The PIC16(L)F1825/1829 family devices that you have received conform functionally to the current Device Data Sheet (DS40001440C), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the PIC16(L)F1825/1829 silicon.

For example, to identify the silicon revision level using MPLAB IDE in conjunction with a hardware debugger:

1. Using the appropriate interface, connect the device to the hardware debugger.
2. Open an MPLAB IDE project.
3. Configure the MPLAB IDE project for the appropriate device and hardware debugger.
4. Based on the version of MPLAB IDE you are using, do one of the following:
 a) For MPLAB IDE 8, select Programmer > Reconnect.
 b) For MPLAB X IDE, select Window > Dashboard and click the Refresh Debug Tool Status icon ().
5. Depending on the development tool used, the part number and Device Revision ID value appear in the Output window.

The DEVREV values for the various PIC16(L)F1825/1829 silicon revisions are shown in Table 1.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>DEVICE ID<13:0></th>
<th>DEV<8:0></th>
<th>Revision ID for Silicon Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A0</td>
<td>A2</td>
<td>A4</td>
</tr>
<tr>
<td>PIC16F1825</td>
<td>10 0111 011</td>
<td>0 0000</td>
<td>0 0010</td>
</tr>
<tr>
<td>PIC16LF1825</td>
<td>10 1000 011</td>
<td>0 0000</td>
<td>0 0010</td>
</tr>
<tr>
<td>PIC16F1829</td>
<td>10 0111 111</td>
<td>0 0000</td>
<td>0 0010</td>
</tr>
<tr>
<td>PIC16LF1829</td>
<td>10 1000 111</td>
<td>0 0000</td>
<td>0 0010</td>
</tr>
</tbody>
</table>

Note 1: The Device ID is located in the configuration memory at address 8006h.

Note 2: Refer to the “PIC12(L)F1822/PIC16(L)F182X Memory Programming Specification” (DS41390) for detailed information on Device and Revision IDs for your specific device.
TABLE 2: SILICON ISSUE SUMMARY

<table>
<thead>
<tr>
<th>Module</th>
<th>Feature</th>
<th>Item Number</th>
<th>Issue Summary</th>
<th>Affected Revisions (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscillator</td>
<td>LFINTOSC</td>
<td>1.1</td>
<td>Wake from Sleep.</td>
<td>X</td>
</tr>
<tr>
<td>Oscillator</td>
<td>Clock Switching</td>
<td>1.2</td>
<td>Clock switching can cause a single corrupted instruction.</td>
<td>X</td>
</tr>
<tr>
<td>Oscillator</td>
<td>Oscillator Start-up Timer</td>
<td>1.3</td>
<td>OSTS bit remains set.</td>
<td>X X</td>
</tr>
<tr>
<td>Timer1</td>
<td>T1 Gate Toggle mode</td>
<td>2.1</td>
<td>T1 Gate flip-flop does not clear.</td>
<td>X</td>
</tr>
<tr>
<td>ADC</td>
<td>Error Parameters</td>
<td>3.1</td>
<td>Differential and gain error.</td>
<td>X X X</td>
</tr>
<tr>
<td>In-Circuit Serial Programming™ (ICSP™)</td>
<td>Low-Voltage Programming</td>
<td>4.1</td>
<td>Bulk Erase not available with LVP.</td>
<td>X</td>
</tr>
<tr>
<td>Clock Switching</td>
<td>OSTS Status Bit</td>
<td>5.1</td>
<td>Remains clear when 4xPLL enabled.</td>
<td>X X X</td>
</tr>
<tr>
<td>MSSP (Master Synchronous Serial Port)</td>
<td>Slew Rate</td>
<td>6.1</td>
<td>Slow rate reduction on SSP2.</td>
<td>X X X</td>
</tr>
<tr>
<td>Enhanced Universal Synchronous Asynchronous Receiver (EUSART)</td>
<td>Auto-Baud Detect</td>
<td>7.1</td>
<td>Auto-Baud Detect may store incorrect count value in the SPBRG registers.</td>
<td>X</td>
</tr>
<tr>
<td>Enhanced Universal Synchronous Asynchronous Receiver (EUSART)</td>
<td>16-Bit High-Speed Asynchronous mode</td>
<td>7.2</td>
<td>Works improperly at maximum rate.</td>
<td>X X X</td>
</tr>
<tr>
<td>MSSP (Master Synchronous Serial Port)</td>
<td>SPI Master mode</td>
<td>8.1</td>
<td>Buffer Full (BF) bit or MSSP Interrupt Flag (SSPIF) bit becomes set 1/2 SCK cycle too early.</td>
<td>X X X</td>
</tr>
</tbody>
</table>

Note 1: Only those issues indicated in the last column apply to the current silicon revision.
Silicon Errata Issues

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (A4).

