PIC12(L)F1822/PIC16(L)F1823 Family
Silicon Errata and Data Sheet Clarification

The PIC12(L)F1822/PIC16(L)F1823 family devices that you have received conform functionally to the current Device Data Sheet (DS40001413E), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the PIC12(L)F1822/PIC16(L)F1823 silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (A9).

Data Sheet clarifications and corrections start on page 12, following the discussion of silicon issues.

The silicon revision level can be identified using the current version of MPLAB® IDE and Microchip’s programmers, debuggers, and emulation tools, which are available at the Microchip corporate web site (www.microchip.com).

Note: If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.

The DEVREV values for the various PIC12(L)F1822/ PIC16(L)F1823 silicon revisions are shown in Table 1.

TABLE 1: SILICON DEVREV VALUES

<table>
<thead>
<tr>
<th>Part Number</th>
<th>DEVC<8:0></th>
<th>Revision ID for Silicon Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A6</td>
<td>A8</td>
</tr>
<tr>
<td>PIC12F1822</td>
<td>10</td>
<td>0111</td>
</tr>
<tr>
<td>PIC12LF1822</td>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td>PIC16F1823</td>
<td>10</td>
<td>0111</td>
</tr>
<tr>
<td>PIC16LF1823</td>
<td>10</td>
<td>1000</td>
</tr>
</tbody>
</table>

Note 1: The Device ID is located in the configuration memory at address 8006h.

Note 2: Refer to the “PIC12(L)F1822/PIC16(L)F182X Memory Programming Specification” (DS41390) for detailed information on Device and Revision IDs for your specific device.
TABLE 2: SILICON ISSUE SUMMARY

<table>
<thead>
<tr>
<th>Module</th>
<th>Feature</th>
<th>Item Number</th>
<th>Issue Summary</th>
<th>Affected Revisions(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscillator</td>
<td>HS Oscillator</td>
<td>1.1</td>
<td>HS Oscillator min. Vdd.</td>
<td>A6</td>
</tr>
<tr>
<td>Oscillator</td>
<td>Clock Switching</td>
<td>1.2</td>
<td>Clock switching can cause a single corrupted instruction.</td>
<td>A8</td>
</tr>
<tr>
<td>Oscillator</td>
<td>Oscillator Start-up Timer (OST) bit</td>
<td>1.3</td>
<td>OST bit remains set.</td>
<td>A9 X X</td>
</tr>
<tr>
<td>ADC</td>
<td>Analog-to-Digital Converter</td>
<td>2.1</td>
<td>ADC conversion does not complete.</td>
<td>X</td>
</tr>
<tr>
<td>APFCON</td>
<td>Remappable T1Gate</td>
<td>3.1</td>
<td>T1Gate is not remappable.</td>
<td>X</td>
</tr>
<tr>
<td>Enhanced Capture Compare</td>
<td>Enhanced PWM</td>
<td>4.1</td>
<td>PWM 0% duty cycle direction change.</td>
<td>X</td>
</tr>
<tr>
<td>PWM (ECCP)</td>
<td>Enhanced PWM</td>
<td>4.2</td>
<td>PWM 0% duty cycle port steering.</td>
<td>X</td>
</tr>
<tr>
<td>Timer1 Gate</td>
<td>T1Gate Toggle mode</td>
<td>6.1</td>
<td>T1Gate flip-flop does not clear.</td>
<td>X</td>
</tr>
<tr>
<td>In-Circuit Serial Programming™ (ICSP™)</td>
<td>Low-Voltage Programming</td>
<td>7.1</td>
<td>Bulk Erase not available with LVP.</td>
<td>X</td>
</tr>
<tr>
<td>BOR</td>
<td>Wake-up from Sleep</td>
<td>8.1</td>
<td>Device may BOR Reset when waking-up from Sleep.</td>
<td>A6 X X</td>
</tr>
<tr>
<td>Enhanced Universal Synchronous Asynchronous Receiver (EUSART)</td>
<td>16-Bit High-Speed Asynchronous mode</td>
<td>9.1</td>
<td>Works improperly at maximum rate.</td>
<td>X X X</td>
</tr>
<tr>
<td>Enhanced Universal Synchronous Asynchronous Receiver (EUSART)</td>
<td>Auto-Baud Detect</td>
<td>9.2</td>
<td>Auto-Baud Detect may store incorrect count value in the SPBRG registers.</td>
<td>X X</td>
</tr>
<tr>
<td>Master Synchronous Serial Port (MSSP)</td>
<td>SPI Master mode</td>
<td>10.1</td>
<td>Buffer Full (BF) bit or MSSP Interrupt Flag (SSPIF) bit becomes set half SCK cycle too early.</td>
<td>X X X</td>
</tr>
<tr>
<td>Master Synchronous Serial Port (MSSP)</td>
<td>SPI Slave mode</td>
<td>10.2</td>
<td>SPI master releasing Slave Select during Slave Sleep mode corrupts data.</td>
<td>X X X</td>
</tr>
<tr>
<td>Master Synchronous Serial Port (MSSP)</td>
<td>SPI Slave mode</td>
<td>10.3</td>
<td>SPI master enabling Slave Select too early could lose received data in Slave mode.</td>
<td>X X X</td>
</tr>
<tr>
<td>Master Synchronous Serial Port (MSSP)</td>
<td>SPI Slave mode</td>
<td>10.4</td>
<td>WCOL is erroneously set in SPI Slave mode during Sleep.</td>
<td>X X X</td>
</tr>
</tbody>
</table>

