The PIC18(L)F26/46K22 family devices that you have received conform functionally to the current Device Data Sheet (DS41412G), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the PIC18(L)F26/46K22 silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (A4).

Data Sheet clarifications and corrections start on page 6, following the discussion of silicon issues.

The silicon revision level can be identified using the current version of MPLAB® IDE and Microchip’s programmers, debuggers, and emulation tools, which are available at the Microchip corporate website (www.microchip.com).

For example, to identify the silicon revision level using MPLAB IDE in conjunction with a hardware debugger:

1. Using the appropriate interface, connect the device to the hardware debugger.
2. Open an MPLAB IDE project.
3. Configure the MPLAB IDE project for the appropriate device and hardware debugger.
4. Based on the version of MPLAB IDE you are using, do one of the following:
 - For MPLAB IDE 8, select **Programmer > Reconnect**.
 - For MPLAB X IDE, select **Window > Dashboard** and click the **Refresh Debug Tool Status** icon ().
5. Depending on the development tool used, the part number and Device Revision ID value appear in the **Output** window.

Note: If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.

The DEVREV values for the various PIC18(L)F26/46K22 silicon revisions are shown in Table 1.

TABLE 1: SILICON DEVREV VALUES

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Device ID(1)</th>
<th>Revision ID for Silicon Revision(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC18F46K22</td>
<td>0101 0100 000x xxxx</td>
<td>A2 0 0010 A4 0 0100</td>
</tr>
<tr>
<td>PIC18LF46K22</td>
<td>0101 0100 001x xxxx</td>
<td>A2 0 0010 A4 0 0100</td>
</tr>
<tr>
<td>PIC18F26K22</td>
<td>0101 0100 010x xxxx</td>
<td>A2 0 0010 A4 0 0100</td>
</tr>
<tr>
<td>PIC18LF26K22</td>
<td>0101 0100 011x xxxx</td>
<td>A2 0 0010 A4 0 0100</td>
</tr>
</tbody>
</table>

Note 1: The Device ID is located in the last configuration memory space.

Note 2: Refer to the “PIC18(L)F2XXK22/4XXK22 Flash Memory Programming Specification” (DS41398) for detailed information on Device and Revision IDs for your specific device.
TABLE 2: SILICON ISSUE SUMMARY

<table>
<thead>
<tr>
<th>Module</th>
<th>Feature</th>
<th>Item No.</th>
<th>Issue Summary</th>
<th>Affected Revisions<sup>(1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparators</td>
<td>CxSYNC Control</td>
<td>1.</td>
<td>The comparator output to the device pin (Cx) always bypasses the Timer1 synchronization latch.</td>
<td>X</td>
</tr>
<tr>
<td>Clock Switching</td>
<td>Fail-Safe Clock Monitor</td>
<td>2.</td>
<td>When the FCMEN Configuration bit is set and the IESO Configuration bit is not set, then a clock failure during Sleep will not be detected.</td>
<td>X</td>
</tr>
<tr>
<td>Power-on Reset (POR)</td>
<td>Power-on Reset</td>
<td>3.</td>
<td>Transient current spikes on some parts during power-up may cause the part to become stuck in Reset.</td>
<td>X</td>
</tr>
<tr>
<td>Timer1/3/5 Gate</td>
<td>Timer1/3/5 Gate</td>
<td>4.</td>
<td>The Timer1/3/5 gate times cannot be resolved to the two Least Significant bits, when using Fosc as the Timer1/3/5 source.</td>
<td>X</td>
</tr>
<tr>
<td>Timer1/3/5</td>
<td>Interrupt</td>
<td>5.</td>
<td>When the timer is operated in Asynchronous External Input mode, unexpected interrupt flag generation may occur.</td>
<td>X</td>
</tr>
<tr>
<td>EUSART</td>
<td>EUSART Asynchronous Operation</td>
<td>6.1</td>
<td>The EUSART asynchronous operation may miss the Start bit edge.</td>
<td>X</td>
</tr>
<tr>
<td>EUSART</td>
<td>EUSART Synchronous Operation</td>
<td>6.2</td>
<td>LSb of transmitted data can be corrupt.</td>
<td>X</td>
</tr>
<tr>
<td>MSSP (Master Synchronous Serial Port)</td>
<td>SPI Master Mode</td>
<td>7.</td>
<td>Buffer Full (BF) bit or MSSP Interrupt Flag (SSPIF) bit becomes set half SCK cycle too early.</td>
<td>X</td>
</tr>
</tbody>
</table>

Note 1: Only those issues indicated in the last column apply to the current silicon revision.
Silicon Errata Issues

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (A4).

1. Module: Comparators

The CxSYNC controls are inoperative. The comparator output (Cx) always bypasses the Timer1 synchronization latch.

Work around
None.

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2. Module: Clock Switching

When the FCMEN Configuration bit is set and the IESO Configuration bit is not set, then a clock failure during Sleep will not be detected.

Work around
The IESO Configuration bit must also be set when the FCMEN Configuration bit is set.

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

3. Module: Power-on Reset (POR)

There may be transient current spikes on some parts during power-up. If the application cannot supply enough current to get past these transients, then the part may become stuck in Reset.

Work around
Ensure that the application is capable of supplying at least 30 mA of transient current during power-up.

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

4. Module: Timer1/3/5 Gate

The Timer gate times cannot be resolved to the two Least Significant timer bits when the source frequency is Fosc (TMRxCS<1:0>=01). This is because the gate edges are synchronized with the Fosc/4 clock.

Work around
None.

