tbody>
</table>
Module 2: Duty cycle variation for optional 125MHz reference output clock

DESCRIPTION
When the device links in the 1000BASE-T slave mode only, the optional 125MHz reference output clock (CLK125_NDO, Pin 41) has wide duty cycle variation.

END USER IMPLICATIONS
The optional CLK125_NDO clock does not meet the RGMII 45/55 percent (min/max) duty cycle requirement and therefore cannot be used directly by the MAC side for clocking applications that have setup/hold time requirements on rising and falling clock edges (e.g., to clock out RGMII transmit data from MAC to PHY (KSZ9031RNX device)).

Work around
Use an alternative external clock source for the MAC.
If an alternative clock source is not available, the CLK125_NDO clock can be used with limitations. One solution requires the MAC side clock input to include an on-chip PLL that locks on the rising or falling edge of the CLK125_NDO clock. Another solution requires the device to always operate in master mode (Register 9h, Bits [12:11] = '11') whenever there is 1000BASE-T link-up, which is workable only in those applications where the link partner is known and can always be configured to slave mode for 1000BASE-T.

PLAN
This erratum will not be corrected in a future revision.

Module 3: LED toggle is not visible for Tri-color Dual-LED Mode

DESCRIPTION
In Tri-color Dual-LED mode, the LED[2:1] pin outputs toggle high pulses for transmit/receive activity indication. The high pulse width incorrectly tracks the activity data rate. At low data rate (e.g., one frame per second), the LED pin drives high (OFF) with a narrow high pulse width of about 640ns.

END USER IMPLICATIONS
Typically, the LED toggle rate should be <10Hz (100ms clock period or 50ms high pulse width) to be visible to the human eye. A 640ns pulse is not visible.

Work around
Use the Single-LED mode instead.
If Tri-color Dual-LED mode must be used, use a pulse stretching circuit to detect high narrow pulse widths down to 500ns and stretch them to the visible width (e.g., >50ms). The following Electronic Design web link article has a sample pulse stretching circuit:
http://electronicdesign.com/lighting/configurable-logic-chip-stretches-pulses-brighten-led-flash
Use the Input high / Output high configuration, as shown in Figure 2 from the Electronic Design link. The output high stretch time is set by the time constant (R1 * C1).

FIGURE 2: LED CONFIGURATION

A configurable logic chip, the SN74LVC1G97, can serve as a “pulse stretcher” when the original (input) pulse is too short to perform the required task. The designer can wire the circuit in four configurations.

PLAN

This erratum will not be corrected in a future revision.

Module 4: NAND Tree function does not work

DESCRIPTION

NAND Tree function fails randomly.

END USER IMPLICATIONS

NAND Tree function is not operational.

Work around

Do not use the NAND Tree function. Instead, use functional tests (e.g., RGMII data access, MDC/MDIO management access, LED status indication, interrupt status indication) to verify digital I/O pin toggles and connections to the PCB.

PLAN

This erratum will not be corrected in a future revision.
Module 5: Auto-Negotiation link-up failure / long link-up time due to default FLP interval setting

DESCRIPTION
The device's Auto-Negotiation FLP (Fast Link Pulse) burst-to-burst timing defaults to 8ms. IEEE Standard specifies this timing to be 16ms +/-8ms. Some link partners, such as Intel G-PHY controllers, were observed in bench tests to have tighter timing requirements that need to detect the FLP interval timing centered at 16ms.

END USER IMPLICATIONS
With the default 8ms FLP interval setting, intermittent link failure and long link-up time can occur with some link partners.

