This document describes known anomalies for all functional revisions of the USB332x device.

TABLE 1: SILICON ISSUE SUMMARY

<table>
<thead>
<tr>
<th>Hardware Functional Rev A</th>
<th>Hardware Functional Rev B</th>
<th>Hardware Functional Rev C</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td>Module 1: “VDD1.8 Current in Suspend Mode”</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td>Module 2: “ULPI Clock In Mode”</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Module 3: “RID Converter Cannot Detect 440K Resistor”</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Module 4: “Intermittent Loss of USB Link in OMAP4 Host Applications”</td>
</tr>
</tbody>
</table>

Legend: X = Applicable to the Functional Rev.

Silicon Errata Issue

Module 1: VDD1.8 Current in Suspend Mode

Description
The VBAT (VDD3.3) pin may draw up to 1.3mA of current from the VBAT source when all of the following conditions apply:

1. The VDD1.8 supply is removed.
2. The VBAT supply is ON.

In this mode the VBAT (VDD3.3) pin should draw \(\leq 25 \mu A \).

Table 2 details which USB332x power combination modes are affected by this anomaly:

TABLE 2: THREE RAIL POWER COMBINATIONS

<table>
<thead>
<tr>
<th>Power Combo</th>
<th>VBUS</th>
<th>VBAT/ VDD3.3</th>
<th>VDD1.8</th>
<th>Note</th>
<th>Affected by Anomaly</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>PHY is off</td>
<td>NO</td>
</tr>
<tr>
<td>2</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>PHY is off, USB cable connected. VBUS current will be approximately 1 (\mu A).</td>
<td>NO</td>
</tr>
<tr>
<td>3</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ULPI registers can be read and maintain their contents as long as the RESETEB pin is held high. The PHY can be placed in low power mode via the ULPI interface.</td>
<td>NO</td>
</tr>
<tr>
<td>4</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>Same as line 3 above, but the USB cable connection has been made. VBUS current will be approximately 1 (\mu A).</td>
<td>NO</td>
</tr>
<tr>
<td>5</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>Normal operating mode of the PHY when a USB cable connection is not made.</td>
<td>NO</td>
</tr>
<tr>
<td>6</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>Normal operating mode of the PHY.</td>
<td>NO</td>
</tr>
<tr>
<td>7</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>ULPI interface not functional.</td>
<td>YES</td>
</tr>
<tr>
<td>8</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>ULPI interface not functional.</td>
<td>YES</td>
</tr>
</tbody>
</table>
For power combinations where VBUS, VBAT, and VDD3.3 turn on together, Table 3 details the modes affected by this anomaly:

TABLE 3: TWO RAIL POWER COMBINATIONS

<table>
<thead>
<tr>
<th>Power Combo</th>
<th>VBUS, VBAT, VDD3.3</th>
<th>VDD1.8</th>
<th>Note</th>
<th>Affected by Anomaly</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OFF</td>
<td>OFF</td>
<td>PHY is off.</td>
<td>NO</td>
</tr>
<tr>
<td>2</td>
<td>OFF</td>
<td>ON</td>
<td>ULPI registers can be read and maintain their contents as long as the RESETB pin is held high. The PHY can be placed in low power mode via the ULPI interface.</td>
<td>NO</td>
</tr>
<tr>
<td>3</td>
<td>ON</td>
<td>ON</td>
<td>Normal operating mode of the PHY.</td>
<td>NO</td>
</tr>
<tr>
<td>4</td>
<td>ON</td>
<td>OFF</td>
<td>ULPI interface not functional.</td>
<td>YES</td>
</tr>
</tbody>
</table>

End User Implications

Removing supply voltage from both VBAT and VDD1.8 produces a leakage current of 0 μA. If the customer elects to leave VBAT on while VDD1.8 is off, the USB332x may exhibit increased current draw (>25 μA) from the VBAT (VDD3.3) supply when in Suspend Mode. USB functionality is not affected.

Solution

- Leave the VDD1.8 supply ON whenever voltage is applied to VBAT. Standby current will be ≤ 25 μA.
- Supply voltage on VBAT from a PMIC and switch it off whenever VDD1.8 is switched off. Standby current will be 0 μA.
- Add a LDO regulator with enable between VBAT and the battery which can be switched off whenever VDD1.8 is switched off. Standby current will be 0 μA.
- Add a resistor divider between VDD3.3 and VDD1.8 supplies, as shown in Figure 1:

FIGURE 1: RESISTOR DIVIDER CIRCUIT

Where:

- R1 = 210 kΩ 1%
- R2 = 309 kΩ 1%

Note: If there are other devices attached to the 1.8V on the customer platform, those device impedances need to be taken into account.

Standby current will be ≤ 30 μA.

Plan

This anomaly has been fixed in functional revision C devices and newer devices.
Module 2: ULPI Clock In Mode

Description
When using the USB332x with a 60 MHz input clock, the ULPI interface timing does not meet the ULPI specification. This only affects ULPI Clock In Mode. ULPI Clock Out Mode is not affected.