Note 1: Only those issues indicated in the last column apply to the current silicon revision.
Silicon Errata Issues

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (A9).

1. Module: Oscillator

1.1 HS Oscillator

The HS oscillator requires a minimum voltage of 3.0 volts (at 65°C or less) to operate at 20 MHz.

Work around

None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A6</th>
<th>A8</th>
<th>A9</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2 Clock Switching

When switching clock sources between INTOSC clock source and an external clock source, one corrupted instruction may be executed after the switch occurs.

This issue does not affect Two-Speed Start-up or the Fail-Safe Clock Monitor operation.

Work around

When switching from an external oscillator clock source, first switch to 16 MHz HFINTOSC. Once running at 16 MHz HFINTOSC, configure IRCF to run at desired internal oscillator frequency.

When switching from an internal oscillator (INTOSC) to an external oscillator clock source, first switch to HFINTOSC High-Power mode (8 MHz or 16 MHz). Once running from HFINTOSC, switch to the external oscillator clock source.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A6</th>
<th>A8</th>
<th>A9</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

1.3 Oscillator Start-up Timer (OST) bit

During the Two-Speed Start-up sequence, the OST is enabled to count 1024 clock cycles. After the count is reached, the OSTS bit is set, the system clock is held low until the next falling edge of the external crystal (LP, XT or HS mode), before switching to the external clock source.

When an external oscillator is configured as the primary clock and Fail-Safe Clock mode is enabled (FCMEN = 1), any of the following conditions will result in the Oscillator Start-up Timer (OST) failing to restart:

- MCLR Reset
- Wake from Sleep
- Clock change from INTOSC to Primary Clock

This anomaly will manifest itself as a clock failure condition for external oscillators which take longer than the clock failure time-out period to start.

Work around

None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A6</th>
<th>A8</th>
<th>A9</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
2. Module: ADC

2.1 Analog-to-Digital Converter (ADC)

Under certain device operating conditions, the ADC conversion may not complete properly. When this occurs, the ADC Interrupt Flag (ADIF) does not get set, the GO/DONE bit does not get cleared and the conversion result does not get loaded into the ADRESH and ADRESL result registers.

Work around

Method 1: Select the dedicated RC oscillator as the ADC conversion clock source, and perform all conversions with the device in Sleep.

Method 2: Provide a fixed delay in software to stop the A-to-D conversion manually, after all 10 bits are converted, but before the conversion would complete automatically. The conversion is stopped by clearing the GO/DONE bit in software. The GO/DONE bit must be cleared during the last $\frac{1}{2}$ TAD cycle, before the conversion would have completed automatically. Refer to Figure 1 for details.