Work around
After device power-up/reset, change the FLP interval to 16ms using the following programming sequence to set MMD - Device Address 0h, Register 4h = 0x0006 and MMD - Device Address 0h, Register 3h = 0x1A80:

a) Write Register Dh = 0x0000 //Set up register address for MMD - Device Address 0h
b) Write Register Eh = 0x0004 //Select Register 4h of MMD - Device Address 0h
c) Write Register Dh = 0x4000 //Select register data for MMD - Device Address 0h, Register 4h
d) Write Register Eh = 0x0006 //Write value 0x0006 to MMD - Device Address 0h, Register 4h
e) Write Register Dh = 0x0000 //Set up register address for MMD - Device Address 0h,f) Write Register Eh = 0x0003 //Select Register 3h of MMD - Device Address 0h
g) Write Register Dh = 0x4000 //Select register data for MMD - Device Address 0h, Register 3h
h) Write Register Eh = 0x1A80 //Write value 0x1A80 to MMD - Device Address 0h, Register 3h

Then restart Auto-Negotiation for the 16ms FLP interval setting to take effect.

PLAN
This erratum will not be corrected in a future revision.

Module 6: Link failure after repeated unplugging/plugging of cable in forced 100BASE-TX mode

DESCRIPTION
With Auto-Negotiation disabled and the speed set to forced 100BASE-TX mode, the device can sometimes run into a failed link-up state where the device is in the link-down state and its link partner is in the link-up state. This link failure occurs if the device receive circuit does not get properly reset when the link status changes from link-up to link-down (e.g. cable is unplug), causing the next link-up attempt to fail when the cable is reconnected.

END USER IMPLICATIONS
When the device is set to forced 100BASE-TX mode, intermittent link failure can occur after repeated unplugging/ plugging of the cable.

Work around
Force a restart of the link-up process by causing the link partner to drop link and thereby cease its 100BASE-TX signal transmission to the device. When the 100BASE-TX receive signal is no longer detected, the device automatically generates a reset to its receive circuit to exit the link failure state and restart the link-up process.

PLAN
This erratum will not be corrected in a future revision.
Module 7: 1000BASE-T receive traffic stoppage in daisy chain configuration

DESCRIPTION
In a daisy chain configuration (PHY1 through PHY4 in Figure 3), 1000BASE-T receive traffic stoppage can occur at one of the device-to-device links in the chain.

FIGURE 3: DAISY CHAIN CONFIGURATION

The 1000BASE-T receive traffic stoppage at the local device (PHY3) is triggered by a single GTX_CLK clock pulse assertion of the TX_EN signal from the MAC (FPGA1) to the link partner device (PHY2). This scenario can occur after FPGA programming when the FPGA1 MAC transmit pins change to outputs. During the pins transition, if the TX_EN signal is not driven by the FPGA1 and then floats high (gets asserted) for a single clock period at the PHY2 input, a GTX_CLK output transition from low to high triggers the error condition.

END USER IMPLICATIONS
This 1000BASE-T receive traffic stoppage occurs only with the daisy chain configuration described above.

Work around
Delay GTX_CLK output from FPGA after programming to allow the TX_EN output to be driven low first. Alternatively, add an 1 kohm pull-down at the TX_EN input of the device.

PLAN
This erratum will not be corrected in a future revision.
Module 8: Two RX_CLK clock phases in RGMII 10Mbps mode

DESCRIPTION
In RGMII 10Mbps mode only, the device can power-up/reset to one of two possible clock phases. With respect to the RX_DV and RXD[3:0] output high/low transitions, one phase transition is in sync with the RX_CLK clock rising edge, and the other phase transition is 100ns before the RX_CLK clock rising edge.

Figure 4 details scope captures of RXD0 aligned and not aligned (100ns before) with respect to the RX_CLK clock rising edge. RX_DV and RXD[3:1] have similar timings.

FIGURE 4: RXD0 SCOPE CAPTURES

END USER IMPLICATIONS
None. This anomaly is unlikely to cause timing problem with MACs. MAC chips have setup/hold times that are typically <10ns. There is plenty of timing margin to allow for the device’s 100ns clock phase shift in a 400ns clock period.

Work around
None.

PLAN
This erratum will not be corrected in a future revision.
Module 9: 1000BASE-T Transmitter Jitter fails to meet IEEE compliance specification

DESCRIPTION
The device’s 1000BASE-T Transmitter Jitter, Master Filtered (No TX_TCLK Access) is in the 500-600ps range, versus the <300ps indicated in the IEEE specification.