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
5. Module: Timer1/3/5

When Timer1, Timer3 or Timer5 is operated in Asynchronous External Input mode, unexpected interrupt flag generation may occur if an external clock edge arrives too soon, following a firmware write to the TMRxH:TMRxL registers. An unexpected interrupt flag event may also occur when enabling the module or switching from Synchronous to Asynchronous mode.

Work around

This issue only applies when operating the timer in Asynchronous mode. Whenever possible, operate the timer module in Synchronous mode to avoid spurious timer interrupts.

If Asynchronous mode must be used in the application, potential strategies to mitigate the issue may include any of the following:

• Design the firmware so it does not rely on the TMRxIF flag or keep the respective interrupt disabled. The timer still counts normally and does not reset to 0x0000 when the spurious interrupt flag event is generated.
• Design the firmware so that it does not write to the TMRxH:TMRxL registers or does not periodically disable/enable the timer, or switch modes. Reading from the timer does not trigger the spurious interrupt flag events.
• If the firmware must use the timer interrupts and must write to the timer (or disable/enable, or mode switch the timer), implement code to suppress the spurious interrupt event, should it occur. This can be achieved by following the process shown in Example 1.

EXAMPLE 1: ASYNCHRONOUS TIMER MODE WORK AROUND TO AVOID SPURIOUS INTERRUPT

```c
//Timer1 update procedure in asynchronous mode
//The code below uses Timer1 as example
T1CONbits.TMR1ON = 0; //Stop timer from incrementing
PIE1bits.TMR1IE = 0; //Temporarily disable Timer1 interrupt vectoring
TMR1H = 0x00; //Update timer value
TMR1L = 0x00;
T1CONbits.TMR1ON = 1; //Turn on timer

//Now wait at least two full T1CKI periods + 2TCY before re-enabling Timer1 interrupts.
//Depending upon clock edge timing relative to TMR1H/TMR1L firmware write operation,
//a spurious TMR1IF flag event may sometimes assert. If this happens, to suppress
//the actual interrupt vectoring, the TMR1IE bit should be kept clear until
//after the “window of opportunity” (for the spurious interrupt flag event has passed).
//After the window is passed, no further spurious interrupts occur, at least
//until the next timer write (or mode switch/enable event).
while(TMR1L < 0x02); //Wait for 2 timer increments more than the Updated Timer
//value (indicating more than 2 full T1CKI clock periods elapsed)
NOP(); //Wait two more instruction cycles
NOP();
PIR1bits.TMR1IF = 0; //Clear TMR1IF flag, in case it was spuriously set
PIE1bits.TMR1IE = 1; //Now re-enable interrupt vectoring for timer 1
```

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
6. Module: EUSART

6.1 EUSART Asynchronous Operation

The EUSART asynchronous operation has a probability of 1 in 256 of missing the Start bit edge for all combinations of BRGH and BRG16 values, other than BRGH = 1, BRG16 = 1.

Work around

Set BRGH = 1, and BRG16 = 1 and use this baud rate formula:

\[\text{Baud Rate} = \frac{\text{FOSC}}{4\left(\text{SPBRGH}:\text{SPBRGL}\right)+1} \]

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A2</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

6.2 EUSART Synchronous Operation

In Synchronous mode operation, if SPBRG[H:L] = 0x0001, any character that is put in TXREG while a character is still in TSR, will transmit TX9D as the LSB.

Work around

Use the TRMT bit in place of, or in addition to the TXIF bit to ensure that only one character is set to transmit at a time.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A2</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

7. Module: MSSP (Master Synchronous Serial Port)

7.1 SPI Master mode

When the MSSP is used in SPI Master mode and the CKE bit is clear (CKE = 0), the Buffer Full (BF) bit and the MSSP Interrupt Flag (SSPIF) bit become set half an SCK cycle early. If the user software immediately reacts to either of the bits being set, a write collision may occur as indicated by the WCOL bit being set.

Work around

To avoid a write collision one of the following methods should be used:

Method 1: Add a software delay of one SCK period after detecting the completed transfer (the BF bit or SSPIF bit becomes set) and prior to writing to the SSPBUF register. Verify the WCOL bit is clear after writing to SSPBUF. If the WCOL bit is set, clear the bit in software and rewrite the SSPBUF register.

Method 2: As part of the MSSP initialization procedure, set the CKE bit (CKE = 1).

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A2</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS41412G):

<table>
<thead>
<tr>
<th>Note:</th>
<th>Corrections are shown in bold. Where possible, the original bold text formatting has been removed for clarity.</th>
</tr>
</thead>
</table>

None.
APPENDIX A: DOCUMENT
REVISION HISTORY

Rev A Document (8/2010)
Initial release of this document.

Rev B Document (7/2011)
Updated for Revision A4 silicon release; Module 3.1 errata fixed; Other minor corrections.
Data Sheet Clarifications: No changes.

Added Module 5, EUSART; Module 5 errata fixed on Silicon revision A4.
Data Sheet Clarifications: No changes.

Rev D Document (2/2012)
Removed Module 3.2; Other minor corrections.
Data Sheet Clarifications: Removed Module 1.

Rev E Document (7/2012)
Added MPLAB X IDE; Added Module 5.2.

Rev F Document (7/2014)
Added Module 5, Timer1/3/5.

Rev G Document (7/2015)
Added Module 7. Other minor corrections.

Rev H Document (12/2015)
Data Sheet Clarifications: Added Module 1: ECCP, applying corrections to bits 6-4 in Register 14-5.

Rev J Document (09/2016)
Data Sheet Clarifications: Removed Module 1; Other minor corrections.
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademark

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLOQ, KeeLOQ logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2010-2016, Microchip Technology Incorporated. Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0971-7