FIGURE 1: INSTRUCTION CYCLE DELAY CALCULATION EXAMPLE

In Figure 1, 88 instruction cycles (T_CY) will be required to complete the full conversion. Each TAD cycle consists of 8 TCY periods. A fixed delay is provided to stop the A/D conversion after 86 instruction cycles and terminate the conversion at the correct time as shown in the figure above.

EXAMPLE 1: CODE EXAMPLE OF INSTRUCTION CYCLE DELAY

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSF ADCON0, GO/DONE;</td>
<td>Start ADC conversion</td>
</tr>
<tr>
<td></td>
<td>; Provide 86 instruction cycle delay here</td>
</tr>
<tr>
<td>BCF ADCON0, GO/DONE;</td>
<td>Terminate the conversion manually</td>
</tr>
<tr>
<td>MOVF ADRESH, W;</td>
<td>Read conversion result</td>
</tr>
</tbody>
</table>

For other combinations of FOSC, TAD values and instruction cycle delay counts, refer to Table 3.

Note: The exact delay time will depend on the choice of FOSC and the TAD divisor (ADCS) selection. The TCY counts shown in the timing diagram above apply to this example only. Refer to Table 3 for the required delay counts for other configurations.
3. Module: APFCON

3.1 Timer1 Gate

The APFCON register is normally used to remap the T1 Gate to an alternate pin. The T1GSEL bit of the APFCON register is found to be not writable and therefore the T1Gate pin cannot be remapped. The default value for the T1GSEL bit is 0 and, therefore, the T1Gate will be found on RA4. This affects the PIC16(L)F1823 devices only.

Work around

None.

4. Module: Enhanced Capture Compare PWM (ECCP)

4.1 Enhanced PWM

When the PWM is configured for Full-Bridge mode and the duty cycle is set to 0%, writing the PxM<1:0> bits to change the direction has no effect on PxA and PxC outputs.

Work around

Increase the duty cycle to a value greater than 0% before changing directions.

5. Module: Clock Switching

5.1 OSTS Status Bit

When the 4xPLL is enabled, the Oscillator Start-up Time-out Status (OSTS) bit always remains clear.

Work around

None.

6. Module: Timer1 Gate

6.1 Timer1 Gate Toggle mode

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1 Gate signal. To perform this function, the Timer1 Gate source is routed through a flip-flop that changes state on every incrementing edge of the gate signal. Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When working properly, clearing either the T1GTM bit or the TMR1ON bit would also clear the output value of this flip-flop, and hold it clear. This is done in order to control which edge is being measured. The issue that exists is that clearing the TMR1ON bit does not clear the output value of the flip-flop and hold it clear.

Work around

Clear the T1GTM bit in the T1GCON register to clear and hold clear the output value of the flip-flop.

TABLE 3: INSTRUCTION CYCLE DELAY COUNTS FOR OTHER FOSC AND TAD COMBINATIONS

<table>
<thead>
<tr>
<th>Fosc</th>
<th>TAD</th>
<th>Instruction Cycle Delay Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 MHz</td>
<td>Fosc/64</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>Fosc/32</td>
<td>86</td>
</tr>
<tr>
<td>16 MHz</td>
<td>Fosc/64</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>Fosc/32</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Fosc/16</td>
<td>43</td>
</tr>
<tr>
<td>8 MHz</td>
<td>Fosc/32</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Fosc/16</td>
<td>43</td>
</tr>
</tbody>
</table>

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A6</th>
<th>A8</th>
<th>A9</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enhanced PWM

In PWM mode, when the duty cycle is set to 0% and the STRxSYNC bit is set, writing the STRxA, STRxB, STRxC and the STRxD bits to enable/disable steering to port pins has no effect on the outputs.