1. Module: Oscillator

1.1 LFINTOSC

The device may not wake-up from Sleep mode when the LFINTOSC is selected as the system clock.

Work around

Enable the Fail-Safe Clock Monitor (FSCM) feature before initiating Sleep mode. When the Fail-Safe Clock Monitor (FSCM) feature is enabled before entering Sleep mode, the device will wake from Sleep.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A0</th>
<th>A2</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2 Clock Switching

When switching clock sources between INTOSC clock source and an external clock source, one corrupted instruction may be executed after the switch occurs.

This issue does not affect Two-Speed Start-up or the Fail-Safe Clock Monitor operation.

Work around

When switching from an external oscillator clock source, first switch to 16 MHz HFINTOSC. Once running at 16 MHz HFINTOSC, configure IRCF to run at desired internal oscillator frequency.

When switching from an internal oscillator (INTOSC) to an external oscillator clock source, first switch to HFINTOSC High-Power mode (8 MHz or 16 MHz). Once running from HFINTOSC, switch to the external oscillator clock source.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A0</th>
<th>A2</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

1.3 Oscillator Start-up Timer

During the Two-Speed Start-up sequence, the Oscillator Start-up Timer is enabled to count 1024 clock cycles. After the count is reached, the OSTS bit is set, the system clock is held low until the next falling edge of the external crystal (LP, XT or HS mode), before switching to the external clock source.

When an external oscillator is configured as the primary clock and Fail-Safe Clock mode is enabled (FCMEN = 1), any of the following conditions will result in the Oscillator Start-up Timer failing to restart:

- MCLR Reset
- Wake from Sleep
- Clock change from INTOSC to Primary Clock

This anomaly will manifest itself as a clock failure condition for external oscillators which take longer than the clock failure time-out period to start.

Work around

None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A0</th>
<th>A2</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
2. Module: Timer1

2.1 Timer1 Gate Toggle mode

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1 gate signal. To perform this function, the Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the gate signal. Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When working properly, clearing either the T1GTM bit or the TMR1ON bit would also clear the output value of this flip-flop, and hold it clear. This is done in order to control which edge is being measured. The issue that exists is that clearing the TMR1ON bit does not clear the output value of the flip-flop and hold it clear.

Work around

Clear the T1GTM bit in the T1GCON register to clear and hold clear the output value of the flip-flop.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A0</th>
<th>A2</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Module: ADC

3.1 ADC Differential and Gain Error Parameters

The differential and gain error parameters are as follows:

<table>
<thead>
<tr>
<th>Param. No.</th>
<th>Sym.</th>
<th>Characteristic</th>
<th>Min.</th>
<th>Typ.†</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD03</td>
<td>EDL</td>
<td>Differential Error</td>
<td>—</td>
<td>—</td>
<td>±1.5</td>
<td>LSb</td>
<td>VREF = 3.0V. Missing codes = 2</td>
</tr>
<tr>
<td>AD04</td>
<td>EOFF</td>
<td>Offset Error</td>
<td>—</td>
<td>—</td>
<td>±2</td>
<td>LSb</td>
<td>VREF = 3.0V. At -40°C offset is ±3</td>
</tr>
<tr>
<td>AD05</td>
<td>EGN</td>
<td>Gain Error</td>
<td>—</td>
<td>—</td>
<td>±2</td>
<td>LSb</td>
<td>VREF = 3.0V</td>
</tr>
</tbody>
</table>

Work around

None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A0</th>
<th>A2</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
4. Module: In-Circuit Serial Programming™ (ICSP™)

4.1 Bulk Erase Feature not available with Low-Voltage Programming mode

A Bulk Erase of the program Flash memory or data memory cannot be executed in Low-Voltage Programming mode.