Table 4 details the various ULPI Clock In Mode timing parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup Time (STP, data in)</td>
<td>TSC, TSD</td>
<td>60 MHz REFCLK</td>
<td>-0.5</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Hold Time (STP data in)</td>
<td>THC, THD</td>
<td>60 MHz REFCLK</td>
<td>-2.5</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Output Delay (control out, 8-bit data out)</td>
<td>TDC, TDD</td>
<td>60 MHz REFCLK</td>
<td>3.0</td>
<td>8.0</td>
<td>ns</td>
</tr>
</tbody>
</table>

End User Implications
Click In Mode applications must be checked to ensure that the link supports this timing.

Solution
The link may be able to adjust the phase of the 60 MHz ULPI clock to optimize the timing between the link and the transceiver.

Plan
This anomaly has been fixed in functional revision C devices and newer devices.

Module 3: RID Converter Cannot Detect 440K Resistor

Description
The RID Converter does not reliably detect a 440K resistor. An “ID Floating” condition may be reported to the Vendor RID Conversion register and the Car Kit Interrupt Status register.

End User Implications
The USB332x will not reliably discern the difference between a 440K ohm resistor on the ID pin and a floating ID pin. Other RID converter conversion values are still functional and their operation is not affected.

Solution
None.

Plan
This will not be addressed in a future revision of the device.

Module 4: Intermittent Loss of USB Link in OMAP4 Host Applications

Description
This anomaly may apply to any host USB link when ALL of the following conditions apply:

1. The USB332x is connected to a USB Host (EHCI or OTG controller) via ULPI and operates as a USB Host Transceiver.
2. The USB332x is moved from High Speed configuration to Full Speed by removing the HS terminations and the SuspendM == 1.

In some applications where the Texas Instruments OMAP4 is the USB Host and connects to the USB332x via ULPI, the OMAP4 can periodically lose the connection with the downstream device when attempting to suspend the USB connection. The root cause of this is that the OMAP EHCI controller can lock up when entering USB Suspend, even if the OMAP properly puts the USB332x into Low Power Mode. In the ULPI suspend signaling definition in the ULPI specification and in the majority of SoC’s, the command to suspend the USB Transceiver and the command to change to the USB Transceiver’s Full Speed receivers arrives in a single register command. The OMAP4 places a delay (3ms) between these commands because the OMAP4 is waiting for the downstream device to assert its 1.5K pull-up on DP (indicating that the downstream device is in USB suspend). During this 3ms delay, noise on the DP and DM USB signals can cause a significant number of RX CMDs and Receive data packets to be transmitted by the USB332x. As a result, the OMAP EHCI controller may miss the status update required to initiate the command to put the PHY into low power mode and place the OMAP4 EHCI controller into the USB Suspend state.
In the OMAP EHCI controller, the Suspend bit becomes '0' by writing to the Resume bit, waiting for >20ms, and then clearing the Resume bit to stop Resume signaling on bus. If the bus has resumed into HS-IDLE mode, then the Suspend bit will be automatically cleared. Under the conditions of this anomaly, the Resume Bit does not clear at all - it remains stuck at value '1'. This behavior is the signature of this anomaly.

End User Implications
The customer's application will not be able to recover from USB Suspend and will lose communication with the downstream USB device.

Solution

1. The host SoC should command the USB332x to enable Full Speed Transceivers and enter Low Power Mode with a single command (TX CMD = 0x05h). Do not split these two steps into separate TX CMDs. The downstream USB device will always enter USB suspend when this work around is used.

2. If port resume bit on the EHCI port is not cleared in the OMAP upon attempted entry to USB suspend, then the OMAP EHCI controller failed to enter suspend. If the USB331x was suspended successfully (clearing the SuspendM bit in the Function Control Register), then the OMAP must assert either:
 - STP to bring the USB332x out of Low Power Mode or:
 - Toggle RESETB on the USB332x to restart the USB332x

3. To reduce USB noise during the undefined state prior to entering Low Power Mode, assert the ChargerPullupEnableDP or ChargerPullupEnableDM bits. Only assert one of these two bits. In applications with very low noise on USB signals DP and DM, this can provide a robust workaround to this anomaly:
 - **ChargerPullupEnableDP/DM (Bits 4 and 5 of register 39h)** - These bits connect a 125k pull up resistor to the 3.3V supply of the PHY, or inject ~20uA of current onto the desired pin.

Plan
This will not be addressed in a future revision of the device.
APPENDIX A: DOCUMENT REVISION HISTORY

<table>
<thead>
<tr>
<th>Revision Level & Date</th>
<th>Section/Figure/Entry</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev A (April 2015)</td>
<td></td>
<td>Initial release</td>
</tr>
</tbody>
</table>
THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

• **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
• **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
• **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, FlexPWR, JukeBlox, KeeLog, KeeLog logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICKit, PICKit logo, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-167-4