Work around

Increase the duty cycle to a value greater than 0% before enabling/disabling steering to port pins.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A6</th>
<th>A8</th>
<th>A9</th>
<th>X</th>
</tr>
</thead>
</table>

OSTS Status Bit

When the 4xPLL is enabled, the Oscillator Start-up Time-out Status (OSTS) bit always remains clear.

Work around

None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A6</th>
<th>A8</th>
<th>A9</th>
<th>X</th>
</tr>
</thead>
</table>

Timer1 Gate Toggle mode

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1 Gate signal. To perform this function, the Timer1 Gate source is routed through a flip-flop that changes state on every incrementing edge of the gate signal. Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When working properly, clearing either the T1GTM bit or the TMR1ON bit would also clear the output value of this flip-flop, and hold it clear. This is done in order to control which edge is being measured. The issue that exists is that clearing the TMR1ON bit does not clear the output value of the flip-flop and hold it clear.

Work around

Clear the T1GTM bit in the T1GCON register to clear and hold clear the output value of the flip-flop.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A6</th>
<th>A8</th>
<th>A9</th>
<th>X</th>
</tr>
</thead>
</table>

FOSC TAD Instruction Cycle Delay Counts

<table>
<thead>
<tr>
<th>FOSC</th>
<th>TAD</th>
<th>Instruction Cycle Delay Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 MHz</td>
<td>Fosc/64</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>Fosc/32</td>
<td>86</td>
</tr>
<tr>
<td>16 MHz</td>
<td>Fosc/64</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>Fosc/32</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Fosc/16</td>
<td>43</td>
</tr>
<tr>
<td>8 MHz</td>
<td>Fosc/32</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Fosc/16</td>
<td>43</td>
</tr>
</tbody>
</table>
7. Module: In-Circuit Serial Programming™ (ICSP™)

7.1 Low-Voltage Programming
The Bulk Erase feature is not available with Low-Voltage Programming mode.

A Bulk Erase of the program Flash memory or data memory cannot be executed in Low-Voltage Programming mode.

Work around
Method 1: If ICSP Low-Voltage Programming mode is required, use row erases to erase the program memory, as described in the Program/Verify mode section of the Programming Specification. Data memory must be overwritten with the desired values.

Method 2: Use the ICSP High-Voltage Programming mode if a Bulk Erase is required.

Note: Only the Bulk Erase feature will erase the program or data memory if the code or data protection is enabled. Method 2 must be used if the code or data protection is enabled.

8. Module: BOR

8.1 BOR Reset
This issue affects only the PIC12LF1822/ PIC16LF1823 devices. The devices may undergo a BOR Reset when waking-up from Sleep and BOR is re-enabled. A BOR Reset may also occur the moment the software BOR is enabled.

Under certain voltage and temperature conditions and when either SBODEN or BOR_NSLEEP is selected, the devices may occasionally reset when waking-up from Sleep or BOR is enabled.

Note: This issue pertains only to the LF product versions, PIC12LF1822 and PIC16LF1823.

Work around
Method 1: In applications where BOR use is not critical, turn off the BOR in the Configuration Word.

Method 2: Set the FVREN bit of the FVRCON register. Maintain this bit on at all times.

Method 3: When BOR module is needed only during run-time, use the software-enabled BOR by setting the SBODEN option on the Configuration Word. BOR should be turned off by software before Sleep, then follow the below sequence for turning BOR on after Wake-up:

a) Wake-up event occurs
b) Turn on FVR (FVREN bit of the FVRCON register)
c) Wait until FVRRDY bit is set
d) Wait 15 µs after the FVR Ready bit is set
e) Manually turn on the BOR

Method 4: Use the software-enabled BOR as described in Method 3, but use the following sequence:

a) Switch to internal 32 kHz oscillator immediately before Sleep
b) Upon wake-up, turn on FVR (FVREN bit of the FVRCON register)
c) Manually turn on the BOR
d) Switch the clock back to the preferred clock source

Note: When using the software BOR follow the steps in Methods 3 or 4 above when enabling BOR for the first time during program execution.