Work around

Method 1: If ICSP Low-Voltage Programming mode is required, use row erases to erase the program memory, as described in the Program/Verify mode section of the Programming Specification. Data memory must be over-written with the desired values.

Method 2: Use ICSP High-Voltage Programming mode if a Bulk Erase is required.

Note: Only the Bulk Erase feature will erase program or data memory if code or data protection is enabled. Method 2 must be used if code or data protection is enabled.

5. Module: Clock Switching

5.1 OSTS Status Bit

When the 4xPLL is enabled, the Oscillator Start-up Time-out Status (OSTS) bit always remains clear.

Work around

None.

Affected Silicon Revisions

6. Module: MSSP (Master Synchronous Serial Port)

6.1 Unintentional SPI Slew Rate Reduction on SSP2

This issue is caused when SSP2 is configured for SPI Master mode while SSP1 is set up for I²C™ Slave/Master mode with the slew rate (SMP) bit set. This limits SPI bit rates and can cause triangle wave output which is proportional to the speed of the clock. It is most noticeable when the SPI clock exceeds 500 kHz. The selected mode in SSP2 does not affect this issue (CKP/CKE bits).

Work around

1. Disable slew rate control on SSP1 by clearing the SMP bit;
2. Select the alternate pin for SSP2 output;
3. Swap the functionality of the modules;
4. Configure SSP2 with a slower SPI clock.

Affected Silicon Revisions

Note: Only the Bulk Erase feature will erase program or data memory if code or data protection is enabled. Method 2 must be used if code or data protection is enabled.
7. Module: Enhanced Universal
 Synchronous Asynchronous
 Receiver (EUSART)

7.1 Auto-Baud Detect

When using automatic baud detection (ABDEN), on occasion, an incorrect count value can be stored at the end of auto-baud detection in the SPBRGH:SPBRGL (SPBRG) registers. The SPBRG value may be off by several counts. This condition happens sporadically when the device clock frequency drifts to a frequency where the SPBRG value oscillates between two different values. The issue is present regardless of the baud rate Configuration bit settings.

Work around

When using auto-baud, it is a good practice to always verify the obtained value of SPBRG, to ensure it remains within the application specifications. Two recommended methods are shown below.

For additional auto-baud information, see Technical Brief TB3069, “Use of Auto-Baud for Reception of LIN Serial Communications Devices: Mid-Range and Enhanced Mid-Range”.

EXAMPLE 1: METHOD 1 – EUSART AUTO-BAUD DETECT WORK AROUND

In firmware, define default, minimum and maximum auto-baud (SPBRG) values according to the application requirements.

For example, if the application runs at 9600 baud at 16 MHz then, the default SPBRG value would be (assuming 16-bit/Asynchronous mode) 0x67. The minimum and maximum allowed values can be calculated based on the application. In this example, a +/-5% tolerance is required, so tolerance is 0x67 * 5% = 0x05.

```
#define SPBRG_16BIT *((*int)&SPBRG; // define location for 16-bit SPBRG value
const int DEFAULT_BAUD = 0x0067; // Default Auto-Baud value
const int TOL = 0x05; // Baud Rate % tolerance
const int MIN_BAUD = DEFAULT_BAUD - TOL; // Minimum Auto-Baud Limit
const int MAX_BAUD = DEFAULT_BAUD + TOL; // Maximum Auto-Baud Limit

ABDEN = 1; // Start Auto-Baud
while (ABDEN); // Wait until Auto-Baud completes

if((SPBRG_16BIT > MAX_BAUD)||(SPBRG_16BIT < MIN_BAUD))
{
    SPBRG_16BIT = DEFAULT_BAUD); // if out of spec, use DEFAULT_BAUD
}
else
{
    // if in spec, continue using the
    // Auto-Baud value in SPBRG
```
EXAMPLE 2: METHOD 2 – EUSART AUTO-BAUD DETECT WORK AROUND

Similar to Method 1, define default, minimum and maximum auto-baud (SPBRG) values. In firmware, compute a running average of SPBRG. If the new SPBRG value falls outside the minimum or maximum limits, then use the current running average value (Average_Baud), otherwise use the auto-baud SPBRG value and calculate a new running average.