END USER IMPLICATIONS
The device consumes an additional 200-300ps of the system’s total jitter budget.
Link partners in properly designed systems that follow good Gigabit PHY design practices will not experience link drop and packet errors/losses that are attributed directly to the transmit jitter of the device. In lab testing and field testing, the device has shown to have neither link drop nor packet error/loss in continuous overnight runs (>12 hours) with 1000Mbps full-duplex traffic at 100% utilization. Table 3 provides a sampling of the overnight test results.

TABLE 3: SAMPLE OVERNIGHT TEST RESULTS

<table>
<thead>
<tr>
<th>Link Partners</th>
<th>Continuous Overnight Run (>12 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short Cable (2 feet)</td>
</tr>
<tr>
<td>KSZ9031 <=> KSZ9031</td>
<td>No packet error/loss</td>
</tr>
<tr>
<td>KSZ9031 <=> KSZ9021</td>
<td>No packet error/loss</td>
</tr>
<tr>
<td>KSZ9031 <=> LAN7800</td>
<td>No packet error/loss</td>
</tr>
<tr>
<td>KSZ9031 <=> LAN8810</td>
<td>No packet error/loss</td>
</tr>
<tr>
<td>KSZ9031 <=> Netgear GS105</td>
<td>No packet error/loss</td>
</tr>
</tbody>
</table>

Link partners in poorly designed systems will also typically exhibit poor receiver jitter tolerance. Here, link drops and packet errors/losses may be attributed to the receiver jitter tolerances of the link partners, not necessarily the transmit jitter of the device.

Work around
None.

PLAN
This erratum will not be corrected in a future revision.
Module 10: 1000BASE-T Transmitter Distortion fails to meet IEEE compliance specification

DESCRIPTION
The device's 1000BASE-T Transmitter Distortion is in the 8-20mV range, versus the <10mV indicated in the IEEE specification.

END USER IMPLICATIONS
It is unlikely this specification failure will impact system performance. The following link to the Gigabit Transmit Distortion Testing document on the IEEE802.org website also questions the validity of this measurement:
http://www.ieee802.org/3/axay/public/may_07/sefidvash_1_0507.pdf
IEEE testing calls for <10mV peak transmitter distortion for at least 60% of the UI within the eye opening. However, this measurement might not be valid, as the transmit distortion test is sensitive to transmit jitter. Refer to the explanation below, taken from the aforementioned IEEE document.

The Gigabit Transmit Distortion Testing document indicates:
• On page 6, a contradiction between Transmit Jitter and Transmit Distortion requirements:

FIGURE 5: IEEE DOCUMENT PAGE 6

![Consistency Between Transmit Jitter and Transmit Distortion Specifications](image)

• PHY operating with allowed transmit jitter will not be able to meet 10mV distortion spec if the distortion spec must be met at the edges

- Transmit distortion test not impacted by transmit jitter in the eye opening
• On page 7:
 - The transmit distortion test is sensitive to transmit clock jitter during the rise/fall time.
 - It is recommended to change the requirement to use at least 30%, instead of at least 60%, of the UI within the
 eye opening for the <10mV peak transmitter distortion.

FIGURE 6: IEEE DOCUMENT PAGE 7

<table>
<thead>
<tr>
<th>Link Partner</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Comm Corp. SuperStack 3 4050</td>
</tr>
<tr>
<td>3Comm Corp. SuperStack II 4900</td>
</tr>
<tr>
<td>Agere Systems ET1310-EVB NIC</td>
</tr>
<tr>
<td>Atheros AR8314 Switch</td>
</tr>
<tr>
<td>Atheros AR8316 Switch</td>
</tr>
<tr>
<td>Avaya 9640G IP Phone</td>
</tr>
<tr>
<td>Broadcom BCM53115</td>
</tr>
<tr>
<td>Broadcom BCM56218</td>
</tr>
<tr>
<td>Broadcom BCM5650</td>
</tr>
<tr>
<td>Coyote Point Systems E550si</td>
</tr>
<tr>
<td>Coyote Point Systems E650gx</td>
</tr>
<tr>
<td>Dell Power Connect 6224</td>
</tr>
<tr>
<td>Extreme Networks Summit 1i</td>
</tr>
<tr>
<td>HP ProCurve J9020A</td>
</tr>
</tbody>
</table>
TABLE 4: TESTED GIGABIT PHY LINK PARTNERS (CONTINUED)