Note: Only the Bulk Erase feature will erase the program or data memory if the code or data protection is enabled. Method 2 must be used if the code or data protection is enabled.
9. Module: Enhanced Universal
 Synchronous Asynchronous
 Receiver (EUSART)

9.1 16-Bit High-Speed Asynchronous Mode

 The EUSART provides unexpected operation when the 16-Bit High-Speed Asynchronous mode is selected and the Baud Rate Generator Data register values are loaded with zero (‘0’). The use of this configuration for EUSART communication is not recommended. The configuration is shown below in the following table:

<table>
<thead>
<tr>
<th>Configuration Bits</th>
<th>BRG Data Registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNC</td>
<td>BRG16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Work around

Ensure that the SPBRGH or the SPBRGL register is loaded with a non-zero value.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A6</th>
<th>A8</th>
<th>A9</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
9.2 Auto-Baud Detect

When using automatic baud detection (ABDEN), on occasion, an incorrect count value can be stored at the end of auto-baud detection in the SPBRGH:SPBRGL (SPBRG) registers. The SPBRG value may be off by several counts. This condition happens sporadically when the device clock frequency drifts to a frequency where the SPBRG value oscillates between two different values. The issue is present regardless of the baud rate Configuration bit settings.

Work around

When using auto-baud, it is a good practice to always verify the obtained value of SPBRG, to ensure it remains within the application specifications. Two recommended methods are shown below.

For additional auto-baud information, see Technical Brief TB3069, “Use of Auto-Baud for Reception of LIN Serial Communications Devices: Mid-Range and Enhanced Mid-Range”.

EXAMPLE 2: METHOD 1 – EUSART AUTO-BAUD DETECT WORK AROUND

In firmware, define default, minimum and maximum auto-baud (SPBRG) values according to the application requirements.

For example, if the application runs at 9600 baud at 16 MHz then, the default SPBRG value would be (assuming 16-bit/Asynchronous mode) 0x67. The minimum and maximum allowed values can be calculated based on the application. In this example, a +/-5% tolerance is required, so tolerance is 0x67 * 5% = 0x05.

```c
#define SPBRG_16BIT  (*(int*)&SPBRG); // define location for 16-bit SPBRG value
const int DEFAULT_BAUD = 0x0067; // Default Auto-Baud value
const int TOL = 0x05; // Baud Rate % tolerance
const int MIN_BAUD = DEFAULT_BAUD - TOL; // Minimum Auto-Baud Limit
const int MAX_BAUD = DEFAULT_BAUD + TOL; // Maximum Auto-Baud Limit

ABDEN = 1; // Start Auto-Baud
while (ABDEN); // Wait until Auto-Baud completes

if((SPBRG_16BIT > MAX_BAUD)||(SPBRG_16BIT < MIN_BAUD))
{
    SPBRG_16BIT = DEFAULT_BAUD; // if out of spec, use DEFAULT_BAUD
}
// if in spec, continue using the
// Auto-Baud value in SPBRG
```
EXAMPLE 3: METHOD 2 – EUSART AUTO-BAUD DETECT WORK AROUND

Similar to Method 1, define default, minimum and maximum auto-baud (SPBRG) values. In firmware, compute a running average of SPBRG. If the new SPBRG value falls outside the minimum or maximum limits, then use the current running average value (Average_Baud), otherwise use the auto-baud SPBRG value and calculate a new running average.