For example, if the application runs at 9600 baud at 16 MHz then, the default SPBRG value would be (assuming 16-bit/Asynchronous mode) 0x67. The minimum and maximum allowed values can be calculated based on the application. In this example, a +/-5% tolerance is required, so tolerance is 0x67 * 5% = 0x05.

```c
#define SPBRG_16BIT (*((int*)&SPBRG); // define location for 16-bit SPBRG value
const int DEFAULT_BAUD = 0x0067; // Default Auto-Baud value
const int TOL = 0x05; // Baud Rate % tolerance
const int MIN_BAUD = DEFAULT_BAUD - TOL; // Minimum Auto-Baud Limit
const int MAX_BAUD = DEFAULT_BAUD + TOL; // Maximum Auto-Baud Limit

int Average_Baud; // Define Average_Baud variable
int Integrator; // Define Integrator variable

Average_Baud = DEFAULT_BAUD; // Set initial average Baud rate
Integrator = DEFAULT_BAUD*15; // The running 16 count average

ABDEN = 1; // Start Auto-Baud
while (ABDEN); // Wait until Auto-Baud completes

Integrator+ = SPBRG_16BIT;
Average_Baud = Integrator/16;
if((SPBRG_16BIT > MAX_BAUD)||(SPBRG_16BIT < MIN_BAUD))
  { // Check if value is within limits
    SPBRG_16BIT = Average_Baud; // If out of spec, use previous average
  }
else // If in spec, calculate the running
  { // average but continue using the
    Integrator+ = SPBRG_16BIT;
    Average_Baud = Integrator/16;
    Integrator- = Average_Baud;
  }
```

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A0</th>
<th>A2</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.2 16-Bit High-Speed Asynchronous Mode

EUSART provides unexpected operation when the 16-bit High-Speed Asynchronous mode is selected and the Baud Rate Generator Data register values are loaded with zero (‘0’). The use of this configuration is not recommended for EUSART communication. The configuration is shown below in the following table:

<table>
<thead>
<tr>
<th>Configuration Bits</th>
<th>BRG Data Registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNC</td>
<td>BRG16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Work around

Ensure that the SPBRGH or the SPBRGL register is loaded with a non-zero value.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A0</th>
<th>A2</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

8. Module: MSSP (Master Synchronous Serial Port)

8.1 SPI Master mode

When the MSSP is used in SPI Master mode and the CKE bit is clear (CKE = 0), the Buffer Full (BF) bit and the MSSP Interrupt Flag (SSPIF) bit becomes set ½ a SCK cycle early. If the user software immediately reacts to either of the bits being set, a write collision may occur as indicated by the WCOL bit being set.

Work around

To avoid a write collision:

- Method 1 – Add a software delay of one SCK period after detecting the completed transfer (BF or SSPIF bit becomes set) and prior to writing to the SSPBUF register. Verify the WCOL bit is clear after writing to SSPBUF. If the WCOL bit is set, clear the bit in software and rewrite the SSPBUF register. Or
- Method 2 – As part of the MSSP initialization procedure, set the CKE bit (CKE = 1).

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A0</th>
<th>A2</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS40001440C):

Note: Corrections are shown in **bold**. Where possible, the original bold text formatting has been removed for clarity.

None.
APPENDIX A: DOCUMENT
REVISION HISTORY

Rev A Document (01/2011)
Initial release of this document.

Added Module 6, MSSP.

Rev C Document (02/2012)
Updated Table 1; Added Modules 1.3, 1.4, 1.5; Added Module 7, EUSART; Other minor corrections.
Data Sheet Clarifications: Added Module 1, Oscillator.

Rev D Document (11/2012)
Removed Module 1.1, HS Oscillator; Added Silicon Revision A2.

Rev E Document (10/2013)
Added Module 7.2, 16-Bit High-Speed Asynchronous Mode; Other minor corrections.

Rev F Document (01/2014)
Added Silicon Revision A4; Other minor corrections.

Rev G Document (04/2014)
Removed Module 1.2, HFINTOSC Ready/Stable Bit; Fixed Silicon Revision A4 for Module 1.3, Oscillator Start-up Timer.

Rev H Document (10/2014)
Added Module 8.1.
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBox, KEELOG, KEELOG logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC16C62 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-887-8