<table>
<thead>
<tr>
<th>Link Partner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel NetStructure 480T</td>
</tr>
<tr>
<td>Polycom SoundPoint IP 670 Phone</td>
</tr>
<tr>
<td>Realtek RTL8368S+RTL8214</td>
</tr>
<tr>
<td>Realtek RTL8369+RTL8212</td>
</tr>
<tr>
<td>Realtek 8111C NIC</td>
</tr>
</tbody>
</table>

Work around

None.

PLAN

This erratum will not be corrected in a future revision.

Module 11: Transmitter common mode voltage drift at cold temperature

DESCRIPTION

Below 0°C, the voltage controlled output of the transmitter can become unstable and lead to distorted signaling. The voltage instability is common on both the TX+ and TX- lines, so the AC data is not affected unless the voltage drifts to the AVDDH level. If the common mode voltage drifts too close to AVDDH, the higher voltages will begin to clip, which can prevent successful Ethernet communication.

END USER IMPLICATIONS

There are two possible ways this issue may be seen:

- The device may exhibit communication issues (i.e., dropped link)
- The device may not link or communicate

Work around

- Operate above 0°C
- Contact your local sales representative for additional information

PLAN

This erratum has been corrected in silicon revision A4. All future orders will be transitioning to A4 devices. Contact your local sales representative for additional information.
APPENDIX A: DOCUMENT REVISION HISTORY

<table>
<thead>
<tr>
<th>Revision Level & Date</th>
<th>Section/Figure/Entry</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS80000692D (05-25-17)</td>
<td>Module 11.</td>
<td>Updated module to indicate the erratum has been corrected in silicon revision A4.</td>
</tr>
<tr>
<td></td>
<td>Intro</td>
<td>Added note: “All future orders will be transitioning to silicon revision A4. Contact your local sales representative for additional information.”</td>
</tr>
<tr>
<td></td>
<td>Intro, Table 1</td>
<td>Added additional KSZ9031 part numbers to the list of affected silicon: KSZ9031RNXUB and KSZ9031RNXVB.</td>
</tr>
<tr>
<td></td>
<td>Table 2</td>
<td>Added “Affected Silicon Revisions” column for clarity.</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>Minor grammatical corrections.</td>
</tr>
</tbody>
</table>
| DS80000692C (01-13-17) | Module 11. | Added new erratum:
- Transmitter common mode voltage drift at cold temperature |
| DS80000692B (07-26-16) | Module 9., Module 10. | Added new errata:
- 1000BASE-T Transmitter Jitter fails to meet IEEE compliance specification
- 1000BASE-T Transmitter Distortion fails to meet IEEE compliance specification |
| | Module: Link drop in RGMII Energy Efficient Ethernet (EEE) Mode | Removed module. Energy Efficient Ethernet functionality has been removed from this device. |
| DS80000692A (03-16-16) | All | Initial release |
THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

• **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software

• **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing

• **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Helio, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestiC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 9781522417545

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV
ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office
Suits 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon

Hong Kong
Tel: 852-2943-5100
Fax: 852-2941-3431

Australia - Sydney
Tel: 61-2-8638-6733
Fax: 61-2-8638-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5161
Fax: 86-28-8666-7889

China - Chongqing
Tel: 86-23-8960-9588
Fax: 86-23-8980-9500

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-3326-8000
Fax: 86-21-3326-8021

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4550-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

France - Saint Cloud
Tel: 33-1-30-60-70-00

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra'anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7289-7561

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenburg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

© 2017 Microchip Technology Inc.
DS80000692D-page 15
11/07/16