For example, if the application runs at 9600 baud at 16 MHz then, the default SPBRG value would be (assuming 16-bit/Asynchronous mode) 0x67. The minimum and maximum allowed values can be calculated based on the application. In this example, a +/-5% tolerance is required, so tolerance is 0x67 * 5% = 0x05.

```
#define SPBRG_16BIT *((*int)&SPBRG; // define location for 16-bit SPBRG value
const int DEFAULT_BAUD = 0x0067; // Default Auto-Baud value
const int TOL = 0x05; // Baud Rate % tolerance
const int MIN_BAUD = DEFAULT_BAUD - TOL; // Minimum Auto-Baud Limit
const int MAX_BAUD = DEFAULT_BAUD + TOL; // Maximum Auto-Baud Limit

int Average_Baud; // Define Average_Baud variable
int Integrator; // Define Integrator variable

Average_Baud = DEFAULT_BAUD; // Set initial average Baud rate
Integrator = DEFAULT_BAUD*15; // The running 16 count average

ABDEN = 1; // Start Auto-Baud
while (ABDEN); // Wait until Auto-Baud completes

Integrator+ = SPBRG_16BIT;
Average_Baud = Integrator/16;
if((SPBRG_16BIT > MAX_BAUD)||(SPBRG_16BIT < MIN_BAUD))
{ // Check if value is within limits
  SPBRG_16BIT = Average_Baud; // If out of spec, use previous average
}
else // If in spec, calculate the running average but continue using the
{ // Auto-Baud value in SPBRG
  Integrator+ = SPBRG_16BIT;
  Average_Baud = Integrator/16;
  Integrator- = Average_Baud;
}
```

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A6</th>
<th>A8</th>
<th>A9</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
10. Module: Master Synchronous Serial Port (MSSP)

10.1 SPI Master mode

When the MSSP is used in SPI Master mode and the CKE bit is clear (CKE = 0), the Buffer Full (BF) bit and the MSSP Interrupt Flag (SSPIF) bit becomes set half an SCK cycle early. If the user software immediately reacts to either of the bits being set, a write collision may occur as indicated by the WCOL bit being set.

Work around
To avoid a write collision one of the following methods should be used:

Method 1: Add a software delay of one SCK period after detecting the completed transfer (the BF bit or SSPIF bit becomes set) and prior to writing to the SSP1BUF register. Verify the WCOL bit is clear after writing to SSP1BUF. If the WCOL bit is set, clear the bit in software and rewrite the SSP1BUF register.

Method 2: As part of the MSSP initialization procedure, set the CKE bit (CKE = 1).

Affected Silicon Revisions

10.2 SPI Slave Mode

When the MSSP module is configured in SPI Slave mode with SS pin control enabled (SSPM = 0100) and the device is in Sleep mode during SPI activity, if the SPI master releases the SS line (SS goes high) before the device wakes from Sleep and updates SSP1BUF, the received data will be lost.

Work around
Method 1: The SPI master must wait a minimum of parameter SP83 (1.5 TCY + 40 ns) after the last SCK edge and the additional wake-up time from Sleep (device dependent) before releasing the SS line.

Method 2: If both the master and slave devices have an available pin, once the slave has completed the transaction and BF or SSPIF is set, the slave could toggle an output to inform the master that the transaction is complete and that it is safe to release the SS line.

Affected Silicon Revisions

10.3 SPI Slave Mode

When the MSSP module is configured in SPI Slave mode with SS pin control enabled (SSPM = 0100) and the device is in Sleep mode during SPI activity, if the SPI master enables SS (SS goes low) within 1 TCY before Sleep is executed, the data written into the SSP1BUF by the slave for transmission will remain in the SSP1BUF, and the byte received by the slave will be completely discarded. The MSb of the data byte that is currently loaded into SSP1BUF will be transmitted on each of the eight SCK clocks, resulting in either a 0x00 or 0xFF address to be incorrectly transmitted. This issue typically occurs when the device wakes up from Sleep to process data and immediately goes back to Sleep during the next transmission.

Work around
The SPI slave must wait a minimum of 2.25 * TCY from the time the SS line becomes active (SS goes low) before executing the Sleep command.

Affected Silicon Revisions
10.4 SPI Slave Mode

When the MSSP module is configured with either of the Slave modes listed below and Sleep is executed during transmission, the WCOL bit is erroneously set. Although the WCOL is set, it does not cause a break in transmission or reception.

Mode 1: SPI Slave mode with SS disabled (SSPM = 0101) and CKE = 0.

Mode 2: SPI Slave mode with SS enabled (SSPM = 0100) and SS not set and then cleared before each consecutive transmission. This typically occurs during multiple byte transmissions in which the master does not release the SS line until all transmission has completed.

Work around

Method 1: The WCOL bit can be ignored since the issue does not interfere with MSSP hardware.

Method 2: Clear the SSPEN bit after each transaction, then set SSPEN before next transaction.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A6</th>
<th>A8</th>
<th>A9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS40001413E):

<table>
<thead>
<tr>
<th>Note:</th>
<th>Corrections are shown in bold. Where possible, the original bold text formatting has been removed for clarity.</th>
</tr>
</thead>
</table>

None.
APPENDIX A: DOCUMENT
REVISION HISTORY

Initial release of this document.

Updated errata to the new format; Added Silicon Revision A8; Added Module 5: Clock Switching.

Rev C Document (03/2011)
Added Modules 6, 7 and 8.

Rev D Document (02/2012)
Updated Table 1; Added Modules 1.2, 1.3 and 1.4; Added Module 9, EUSART; Other minor corrections.
Data Sheet Clarifications: Added Module 1, Oscillator.

Rev E Document (10/2012)
Added MPLAB X IDE; Added Silicon Revision A9; Updated Table 2; Updated Module 8, BOR; Other minor corrections.
Data Sheet Clarifications: Removed Module 1, Oscillator.

Rev F Document (12/2014)
Added Module 10, MSSP; Other minor corrections.

Rev G Document (07/2015)
Added Modules 10.2 to 10.4 (MSSP); Removed Module 1.2 (Oscillator: HFINTOSC Ready/Stable Bit).
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MIWI, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscent Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VanSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2010-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-63277-647-1

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV
= ISO/TS 16949 =
Worldwide Sales and Service

AMERICAS
- **Corporate Office**
 - 2355 West Chandler Blvd.
 - Chandler, AZ 85224-6199
 - Tel: 480-792-7200
 - Fax: 480-792-7277
 - Technical Support: http://www.microchip.com/support
 - Web Address: www.microchip.com
- **Atlanta**
 - Tel: 770-897-9614
 - Fax: 770-897-1455
- **Austin, TX**
 - Tel: 512-257-3370
- **Boston**
 - Tel: 617-760-0087
 - Fax: 617-760-0088
- **Chicago**
 - Tel: 630-285-0071
 - Fax: 630-285-0075
- **Cleveland**
 - Tel: 216-447-0087
 - Fax: 216-447-0088
- **Dallas**
 - Tel: 972-918-7423
 - Fax: 972-918-2924
- **Detroit**
 - Tel: 313-773-5453
- **Houston, TX**
 - Tel: 281-894-5983
- **Indianapolis**
 - Tel: 317-773-8323
 - Fax: 317-773-5453
- **Los Angeles**
 - Tel: 949-462-9608
- **New York, NY**
 - Tel: 631-435-6000
- **San Jose, CA**
 - Tel: 408-735-9110
- **Canada - Toronto**
 - Tel: 416-897-0699
 - Fax: 416-897-6509

ASIA/PACIFIC
- **Asia Pacific Office**
 - Suites 3707-14, 37th Floor
 - Tower 6, The Gateway
 - Harbour City, Kowloon
 - Hong Kong
 - Tel: 852-2943-5100
 - Fax: 852-2941-3431
 - **Australia - Sydney**
 - Tel: 61-2-9868-6733
 - Fax: 61-2-9868-6755
 - **China - Beijing**
 - Tel: 86-10-8569-7000
 - Fax: 86-10-8528-2104
 - **China - Chengdu**
 - Tel: 86-28-8665-5511
 - Fax: 86-28-8665-7889
 - **China - Chongqing**
 - Tel: 86-23-8960-9588
 - Fax: 86-23-8960-9900
 - **China - Dongguan**
 - Tel: 86-769-8702-9880
 - **China - Hangzhou**
 - Tel: 86-571-8792-8115
 - Fax: 86-571-8792-8116
 - **China - Hong Kong SAR**
 - Tel: 852-2943-5100
 - Fax: 852-2941-3431
 - **China - Nanjing**
 - Tel: 86-25-8473-2460
 - Fax: 86-25-8473-2470
 - **China - Qingdao**
 - Tel: 86-65-32-8502-7355
 - Fax: 86-65-32-8502-7205
 - **China - Shanghai**
 - Tel: 86-21-5407-5533
 - Fax: 86-21-5407-5066
 - **China - Shenyang**
 - Tel: 86-24-2334-2829
 - Fax: 86-24-2334-2393
 - **China - Shenzhen**
 - Tel: 86-755-8864-2200
 - Fax: 86-755-8203-1760
 - **China - Wuhan**
 - Tel: 86-27-5980-5300
 - Fax: 86-27-5980-5118
 - **China - Xian**
 - Tel: 86-29-8833-7252
 - Fax: 86-29-8833-7256

ASIA/PACIFIC
- **China - Xiamen**
 - Tel: 88-592-2388138
 - Fax: 88-592-2388130
- **China - Zuhai**
 - Tel: 88-756-3210040
 - Fax: 88-756-3210049
- **India - Bangalore**
 - Tel: 91-80-3090-4444
 - Fax: 91-80-3090-4444
- **India - New Delhi**
 - Tel: 91-11-4160-8631
 - Fax: 91-11-4160-8632
- **India - Pune**
 - Tel: 91-20-3019-1500
 - Fax: 91-20-3019-1500
- **Japan - Osaka**
 - Tel: 81-6-6152-7160
 - Fax: 81-6-6152-9310
- **Japan - Tokyo**
 - Tel: 81-3-6880-3770
 - Fax: 81-3-6880-3771
- **Korea - Daegu**
 - Tel: 82-53-744-4301
 - Fax: 82-53-744-4302
- **Korea - Seoul**
 - Tel: 82-2-554-7200
 - Fax: 82-2-554-7392
- **Malaysia - Kuala Lumpur**
 - Tel: 60-3-6201-9857
 - Fax: 60-3-6201-9859
- **Malaysia - Penang**
 - Tel: 60-4-227-8870
 - Fax: 60-4-227-4068
- **Philippines - Manila**
 - Tel: 63-2-634-9065
 - Fax: 63-2-634-9069
- **Singapore**
 - Tel: 65-6334-8870
 - Fax: 65-6334-8850
- **Taiwan - Hsin Chu**
 - Tel: 886-3-5778-366
 - Fax: 886-3-5770-955
- **Taiwan - Kaohsiung**
 - Tel: 886-7-213-7828
- **Taiwan - Taipei**
 - Tel: 886-2-2508-8600
 - Fax: 886-2-2508-0102
- **Thailand - Bangkok**
 - Tel: 66-2-694-1351
 - Fax: 66-2-694-1350

EUROPE
- **Austria - Wels**
 - Tel: 43-7242-2244-39
 - Fax: 43-7242-2244-39
- **Denmark - Copenhagen**
 - Tel: 45-4450-2828
 - Fax: 45-4485-2829
- **France - Paris**
 - Tel: 33-1-69-53-63-20
 - Fax: 33-1-69-30-90-79
- **Germany - Dusseldorf**
 - Tel: 49-2129-3766400
- **Germany - Karlsruhe**
 - Tel: 49-721-625370
- **Germany - Munich**
 - Tel: 49-89-627-144-0
 - Fax: 49-89-627-144-44
- **Italy - Milan**
 - Tel: 39-0331-742611
 - Fax: 39-0331-466781
- **Italy - Venice**
 - Tel: 39-049-7625286
- **Netherlands - Drunen**
 - Tel: 31-416-690399
 - Fax: 31-416-690340
- **Poland - Warsaw**
 - Tel: 48-22-332537
- **Spain - Madrid**
 - Tel: 34-91-708-08-90
 - Fax: 34-91-708-08-91
- **Sweden - Stockholm**
 - Tel: 46-8-5090-4654
- **UK - Wokingham**
 - Tel: 44-118-921-5800
 - Fax: 44-118-921-5820

© 2010-2015 Microchip Technology Inc.